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Abstract With exascale computing forthcoming, performance metrics such as
memory traffic and arithmetic intensity are increasingly important for codes that
heavily utilize numerical kernels. Performance metrics in different CPU architec-
tures can be monitored by reading the occurrences of various hardware events. How-
ever, from architecture to architecture, it becomes more and more unclear which
native performance events are indexed by which event names, making it difficult for
users to understand what specific events actually measure. This ambiguity seems
particularly true for events related to hardware that resides beyond the compute
core, such as events related to memory traffic. Still, traffic to memory is a neces-
sary characteristic for determining arithmetic intensity. To alleviate this difficulty,
PAPI’s Counter Analysis Toolkit measures the occurrences of events through a se-
ries of benchmarks, allowing its users to discover the high-level meaning of native
events. We (i) leverage the capabilities of the Counter Analysis Toolkit to identify
the names of hardware events for reading and writing bandwidth utilization in ad-
dition to floating-point operations, (ii) measure the occurrences of the events they
index during the execution of important numerical kernels, and (iii) verify their iden-
tities by comparing these occurrence patterns to the expected arithmetic intensity of
the numerical kernels.

1 Introduction

Most of the major tools that high-performance computing (HPC) application devel-
opers use to conduct low-level performance analysis and tuning of their applica-
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tions typically rely on hardware performance counters to monitor hardware-related
activities. The kind of available counters is highly dependent on the hardware; even
across the CPUs of a single vendor, each CPU generation has its own implementa-
tion. The PAPI performance-monitoring library provides a clear, portable interface
to the hardware performance counters available on all modern CPUs, as well as
GPUs, networks, and I/O systems [14, 8, 9]. Additionally, PAPI supports transpar-
ent power monitoring capabilities for various platforms, including GPUs (AMD,
NVIDIA) and Intel Xeon Phi [5], enabling PAPI users to monitor power in addition
to traditional hardware performance counter data, without modifying their applica-
tions or learning a new set of library and instrumentation primitives.

We have witnessed rapid changes and increased complexity in processor and
system design, which combines multi-core CPUs and accelerators, shared and dis-
tributed memory, PCI-express and other interconnects. These systems require a con-
tinuous series of updates and enhancements to PAPI with richer and more capable
methods needed to accommodate these new innovations. One such example is the
PAPI Performance Co-Pilot (PCP) component, which we discuss in this paper. Ex-
tending PAPI to monitor performance-critical resources that are shared by the cores
of multi-core and hybrid processors—including on-chip communication networks,
memory hierarchy, I/O interfaces, and power management logic—will enable tun-
ing for more efficient use of these resources. Failure to manage the usage and, more
importantly, contention for these “inter-core” resources has already become a major
drag on overall application performance.

Furthermore, we discuss one of PAPI’s new features: the Counter Analysis
Toolkit (CAT), which is designed to improve the understanding of these inter-core
events. Specifically, the CAT integrates methods based on micro-benchmarking to
gain a better handle on Nest/Offcore/Uncore/NorthBridge counter-related events—
depending on the hardware vendor. For simplicity, hereafter we will refer to such
counters as Uncore, regardless of the vendor.

We aim to define and verify accurate mappings between particular high-level
concepts of performance metrics and underlying low-level hardware events. This
extension of PAPI engages novel expertise in low-level and kernel-benchmarks for
the explicit purpose of collecting meaningful performance data of shared hardware
resources.

In this paper we outline the new PAPI Counter Analysis Toolkit, describe its
objective, and then focus on the micro-kernels that are used to measure and correlate
different native events to compute the arithmetic intensity on the Intel Broadwell,
Intel Skylake, and IBM POWER9 architectures.

2 Counter Analysis Toolkit

Native performance events are often appealing to scientific application developers
who are interested in understanding and improving the performance of their code.
However, in modern architectures it is not uncommon to encounter events whose
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names and descriptions can mislead users about the meaning of the event. Com-
mon misunderstandings can arise due to speculations inside modern CPUs, such as
branch prediction and prefetching in the memory hierarchy, or noise in the measure-
ments due to overheads and coarse-grained granularities of measurements when it
comes to resources that are shared between the compute cores (e.g., off-chip caches
and main memory).

In earlier work [2], we explored the use of benchmarks that employ techniques
such as pointer chasing [1, 3, 4, 10, 11, 12, 13] to stress the memory hierarchy
as well as micro-benchmarks with different branching behaviors to test different
branch-related events. The CAT, which was released with PAPI version 6.0.0, has
built upon these earlier findings by significantly expanding the kinds of tests per-
formed by our micro-benchmarks, as well as the parameter space that is being ex-
plored. Also, we continue making our latest benchmarks as well as updates to the
basic driver code (made after the PAPI 6.0.0 release) publicly available through the
PAPI project’s Git repository.

CAT currently contains benchmarks for testing four different aspects of CPUs:
data caches, instruction caches, branches, and floating-point operations (FLOPs).
The micro-benchmarks themselves are parameterized and, thus, their behavior can
be modified by expert users who desire to focus on particular details of an architec-
ture. The driver, which is currently included with CAT, uses specific combinations
of parameters that we have determined appropriate for revealing important differ-
ences between different native events. More details on the actual tests are discussed
in the following sections.

2.1 Data Cache tests

Figure 1 shows a plot of the data generated when the data cache read benchmark is
executed. As shown in the figure, there are six regions that correspond to six differ-
ent parameter sets. In the first four regions, the access pattern is random (“RND”),
and it is sequential (“SEQ”) in the last two. This choice affects the effectiveness
of prefetching, since random jumps are unlikely to be predicted, but sequential ac-
cesses are perfectly predictable. The access stride is also varied between regions so
that it either matches the size of a cache line on this architecture (64 Bytes) or the
size of two cache lines (128 Bytes). This choice affects the effectiveness of “next-
line prefetching,” which is common in modern architectures. The third parameter
that varies between the six regions is the size of the contiguous block of memory
in which the pointer chaining happens. In effect, this defines the size of the work-
ing set of the benchmark, since all the elements of a block will be accessed before
the elements of the next block start being accessed. We vary this parameter because
in many modern architectures prefetching is automatically disabled as soon as the
working set becomes too large.

The X-axis of the graph corresponds to the measurements performed by the
benchmark. For each combination of parameters the code performs 76 measure-



4 Daniel Barry, Anthony Danalis, Heike Jagode

 0

 1

 2

 76  152  228  304  380  456

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

     RND
  stride=64
block=large

     RND
  stride=64
block=small

     RND
  stride=128
block=large

     RND
  stride=128
block=small

     SEQ
  stride=64

     SEQ
  stride=128

Ev
en

t c
ou

nt
 p

er
 m

em
or

y 
ac

ce
ss

Measurement index

L2 cache, Skylake (PAPI 6.0.0, CPU: Xeon(R) Gold 6140 CPU @ 2.30GHz, 6/85/4)

MEM_LOAD:L2_HIT
MEM_LOAD:L2_MISS

Fig. 1: L2 Data Cache Events.

ments, and within each set of 76 measurements the X-axis corresponds to the size
of the buffer that the benchmark uses. To improve the readability of Figure 1, at
the top of the graph, we have marked the measurement indices within each region
that correspond to the sizes of the three caches (L1, L2, L3) of the testbed we used
(Skylake 6140). For each measurement, the benchmark executes a memory traversal
defined by the parameters of the region (e.g., a random pointer chase with a large
stride, or a streamed traversal of each cache line in the buffer). To amortize the effect
of cold cache misses (also known as compulsory misses), the benchmark traverses
the test buffer in a loop such that the number of memory accesses for each measure-
ment exceeds the size of the buffer by a large factor. As a result, cold cache misses
do not have a measurable effect in our results, as can be seen in the figure.

The red curve with square points depicts the number of hits in the L2 cache per
memory access (hit rate). In each of the six regions, the L2 hit rate is zero when
the buffer size is smaller than the L1 cache (since all accesses are served by the L1
cache). When the buffer is larger than the L1 but smaller than the L2 cache, every
access leads to an L2 hit. This can also be observed in each of the six regions, where
the red curve stays at one hit count per memory access between the markers for the
L1 and L2 cache sizes (shown at the top of the figure).

When the buffer size exceeds the size of the L2, the number of L2 hits per mem-
ory access depends on the parameters of our benchmark. Each region uses different
parameter settings, and we will discuss the various effects of these parameters on
buffer sizes greater than the L2 cache.

block=large: Regions one and three illustrate that for large working sets (“block=large”)
prefetching is disabled, which results in a negligible number of hits per access.
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block=small: For small working sets (“block=small”), which are depicted in re-
gions two and four, successful prefetching leads to an L2 hit rate above zero.
These two regions, however, exhibit a difference in the hit rate. This is due to
varying stride parameter values in our benchmark.

block=small, stride=64: On a machine with a cache line size of 64 bytes—as is
the case for our testbed—using a stride of 64 bytes means that the data fetched
by the “adjacent cache line prefetcher” will contribute to the hit rate.

block=small, stride=128: However, when the stride of the benchmark is set to
128 bytes, a lower number of prefetched lines is actually accessed, resulting in a
lower hit rate compared to the stride=64 bytes setting.

The last two regions of the graph show the results when the buffer is accessed
sequentially (“SEQ”). In these regions, the notion of “block” does not apply (since
the whole buffer is accessed as one contiguous block) and the access pattern is so
simple that prefetching is most efficient. The only limiting factor is the bandwidth of
the memory subsystem beyond the L2 cache, which is stressed twice as much when
the stride is 128 bytes, leading to a lower hit rate than the case of 64 byte stride.

The blue curve with round points depicts the miss rate of the L2 cache. As ex-
pected, this curve is complementary to the red curve depicting the hit rate (ignoring
some noise in the measurements).

2.2 Instruction Cache tests
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Unlike the case we discussed in the previous section—where the same micro-
benchmark code was used while key parameters were varied to achieve different
results—the instruction benchmark consists of a series of automatically generated
micro-benchmark functions that have a variable number of instructions. In figure 2
we plot the data generated when the instruction cache benchmark is executed. The
data in the figure are in four regions. Within each region, the micro-benchmark func-
tions have the same design, but varying numbers of repetitions of their basic block,
which are displayed in the X-axis. The difference between regions is as follows.

1. region TRUE_BRANCH: Each basic block is enclosed in a branch that will al-
ways evaluate to “true” (although it is designed such that it cannot be resolved
by the compiler).

2. region TRUE_BRANCH/FL: The code is the same as in the first region; how-
ever, a large array is accessed at the end of each iteration, so that unified caches
are flushed (“FL”).

3. region FALSE_BRANCH: Each basic block holds most of the code inside a
branch that will always evaluate to “false.” This way, only the first instruction in
a cache line will be used, as the rest will not be retired, and thus, resulting in a
lower hit rate compared to the results from the first region.

4. region FALSE_BRANCH/FL: The code is the same as in the third region, but
it also performs the large data traversal to flush the caches (“FL”).

Normalization of data for the purpose of readability: 1 In each of the four regions,
we normalize the raw counter values by dividing them by the number of repeti-
tions of the basic block, which turns these values into rates. In addition, the below
function is applied:

F(x) =
log(1+ log(1+18.8× x4))

1.15
This function has the following effects on its input:

• Values lower than 0.5 become smaller.
• Values between 0.5 and 2 are not significantly affected.
• Values larger than 2 grow extremely slowly (F(106)≈ 3.5).

In Figure 2, the green line with the hollow square points depicts the (normalized)
hit rate in the Decoded Stream Buffer (DSB) (also known as µOP cache). The DSB
functions as a level-0 instruction cache, as it is the unit inside each core that caches
µOPs after they have been decoded by the Micro Instruction Translation Engine
(MITE)—which is the unit that decodes instructions into µOPs. On Skylake, the
DSB can hold up to 1,536µOPs.

In the first and third regions of the graph, the green line reveals, for small bench-
mark codes (fewer than 150 repetitions of the basic block) most instructions are

1 We perform this normalization on the raw data produced by this benchmark only for presentation
purposes because we have observed that the measurements are either around 1.5, or extremely
large, and thus they cannot be visualized in a readable way, not even in a logarithmic graph.
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delivered to the back-end from the DSB. In regions two and four, however, we see
a normalized value above 3.5, which corresponds to millions of events. This is due
to the loop that accesses the large array in order to flush the unified caches (L2 and
L3). The code of the loop is tiny (a simple read from an array and accumulation into
a scalar), and thus, it easily fits in the DSB but executes tens of millions of times in
order to flush the L3.

The dashed light-blue line with solid square points depicts the (normalized) miss
rate of the L1 instruction cache. In regions one and three of the graph, we see that the
L1 only experiences misses when the code becomes large. Interestingly, in regions
two and four, we can see that the L1 instruction cache experiences misses even at
very small code sizes. This is most likely due to the flushing of the L3 cache, which
is inclusive and therefore invalidates the L1 instruction cache.

Likewise, the (normalized) L2 miss rate, displayed by the purple curve with the
solid points, follows a similar pattern as the L1 miss rate.

The (normalized) L2 hit rate, depicted by the red curve with the hollow square
points, shows a peak for moderately sized codes, and zero for smaller and larger
codes. In addition, we can observe that the L2 hit rate in the first region—where all
the code in the cache is used—is higher than the hit rate in the third region—where
the false branch causes part of the code to be fetched but not executed.

In summary, the goal of this work is to generate benchmarks that make these
curves different from one another, so we can distinguish between performance
events that have semantic differences. While Figure 2 holds a significant amount
of data, the curves shown are notably distinct from each other, which substantiates
the validity of this effort.

2.3 Branch Tests

Figure 3 shows a plot of the data generated when the branch benchmark is executed.
This test consists of a series of different hand-crafted micro-benchmarks (currently
eleven), each of which exhibits different behavior from the others with respect to one
or more branch instructions. Consequently, when all micro-benchmarks are used,
each type of branch event produces a unique signature, as can be seen in the figure.
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Listing 1: Branch benchmark #5.

do{
iter_count++;
BUSY_WORK();
BRNG();
if ( (result % 2) == 0 ){

BUSY_WORK();
if((global_var1%2) != 0){

global_var2++;
}
global_var1+=2;

}
BUSY_WORK();

}while(iter_count<size);

Listing 2: Branch benchmark #9.

global_var2 = 1;
do{

BRNG();
global_var2+=2;
if(iter_count < global_var2){

global_var1+=2;
goto lbl;

}
BRNG();

lbl: iter_count++;
BRNG();

}while(iter_count<size);

To illustrate the workings of these micro-benchmarks we show the key loop of
two of them in the code Listings 1 and 2. These two codes correspond to the mea-
surements shown in the graph at index 5 and 9, respectively.

Looking at the blue curve with the diamond points, we see that at index 5 the
value is zero, which means that benchmark #5 does not trigger any direct branch
events (BR_INST_EXEC:ALL_DIRECT_JMP). On the other hand, at index 9 the
blue curve shows a value of one, indicating that benchmark #9 does execute one
direct branch per iteration. Looking at the code snippets, we can verify that bench-
mark #5 does not contain any direct branches, but benchmark #9 includes a goto
instruction which will execute in every iteration (the enclosing if statement is al-
ways true).

The green curve with hollow square points indicates that benchmark #5 will ex-
perience branch mispredictions with a rate of 50% per iteration, while benchmark
#9 will not experience any mispredictions. This again becomes evident in the code,
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since benchmark #5 executes a branch that checks the last bit of a randomly gen-
erated variable (result), and therefore it will be mispredicted 50% of the time,
while benchmark #9 does not execute any non-deterministic branches.

The red curve with X points indicates that in benchmark #5 two conditional
branches are taken at each iteration (BR_INST_EXEC:TAKEN_CONDITIONAL),
while in the case of benchmark #9 only one conditional branch is taken at each iter-
ation. Although not shown in this graph, benchmark #9 also triggers a direct jump
to be taken (BR_INST_EXEC:TAKEN_DIRECT_JUMP). At first glance, it might
be puzzling that benchmark #9 only records one taken conditional branch, although
the code has two conditional branches—one for the if statement and a second one
for the back-edge of the while statement. This happens because the compiler gen-
erates a jump that is taken when the condition of the if statement is false (i.e., it
jumps for the else case, not for the if case) and in the case of benchmark #9 the
if statement is never false, thus, the branch for the if statement is never taken.
This explanation is easy to verify by examining the generated assembler code.

The light blue curve with hollow round points and the black curve with solid
square points indicate that benchmark #5 executes two and a half branches per it-
eration and all of them are retired (i.e., they are not discarded due to speculative
execution). Benchmark #9 executes three branches per iteration, and all three are
retired as well. Examining the code of benchmark #5 reveals that the branch, due to
the statement “if((global_var1%2)!=0)”, will only execute for half the iter-
ations (only when the enclosing if turns out to be true); and the two branches, due
to the enclosing if and the while statement, will execute once in every iteration.
In the case of benchmark #9, the statement if(iter_count<global_var2)
will be true for every iteration, therefore the direct branch contained in it (goto)
will execute for every iteration as well, and so will the while statement.

Once again, the detailed explanation of each data point in this graph can be
complicated by micro-architecture and compiler optimizations, but the difference
between the different curves is evident, and thus using these benchmarks helps dis-
tinguish between events with different semantics.

An additional discussion on the design of our branch benchmarks can be found
in [2].

2.4 Floating-Point Tests

FLOPs are traditionally separated into the single- and double-precision categories.
On IBM’s POWER9 architecture, there is additional native hardware support for
quad-precision FLOPs [7, 6]. For the sake of consistency across architectures, we
closely examine the double-precision FLOPs.

Figure 4 shows a plot of the data generated when the floating-point benchmark
is executed. As shown in the figure, there are six regions, each of which corre-
sponds to a different Basic Linear Algebra Subprograms (BLAS) kernel being exe-
cuted. The first three regions (from left to right) correspond to the single-precision
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Fig. 4: Single-Precision and Double-Precision Floating-Point Events.

(“SP”) implementations of the Level-1 (“DOT”), Level-2 (“GEMV”), and Level-3
(“GEMM”) BLAS kernels (one level per region). The latter three regions correspond
to the double-precision (“DP”) implementations of the three respective BLAS ker-
nels. More details about the chosen BLAS routines are discussed in Section 3.

Within each region in Figure 4, the X-axis denotes the number of rows and
columns N of the matrix (or vector) being used in the kernel and will hereafter
be referred to as the dimension. The dimension is incremented per the follow-
ing piecewise linear progression. For 1 ≤ N ≤ 100, N is incremented by 1. For
100 < N ≤ 500, it is incremented by 50. This choice allows us to observe the FLOPs
from a larger domain of N while not proportionally increasing the runtime of the
kernels. For each N, the benchmark executes the BLAS kernel of the floating-point
precision corresponding to the region. In Figure 4, there is a jump in each of the six
regions at N = 100, resulting from the increment changing from 1 to 50.

In the first region, the blue curve shows the single-precision FLOPs observed
during the execution of the DOT kernel for vectors of dimension ranging from 1 to
500. The black curve shows the number of flops that are expected to occur during the
DOT kernel, which is 2∗N flops. The second region shows a similar progression for
the GEMV kernel. However, the blue curve in this region grows more rapidly than
in the first region, as the GEMV kernel invokes 2N2 flops. The third region shows
that the single-precision FLOPs occur per the 2∗N3 expectation of the GEMM ker-
nel. For the next three regions, the blue curve is constantly zero, corresponding to
no single-precision FLOPs being invoked by the double-precision BLAS kernels.
The green curve in the next three regions shows that the double-precision FLOPs
observed during the double- precision DOT, GEMV, and GEMM kernels perfectly
agree with the expectation. The green curve is constantly zero in the first three re-
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gions because the single- precision BLAS kernels do not invoke double-precision
FLOPs.

3 Computation of Arithmetic Intensity for BLAS Kernels

For the study of more precise monitoring of metrics, such as memory traffic and
arithmetic intensity, we have chosen different linear algebra routines that are repre-
sentative of many techniques used in real scientific applications such as computa-
tional chemistry, climate modeling, and material science simulations, to name but a
few. Dense linear algebra is well represented on most architectures in highly opti-
mized libraries implementing the BLAS API. We present the analysis and study for
the DDOT, DGEMV, and DGEMM routines as they demonstrate a wide range of
computational intensities. Our goal is to find answers to the following questions:

1. What is the performance and computational intensity that can be attained on
different architectures?

2. Can PAPI’s new monitoring features for bandwidth utilization and arithmetic
intensity help to make meaningful predictions for a real application? And,

3. How reliable are FLOP and memory bandwidth utilization performance counters
on the different architectures?

BLAS operations are categorized into three levels by the type of operation. Level
1 addresses scalar and vector operations, Level 2 addresses matrix-vector opera-
tions, and Level 3 addresses matrix-matrix operations. The BLAS routines provide
an excellent means of examining arithmetic intensity and performance characteris-
tics given that they are of high importance to scientific computations, well-defined
and well-understood operations, their implementations are highly optimized by ven-
dor libraries, and the three levels of the BLAS routines have different memory, per-
formance, and computational characteristics.

We examine the Level-1 BLAS routine DDOT in greater detail. This is a double-
precision operation that multiplies two vectors such that α = xT · y. For the 2n
FLOPs (multiply and add), DDOT reads 2n doubles (assuming x 6= y) and writes
one double back. Because there is no data reuse, the routine requires (2n ∗ 8
bytes)/2n = 8 bytes per FLOP. On modern architectures, such an operation is band-
width limited and will reach about 5-10% of the theoretical peak performance of
the machine. The hardware bandwidth will not be able to supply the computational
cores with data at a high enough rate to feed the floating-point units.

The Level-2 BLAS routine DGEMV is a matrix-vector operation that computes
y = αAx+βy where A is a matrix, x,y are vectors and α,β are scalar values. This
routine performs 2n2 floating-point operations on (n2 + 3n) ∗ 8 bytes for read and
write operations, resulting in a data movement of approximately (8n2+24n)/2n2 =
4+12/n bytes per FLOP. When doing a DGEMV on matrices of size n, each FLOP
uses 4+ 12/n bytes of data. With an increasing matrix size, the number of bytes
required per flop stalls at 4, resulting in bandwidth-bound operations.
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The Level-3 BLAS routine DGEMM performs a matrix-matrix multiplication
computing C = αAB+βC where A,B,C are all matrices and α,β are scalar values.
This operation performs 2n3 floating point operations (multiply and add) for 4n2

data movements, reading the A,B,C matrices and writing the results back to C. This
means that DGEMM has a bytes/FLOP ratio of (4n2 ∗8)/2n3 = 16/n. When doing
a DGEMM on matrices of size n, each FLOP uses 16/n bytes of data. As the size of
the matrix increases, the number of bytes required per FLOP decreases, until other
limits of the processor are reached. The DGEMM has a high data reuse allowing it
to scale with the problem size until the performance is near the machine peak.

3.1 Results

Our implementations of the BLAS-based benchmarks access a buffer larger than
the largest cache after the initialization of the arrays that hold the vectors and ma-
trices, but before the actual numerical operations occur. This is done to ensure the
vectors and matrices used in the operations are not present in the cache, but they re-
side strictly in memory at the start of each BLAS operation. As such, the following
implementations differ from the floating-point test of CAT. CAT does not require
such a mechanism to be in place since its test only gauges FLOP occurrences and
is agnostic to memory traffic. This mechanism does not affect the actual number of
FLOPs executed.

The FLOPs counters we measure using PAPI are defined by the following PAPI
preset on each of the Intel Broadwell, Intel Skylake, and IBM POWER9 architec-
tures: PAPI_DP_OPS. This preset event is specifically optimized to count scaled
double-precision vector operations. For the sake of completion, it is worth mention-
ing a second PAPI FLOPs preset event, namely PAPI_SP_OPS, which is optimized
to count scaled single-precision vector operations. Table 1 shows how the two PAPI
FLOPs presets are derived from the native counters as they are available on our
three chosen architectures. In this paper, however, we exclusively focus on double-

Table 1: PAPI’s double- and single-precision FLOPs preset definitions.

Architecture PAPI_DP_OPS PAPI_SP_OPS

Skylake FP_ARITH:SCALAR_DOUBLE + FP_ARITH:SCALAR_SINGLE +
2*FP_ARITH:128B_PACKED_DOUBLE + 4*FP_ARITH:128B_PACKED_SINGLE +
4*256B_PACKED_DOUBLE + 8*256B_PACKED_SINGLE +
8*512B_PACKED_DOUBLE 16*512B_PACKED_SINGLE

Broadwell FP_ARITH:SCALAR_DOUBLE + FP_ARITH:SCALAR_SINGLE +
2*FP_ARITH:128B_PACKED_DOUBLE + 4*FP_ARITH:128B_PACKED_SINGLE +
4*256B_PACKED_DOUBLE 8*256B_PACKED_SINGLE

Power9 PM_DP_QP_FLOP_CMPL PM_SP_FLOP_CMPL
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precision arithmetic, and thus we will not include PAPI_SP_OPS measurements
in our analyses.
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Figure 5 shows the double-precision floating-point operation counts for each of
the three levels of BLAS operations for each of the Intel Broadwell, Intel Skylake,
and IBM POWER9 CPU architectures. The dimension of the vectors and matrices
used in the BLAS operations follows the same piecewise linear progression as in
CAT’s floating-point tests.

For each of the three BLAS kernels, the expected number of floating-point
operations—as calculated and discussed in Section 3—matches perfectly the mea-
surements from PAPI_DP_OPS. This demonstrates that for the Intel Broadwell,
Intel Skylake, and IBM POWER9 architectures, the definitions for the PAPI preset
PAPI_DP_OPS (as listed in Table 1) reliably measure double-precision floating-
point operations for various kernels with different computational characteristics.

In Figures 6 and 7, we plot the statistical minimum and median of the measured
memory accesses, taken from 20 executions of the DDOT BLAS operation using the
Intel Broadwell and Skylake architectures, respectively. The minimum and median
measurements are shown because noise in the measurement can only be positive, so
the minimum is the closest to a noise-free measurement, the median provides a sense
of the variance, and the maximum can be arbitrarily noisy so we omit it. We also
show the expected number of memory accesses per the following formulation. There
are two vectors of N double-precision floating-point elements (each of which is 8
bytes). Thus, a DDOT operation using vectors of length N consumes 2∗8∗N bytes
of memory since each element of each vector must be read. There is no expected,
systematic pattern of memory writing traffic for the DDOT operation. The memory
events we measure count memory traffic in sizes of entire cache lines of memory,
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Fig. 6: DDOT Memory Accesses on the Intel Broadwell architecture.
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Fig. 7: DDOT Memory Accesses on the Intel Skylake architecture.

and each cache line is 64 bytes. Therefore, the amount of memory traffic we observe
by measuring the events is (2∗8∗N)

64 . Figures 6 and 7 show that the measurements
of DDOT operations for smaller vector dimensions exhibit background memory
accesses from the system on the order of 102 and 103, respectively. As N increases,
the minimum and median measurements very closely agree with the expectation.
Note that since the DDOT operation streams through the vectors, there is no data
reuse. Thus, DDOT is agnostic to the size of the CPUs’ caches. Because of this,
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when N is large enough such that the memory required to store the two vectors is
greater than the size of the cache, the measured behavior should remain close to the
expected behavior shown. Figures 6 and 7 show that the PAPI counters on both the
Intel Broadwell and Skylake architectures measure the correct memory traffic for
the DDOT operation. In Section 4, we elaborate further on the actual PAPI events
that we used for measuring memory traffic.
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Fig. 8: DGEMV Memory Accesses on the Intel Broadwell architecture.

Figure 8 and Figure 9 show the minimum and median memory access measure-
ments during the DGEMV BLAS operation on the Intel Broadwell and Skylake ar-
chitectures, respectively. We show the expected number of memory accesses per the
following formulation. There are two vectors of N double-precision floating-point
elements (each of which is 8 bytes). In addition, there is a matrix of double-precision
floating-point elements, of which there are N2. The DGEMV operation incurs a read
for each of the elements of the operand matrix, operand vector, and result vector, to-
talling 8∗ (N2 +2∗N) reads. It incurs a write for each of the elements in the result
vector, which would total 8∗N writes. But other micro-benchmarks indicate that the
cache writes back to memory in whole counts of a cache line. To account for this, we
instead include the term 8∗8∗N (8∗8bytes = 64bytes, which is the size of a cache
line) in the expectation formula shown in Figures 8 and 9. This term would theo-
retically have more influence on the total expectation for memory traffic than 8∗N,
but since the reads include a term which is quadratic with N, neither 8 ∗ 8 ∗N nor
8∗N has a significant numerical impact on the total expectation. Furthermore, since
two expectations, including one for each of 8 ∗ 8 ∗N and 8 ∗N writes, are visually
indistinguishable, we include 8 ∗ 8 ∗N. Thus, the total expectation for the memory
traffic of the DGEMV operation is the number of reads plus the number of writes di-
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Fig. 9: DGEMV Memory Accesses on the Intel Skylake architecture.

vided by 64, (8∗(N2+2∗N)+8∗8∗N)
64 , by virtue of the memory traffic events we measure

counting traffic in sizes of entire cache lines. DGEMV has little data reuse since
it streams through the operand matrix and result vector. Only the operand vector’s
data is reused. As such, DGEMV is not sensitive to the size of the cache until the
memory required to store the single operand vector of N elements requires enough
memory to exceed the size of the cache. As in the case of the DDOT, we see that
there is background memory traffic from the system, on the order of 102 for Broad-
well and 103 for Skylake, for small values of N. We observe that as N increases,
the measured memory traffic closely agrees with the expectation. Therefore, Fig-
ures 8 and 9 show that the PAPI counters on both the Intel Broadwell and Skylake
architectures measure the correct memory traffic for the DGEMV operation.

Figures 10 and 11 show the minimum and median memory access measurements
for the DGEMM BLAS operation (also on the Intel Broadwell and Skylake archi-
tectures). There are three matrices (two operand matrices and one result matrix)
of N2 double-precision floating-point elements (each of which is 8 bytes), each of
which must be read, resulting in 8 ∗ 3 ∗N2 reads. It incurs a write for each of the
elements of the result matrix, totalling either 8 ∗ 8 ∗N2 or 8 ∗N2 writes, depending
on whether the writebacks to memory occur per cache lines written or per elements
written, respectively. Since the writes for the DGEMM are quadratic in N, there
is a significant difference between these two potential memory writing terms with
respect to their impact on the total expectation. Thus, we have two expectations,
(8∗(3∗N2+8∗N2))

64 and (8∗(3∗N2+N2))
64 . We once again divide by 64 here since the events

we measure account for memory traffic in the amount of entire cache lines. As such,
we show both expectations in Figures 10 and 11. Unlike the DDOT and DGEMV
operations, the DGEMM operation is sensitive to the size of the cache of the CPU
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Fig. 10: DGEMM Memory Accesses on the Intel Broadwell architecture.
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Fig. 11: DGEMM Memory Accesses on the Intel Skylake architecture.

on which it is executed because the second operand matrix (which contains a num-
ber of elements quadratic with N) is reused for every row of the result matrix which
is computed. Depending on how the hardware prefetches and caches data for the
DGEMM operation, we establish two bounds for the maximum dimension of matri-
ces which fit within the cache. The sizes of the caches in the Broadwell and Skylake
architectures are 35.84 and 25.344 MB, respectively. If the hardware caches the
entire second operand matrix but only a row of the first operand matrix, then we
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establish a lower bound on the maximum dimension of the matrices which fit within
the cache per the following equations (in which we use the cache sizes of the two
architectures).

Broadwell: 35840∗1024 = 2∗8∗N2 =⇒ N = 1514
Skylake: 25344∗1024 = 2∗8∗N2 =⇒ N = 1273
If the DGEMM operation caches the entire first and second operand matrices,

we establish an upper bound on the maximum dimension of the matrices which fit
within the cache per the following equations.

Broadwell: 35840∗1024 = 8∗ (N2 +N) =⇒ N = 2141
Skylake: 25344∗1024 = 8∗ (N2 +N) =⇒ N = 1800
For each of the above equations, the negative solutions for N are disregarded. The

region between these bounds is shaded in each of Figures 10 and 11. We observe that
while N fits well within the size of the caches, the measured memory traffic closely
agrees with the expectation. We also observe that for relatively small values of N,
the memory writing behavior tends to occur per cache line. However, as N increases,
the writing tends to occur per element. Background memory traffic is not prevalent,
even for relatively small values of N, due to the large amount of memory accesses
incurred relative to the DDOT and DGEMV. Thus, Figures 10 and 11 show that
we obtain the correct measurements for memory traffic for the DGEMM operation
utilizing the PAPI counters on the Intel Broadwell and Skylake architectures.

4 Benchmarks for Memory Traffic

There are two crucial categories of events to define arithmetic intensity: memory
traffic and FLOPs. Memory traffic is further categorized as reading or writing. For
the purposes of our benchmarks, memory reading traffic entails the amount of data
read from memory to the CPU cache, and memory writing is the amount of data
written to memory from the cache. Among the CAT benchmarks that we have pub-
licly released, the codes for testing the data caches can also be used to test traffic
to main memory. This is the case when the buffer size exceeds the size of the last
level cache. The known events which we utilize for the PAPI counters to measure
memory traffic on the Intel Broadwell and Skylake architectures are as follows: Intel
Broadwell (One-Socket Node):

bdx_unc_imc[0|1|4|5]::UNC_M_CAS_COUNT:[RD|WR]:cpu=0

Intel Skylake (Two-Socket Node):

skx_unc_imc[0-5]::UNC_M_CAS_COUNT:[RD|WR]:cpu=[0|18]

By measuring these events using the CAT data cache reading benchmark, we obtain
the plots that follow. We used the same CAT benchmarks to classify the available
Uncore events on the IBM POWER9 architecture which correlate with the observed
behavior of the memory-reading events on the Intel Broadwell and Skylake archi-
tectures shown in Figures 12 and 13, respectively. The events measured in Figure 14
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Fig. 12: Memory reading traffic on the Broadwell architecture.

Fig. 13: Memory reading traffic on the Skylake architecture.

exhibit similar behavior to those of memory reading events measured in Figures 12
and 13. Note that the expectation in the third and fourth regions in Figure 14 varies
from those in Figures 12 and 13 since the size of a cache line on the IBM POWER9
architecture is 128 Bytes [7]. Subsequent cross-referencing of [6] verified these
events indeed measure the memory reading traffic. Hence, we obtained the follow-
ing names of the memory traffic events on the IBM POWER9 architecture, which
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Fig. 14: Memory reading traffic on the POWER9 architecture.

we use to measure memory reading during the execution of the BLAS operations on
the IBM POWER9 architecture. IBM POWER9 (Two-Socket Node):

pcp:::perfevent.hwcounters.nest_mba[0-7]_imc.
PM_MBA[0-7]_[READ|WRITE]_BYTES.value:cpu[84|172]

4.1 IBM POWER9 Measurements via PCP

Measuring the traffic to main memory requires access to Uncore counters, which
measure events that are shared between different cores. Therefore, elevated privileges–
or very permissive system settings—are required in order to read them. To work
around this limitation, IBM made their Uncore counters available through the PCP
interface also, which can be accessed by any user. To take advantage of this fea-
ture, PAPI included a component for interfacing with PCP. As a result, counters for
measuring memory traffic on IBM systems can be read using PAPI without the need
for elevated privileges. The downside of making measurements through PCP is the
coarseness of the measurements and the overhead incurred by the PCP daemon. In
the rest of this section, we describe our effort to amortize the overheads of PCP
in our measurements and give a quantitative analysis of the results. The discussion
that follows is focused on the vector dot-product operation (DDOT), but all the tech-
niques we will discuss apply directly to all other kernels we used as benchmarks.

If a measurement infrastructure—e.g., PCP—is susceptible to noise, it is usually
beneficial to take measurements of operations that take longer to complete and re-
sult in larger measurements in order to amortize the noise. This approach, however,
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would limit the size of the vectors that we use to very large numbers. Since we aim
to correlate the memory traffic measurements with the theoretical expectation for
the known linear algebra operations, this limitation is not ideal. To work around
this problem, and study the noise in PCP, we used the approach that is shown in
Listing 3.

Listing 3: Benchmark code for amortizing and studying PCP noise.

1 v_a = malloc( v_size * max_reps * sizeof(double) );
2 v_b = malloc( v_size * max_reps * sizeof(double) );
3 junk = malloc( LARGE_BUF_SIZE * sizeof(double) );
4
5 for ( i = 0; i <= v_size*max_reps; i++ ) {
6 v_a[i] = ...
7 v_b[i] = ...
8 }
9

10 for ( reps = 1; reps <= max_reps; reps *= 2 ) {
11
12 for( i = 0; i < LARGE_BUF_SIZE; i++ ){
13 junk[i] = ...
14 }
15
16 PAPI_start( EventSetBW );
17
18 for ( iter = 0; iter < reps; iter++ ) {
19 offset = iter * v_size;
20 ddot(v_size, &v_a[offset], &v_b[offset]);
21 }
22
23 PAPI_stop(EventSetBW, &value);
24 printf("%.0lf:", (double)value/(double)reps);
25 }

As can be seen in the code listing, the actual operation is executed in line 20.
However, instead of simply executing the operation once and measuring it with
PAPI, we execute multiple iterations of it. However, simply executing the exact same
operation multiple times would skew the memory traffic measurements, since the
caches would filter some of the memory requests. To avoid this problem, we allocate
memory for multiple copies of the vectors (lines 1,2), and every time we execute
the operation we provide it a different memory region (e.g., &v_a[offset]).
Furthermore, we do not just execute the operation a fixed number of times, but
rather we vary the number of repetitions (line 10) in order to study the effect of
repetition on noise suppression. Finally, to avoid cache reuse between iterations of
the outer loop, we access (in every iteration) a buffer that exceeds all cache sizes
(lines 12,13,14). We should also note that the actual benchmark contains additional
code (not shown to improve readability) that prevents compilers from labeling parts
of our code as dead, which would lead to optimizing those parts away.
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Fig. 15: POWER9 measurements of memory traffic events via PCP for DDOT benchmark.

The results of this study can be seen in Figure 15. In these graphs, for any given
vector size N the expected number of reads is given by the equation:

Reads =
2×8×N

64

since DDOT reads two vectors with double-precision elements (which use 8 bytes
each), and the cache of the target machine (POWER9) implements a memory con-
troller with the “capability to fetch only 64 bytes of data (half cache lines), instead of
the normal full cache-line size of 128 bytes of data from the memory when memory
bandwidth utilization is very high” [7] (Page 350). The expected number of write
operations should be constant, and close to zero, since the DDOT operation does
not write anything back into the memory, but rather accumulates the result into a
register. Since the DDOT does not write back to memory, and the measured reads in
Figure 15 correlate to the measured writes for small N, these reads are regarded as
noise.

The graph shown in 15(a) shows the data measured when the operation was re-
peated only once. Clearly, the measurements do not correlate with the expectation
(plotted as a solid black line) due to very heavy noise, for all vector sizes. In 15(b)
we show the measured data when eight repetitions of the operation were used, and
as can be seen in the plot, for very large vector sizes the measurements start converg-
ing to the expected values. In 15(c) we used 64 repetitions of the operation and the
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measurements start converging to the expected values much earlier. Finally, in 15(d)
our benchmark repeats the operation 512 times and the measurements converge to
the expected values very early, and remain close to the expectation.

These results are encouraging but at the same time they represent a caution-
ary tale. On one hand, they show that the experiments we performed on the IBM
POWER9 architecture for the purpose of this study were successful in amortiz-
ing the overhead and the noise caused by PCP. On the other hand, they highlight
the coarseness of the measurements offered by PCP and the limited usability when
studying short kernels. In other words, our findings suggest that application devel-
opers who wish to study the memory traffic of their applications in coarse intervals
can acquire useful measurements without the need for elevated privileges by using
PCP. However, library developers who wish to study the behavior of fast kernels
need to resort to techniques similar to the one outlined in this section in order to
amortize the high overhead and noise of PCP.

5 Conclusion

Computing the Arithmetic Intensity of an application or a kernel is essential for un-
derstanding its performance, and whether there is room for improvement. However,
measuring the quantities necessary to compute the arithmetic intensity—namely
floating-point operations and traffic to memory—often entails access to hardware
counters that may require elevated privileges, or have cryptic names.

In this paper we discussed our effort to simplify the effort of measuring these
counters and quantifying their reliability through PAPI. In particular, we outlined
CAT, a new tool that was released with PAPI 6.0.0, and showed how it can be used
to identify which native events are best suited for measuring traffic to main memory.
We demonstrated that the arithmetic intensity of three important BLAS operations
(DOT, GEMV, GEMM) can be successfully computed on three modern architec-
tures (Intel Broadwell, Intel Skylake, IBM POWER9) and explained how PAPI’s
PCP component can be used on the POWER9 system to sidestep the requirement
for elevated privileges. Finally, we performed a study on the reliability of the PCP
measurements and explained how the noise and overhead in the measurements can
be mitigated, even for small kernels that do not perform enough operations to amor-
tize the noise on their own.

To summarize, this paper addresses the following questions:

1. What is the performance and computational intensity that can be attained on dif-
ferent architectures? On the Intel Broadwell, Intel Skylake, and IBM POWER9
architectures, such performance metrics as FLOPs and main memory traffic are
gauged via the PAPI counters. We have shown that the FLOPs and memory
traffic—which occur during the execution of the DDOT, DGEMV, and DGEMM
operations—match the expectations for each respective operation.

2. Can PAPI’s new monitoring features for bandwidth utilization and arithmetic in-
tensity help to make meaningful predictions for a real application? As we have
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shown, the PCP component in PAPI allows the user to measure the Uncore events
for memory traffic for the DDOT, which is a common dense linear algebra oper-
ation. The results we have presented indicate that relatively fast kernels, such as
DDOT, require multiple repetitions to provide meaningful, expected performance
measurements to application developers and performance analysts.

3. How reliable are FLOP and memory bandwidth utilization performance coun-
ters on the different architectures? Per our experiments, the PAPI counters report
the expected FLOPs for the three BLAS operations on the Intel Broadwell, Intel
Skylake, and IBM POWER9 architectures. The PAPI counters also report the ex-
pected memory traffic for each BLAS operation on the Intel Broadwell and Sky-
lake architectures. On the IBM POWER9 architecture, repetitions of the DDOT
operation yield the expected amount of memory traffic by amortizing the noise in
PCP measurements. Hence, the PAPI counters provide reliable FLOP and mem-
ory traffic event counts across the three architectures we have examined.
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