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Summary

The emergence of power efficiency as a primary constraint in processor and system design poses

new challenges concerning power and energy awareness for numerical libraries and scientific

applications. Power consumption also plays a major role in the design of data centers, which may

house petascale or exascale-level computing systems. At these extreme scales, understanding

and improving the energy efficiency of numerical libraries and their related applications becomes

a crucial part of the successful implementation and operation of the computing system. In this

paper, we study and investigate the practice of controlling a compute system's power usage, and

we explore how different power caps affect the performance of numerical algorithms with dif-

ferent computational intensities. Further, we determine the impact, in terms of performance and

energy usage, that these caps have on a system running scientific applications. This analysis will

enable us to characterize the types of algorithms that benefit most from these power manage-

ment schemes. Our experiments are performed using a set of representative kernels and several

popular scientific benchmarks. We quantify a number of power and performance measurements

and draw observations and conclusions that can be viewed as a roadmap to achieving energy

efficiency in the design and execution of scientific algorithms.
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1 INTRODUCTION

A fundamental challenge in the effort to reach exascale performance levels is striking the right balance between performance and power efficiency

at the appropriate software and hardware levels. In this paper, we discuss strategies for power measurement and power control to offer scientific

application developers the basic building blocks required to develop dynamic optimization strategies while working within the power constraints of

modern and future high-performance computing (HPC) systems.

Applications with high data bandwidth requirements, commonly referred to as “memory-bound” applications, have very different impli-

cations for power consumption compared to “compute-bound” problems that require heavy CPU throughput. From an energy perspective,

compute-bound workloads result in high CPU power consumption, while memory-bound workloads primarily consume power through the main

dynamic random-access memory (DRAM). In the latter case, the CPU may not need to consume power at peak levels because the main DRAM's

latency and bandwidth serve as a bottleneck. This dynamic suggests that small decrements to the CPU power limit may reduce power consumption

over time with minimal-to-no performance degradation, which ultimately results in significant energy savings.

To investigate potential power savings, a power management framework must be used for dynamic power monitoring and power capping. Ana-

lyzing how hardware components consume power at run time is key in determining which of the aforementioned categories an application fits into.

As the computing landscape evolved, hardware vendors began offering access to their energy monitoring capabilities. For example, beginning with

the introduction of the Sandy Bridge architecture, Intel incorporates the running average power limit (RAPL) model in their CPU design to provide
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estimated energy metrics. Similarly, AMD recently began incorporating power-related functionality, which is very similar to the Intel RAPL inter-

face, for modern AMD architectures. As a result, users have increasingly broad access to technology that allows them to dynamically allocate and

adjust the power consumption1 of hardware components residing within the CPUs running on their systems. These power adjustments can be based

on system-level settings, user settings, and/or the performance characteristics of the current computational workload. In general, power manage-

ment can improve the user experience under multiple constraints to increase throughput-performance and responsiveness when demanded (burst

performance) while improving things like battery life, energy usage, and noise levels when maximum performance is not required.

The primary goal of this paper is to propose a framework for understanding and managing power usage on a computer system running scientific

applications. To identify opportunities for improving the efficiency of an entire application, we study and analyze power consumption as it relates to

the computational intensity of the individual algorithms on which these kinds of applications run. Our intent is to enable energy-aware algorithmic

implementations that can execute with near-minimal performance loss. Below is a brief overview of each contribution provided in this work.

• We discuss the development of the Performance Application Programming Interface's (PAPI's) “powercap” component, which uses the Linux

powercap interface to expose the RAPL settings to user-space. This new powercap component has an active interface to allow writing values

in addition to reading them. This is a significant change from the RAPL-based components provided in previous versions of PAPI, which had

an entirely passive read-only interface. Having this power capping functionality available through the de facto standard PAPI interface pro-

vides portability and is beneficial to many scientific application developers, regardless of whether they use PAPI directly or use third-party

performance toolkits.

• We present a study of the correlation between power usage and performance for three different types of numerical kernels that are representative

of a wide range of real scientific applications. This study provides us with a clear understanding of the factors that contribute to energy savings

and performance. We are using the proposed power control mechanism because we are interested not only in reducing power usage, but also,

perhaps more importantly, we are interested in exploring energy savings with minimal impact on an application's execution time.

• We extend our study of power usage and performance from numerical kernels to mini apps and scientific applications in order to validate our

observations of power capping's effectiveness.

• This paper goes beyond performance and power measurements by also providing a detailed analysis of the capping techniques and present-

ing a collection of lessons that will enable researchers to understand and develop their own computational kernels in a simple and efficient

energy-aware fashion. We introduce a framework for power information and power capping and describe the path to an energy-aware model

that will enable developers to predict the likely performance/energy efficiency of their kernels using a structured approach.

• To our knowledge, this is the first paper that evaluates the power efficiency and power capping as it relates to the algorithmic intensity on

Intel's Knights Landing (KNL) architecture, and we aim to provide information that will enable researchers to understand and predict what

to expect from managing power on this architecture and from using high-bandwidth multi-channel DRAM (MCDRAM) memory over standard

fourth-generation double data rate (DDR4) synchronous DRAM memory.

The rest of the paper is organized as follows. Section 2 describes the power management mechanisms that we propose and use. Next, in Section 3,

we present our experimental approach, followed by experimental results and discussion on kernels and selected mini-apps (in Section 4). Section 5

is on related work. Finally, Section 6 is on conclusions, summarizing the contributions of this paper.

2 POWER MANAGEMENT

Various techniques exist for monitoring and limiting power that take advantage of recent hardware advances. Each technique is known to have

unique implications regarding accuracy, performance overhead, and ease of use, and there are two basic aspects that make up a power monitoring

framework. First, there is an underlying model that specifies the mechanics for how power is measured and how power limits are applied through

the hardware counters. Second, a software package is employed that interfaces with a given model to provide users with a means for interacting

with the various power controls provided. In general, the monitoring capabilities (reporting power measurements) are standard across the range of

options. However, there is a distinction when examining how the various frameworks apply power limits on systems. For this work, we chose RAPL,

which estimates energy metrics with decent accuracy and has enjoyed the most popularity in the computing community.

2.1 RAPL, powercap, and power-limiting mechanisms

Dynamic voltage and frequency scaling (DVFS) is a common technique used to exercise control over a hardware component's power consumption.

For instance, lowering the clock frequency of a processor results in a reduced number of instructions that the processor can issue in a given amount

of time, but since the frequency at which the circuit is clocked determines the voltage required to run it, a decrease in the voltage supply allows a

corresponding decrease in the clock frequency. This voltage decrease can yield a significant reduction in power consumption but not necessarily

energy savings, owing to rising static power consumption and reduced dynamic power range.2
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RAPL, the primary interface used to interact with power controls on Intel hardware, provides power meter capabilities through a set of counters

that estimate energy and power consumption rates based on an internal software model. RAPL provides power-limiting capabilities on processor

packages and memory by enabling a user to dynamically specify average power consumption over a user-specified time period. There are two power

constraints that can be set: (1) a short-term power constraint that corresponds to burst responsiveness and (2) a long-term power constraint that

corresponds to throughput performance. Under the hood, the RAPL capping capability uses DVFS scaling. At low power levels, however, RAPL uses

clock cycling modulation or duty cycling modulation to force the components inside the physical package into an idle state. This modulation is done

because DVFS can lead to degradations in performance and accuracy at power levels significantly below the thermal design point (TDP) of a given

processor. It is also worth noting that using the RAPL interfaces has security and performance implications and would require applications to have

elevated privileges in most cases.

The most recent addition to the array of power monitoring options is the powercap Linux kernel interface. The purpose of this interface is to

expose the RAPL settings to the user. Powercap exposes an intuitive sysfs tree representing all of the power “zones” of a processor. These zones

represent different parts of a processor that support power monitoring capabilities. The top level zone is the CPU package that contains “subzones,”,

which can be associated with core, graphics, and DRAM power attributes. Depending on the system, only a subset of the subzones may be avail-

able. For example, Sandy Bridge processors have two packages, each having core, graphics, and DRAM subzones, which, in addition, allows for the

calculation of uncore (last level caches, memory controller) power by simply subtracting core and graphics from package. On the other hand, KNL

processors have a single package containing only core and DRAM subzones. Power measurements can be collected, and power limits enforced, at

the zone or the subzone level. Applying a power limit at the package level will also affect all of the subzones in that package.

2.2 PAPI: The Performance API

The PAPI performance monitoring library provides a coherent methodology and standardization layer to performance counter information for a

variety of hardware and software components, including CPUs,3 graphics processing units (GPUs),4 memory, networks,5,6 I/O systems,3 power

systems,7,8 and virtual cloud environments.9PAPI can be used independently as a performance monitoring library and tool for application analysis;

however, PAPI finds its greatest utility as a middleware component for a number of third-party profiling, tracing, and sampling toolkits (eg, CrayPat,10

HPCToolkit,11 Scalasca,12 Score-P,13 TAU,14 Vampir,15 PerfExpert16), making it the de facto standard for performance counter analysis. As a middle-

ware, PAPI handles the details for each hardware component to provide a consistent application programming interface (API) for the higher-level

toolkits. PAPI also provides operating system-independent access to performance counters within CPUs, GPUs, and the system as a whole.

2.3 Adding a powercap component to PAPI

Energy consumption has been identified as a major concern for extreme-scale platforms,17 and PAPI offers a number of components for different

architectures that enable transparent monitoring of power usage and energy consumption through different interfaces. In the past, the PAPI power

components only supported reading power information from the hardware. However, PAPI now includes a newly developed component that extends

its power measurements by wrapping around the Linux powercap kernel interface, which exposes RAPL functionality through thesysfs directory

tree. This new powercap component provides a simple interface that enables users to monitor and limit power on supported Intel processors. The

component accomplishes this by dynamically discovering the available power attributes of a given system and exposing (to the user) the ability to

read and set these attributes. This component provides an advantage over using other PAPI components for power (eg, RAPL) because it does not

require root access in order to read power information. This increases the ease of use for those who wish to obtain control over power attributes

for high-performance applications.

The powercap component exposes power attributes that can be read to retrieve their values and a smaller set of attributes that can be

written to set system variables. All power attributes are mapped to events in PAPI, which matches its well-understood format. A user can employ our

component to collect statistics from all or some of these attributes by specifying the appropriate event names. A user could also write a small test

application that uses the component to poll the appropriate events for energy statistics at regular intervals. This information could then be logged

for later analysis. Also, a user can create a test program that applies power limits at any of the power “zones” discussed in the previous section by

specifying the appropriate event names in the component. For example, one could apply separate power limits for DRAM than for core events on a

CPU package. Alternatively, a power limit could be applied one level up in the hierarchy at the CPU package level. With this added flexibility, which is

the result of our development on this component, the powercap component can aid a user in finding opportunities for energy efficiency within each

application. For instance, the component can help a user choose between several different algorithmic implementations of an operation, enabling

the user to find the most energy-efficient algorithms for a given application.8,17

Although power optimization opportunities may not be present in every algorithm, PAPI with its powercap component can provide the infor-

mation that a user or developer needs to make that determination (eg, read power consumption, FLOPS computed, memory accesses required by

tasks), and it provides the API that allows an application to control power-aware hardware.
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Even though the research presented in this work focuses on Intel CPUs, it is generally applicable to other architectures. In fact, although the Linux

powercap sysfs interface has only been implemented for Intel processors, it could be extended to other architectures in the future. Additionally,

PAPI provides other components that enable users to access power metrics on other architectures. For example, on AMD Family 15h machines,

power can be accessed with the PAPI lmsensors component; for IBM BlueGene/Q, PAPI provides the emon component; and for NVIDIA GPUs,

PAPI provides the nvml component. These components are currently accessed as read only, but PAPI can enable power capping should the vendor

provide such capability.

3 EXPERIMENTAL APPROACH

The goal of this work is to gain insight into the effects that dynamic power adjustments have on HPC workloads. Our intent is to understand and pro-

vide lessons on how we can enable an application to execute with near-minimal performance loss with improved energy efficiency. Applications with

high data bandwidth requirements, commonly referred to as memory-bound applications, have very different implications for power consumption

compared to compute-bound problems that require heavy CPU throughput. From an energy perspective, compute-bound workloads result in high

CPU power consumption, while memory-bound workloads primarily consume power based on the throughput of the main dynamic random-access

memory (DRAM). In the latter case, the CPU may not need to consume power at peak levels because the main DRAM's latency and bandwidth serve

as a bottleneck. This dynamic suggests that small decrements to the CPU power cap may reduce power consumption over time with minimal-to-no

performance degradation, which ultimately results in significant energy savings. we would like to propose a framework for understanding and man-

aging the power use of scientific applications in order to provide energy awareness. To identify opportunities for improving the efficiency of an

application, a study on analyzing power consumption is key to determining into which of the aforementioned categories it fits. Thus, since the power

consumption is correlated to the computational intensity of the individual kernels on which these kinds of applications run, we carefully perform our

study through a set of representative examples from linear algebra that exhibit specific computational characteristics and from a set of well-known

scientific benchmarks that are representatives of many real life applications.

Many hardware vendors offer access to their energy monitoring capabilities in terms of measurement or management. As a result, users have

increasingly broad access to technology that allows them to allocate and adjust the power of hardware components residing within the CPUs run-

ning on their systems. To gain access to a power management interface, we use the PAPI powercap component mentioned in the previous section.

This interface enables a user to easily instrument an application with power monitoring and power capping functionality. To execute tests, a probing

framework was designed using the PAPI powercap API, which takes in an arbitrary program, starts collecting power measurements, applies a power

limit, executes the test program, resets the power limit to the default value, and then stops collecting power measurements. This data is then used

as the basis for the analysis.

3.1 Testing environment

Tests were conducted on an Intel Xeon Phi KNL 7250 processor with 68 cores and two levels of memory. The larger primary memory (DDR4) has a

capacity of up to 384 GB, and the second high-speed memory (MCDRAM) has a capacity of up to 16 GB. The primary distinction between the two

is that MCDRAM resides on the processor die itself and its data transfer rate outperforms DDR4 by a factor of four. This is important because KNL

processors have the ability to be configured in one of three memory modes: cache, flat, or hybrid. Cache mode treats the MCDRAM as a traditional

cache (last-level cache, to be precise), which is used transparently by the cores on the non-uniform memory access (NUMA) node. In flat mode,

NUMA node 0 houses the DDR4 memory and all of the CPU cores, and NUMA node 1 contains the high-speed MCDRAM, where data is explicitly

allocated by the user. In hybrid mode, NUMA node 0 houses the DDR4 along with half (8 GB) of the MCDRAM as cache, and NUMA node 1 holds

the remaining half (8 GB) of the MCDRAM to be allocated and managed explicitly.

Note that, for the cache mode, the data must be allocated to the DDR4 initially; however, if the data is less than 16 GB it will be retained in the

cache (in the MCDRAM) after it has been used, and it will behave as if the operation was running in flat mode with the data allocated to the MCDRAM

thereafter. For hybrid mode, there are two options for allocating the data: in the MCDRAM or in the DDR4. When data is allocated in the MCDRAM,

the hybrid mode operates in a similar fashion as flat mode. When data is allocated in the DDR4, and its size is less then 8 GB, it will behave roughly

as if it was allocated in the MCDRAM using flat mode because it will be cached; however, if the data exceeds 8 GB, there will be about 8 GB of data

held in cache (in the MCDRAM), which makes it very difficult to study the behavior of the DDR4. For flat mode, the data is either in the MCDRAM

or in the DDR4 and is allocated and managed explicitly in one of those locations.

All of the experiments in this work were carried out using memory in flat mode because the performance behavior of flat mode sufficiently repre-

sents the performance seen in the rest of the memory modes. If the data is less that 8 GB and is allocated to the MCDRAM, then flat mode behaves

like cache mode or hybrid mode after the first touch. If a large amount of data is allocated in the DDR4, then the flat mode memory behavior is con-

strained by the DDR4's performance characteristics and will be similar in all memory modes. To explore the energy implications of different NUMA
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TABLE 1 Power metrics available on Intel's KNL

Power Attributes and Descriptions

PACKAGE_ENERGY(R):

Energy consumption of the entire CPU (ie, cores subsystem, MCDRAM, memory controller,

2-D mesh interconnect), not including the DDR4 memory.

PACKAGE_SHORT_TERM_POWER_LIMIT(R/W):

Upper average power bound within the package short-term time window.

PACKAGE_LONG_TERM_POWER_LIMIT(R/W):

Upper average power bound within the package long-term time window.

PACKAGE_SHORT_TERM_TIME_WINDOW(R/W):

Time window associated with package short-term power limit.

PACKAGE_LONG_TERM_TIME_WINDOW(R/W):

Time window associated with package long-term power limit.

DRAM_ENERGY(R):

Energy consumption of the off-package memory (DDR4).

DRAM_LONG_TERM_POWER_LIMIT(R/W):

Upper average power bound within the DRAM long-term time window.

DRAM_LONG_TERM_TIME_WINDOW(R/W):

Time window associated with DRAM long-term power limit.

nodes, the numactl command line tool is used to specify a NUMA node for memory allocation before the tests are executed. This tool forces the

memory to be allocated on the DDR4 or MCDRAM residing on the specified NUMA node.

3.2 Power attributes

Table 1 provides a list of events that a user can choose from to obtain energy/power readings for an application running on the Intel Xeon Phi KNL

processor. The two power domains supported on KNL are power for the entire package (PACKAGE_ENERGY) and power for the memory subsystem

(DRAM_ENERGY). As mentioned in Section 3.1, the MCDRAM is an on-package memory that resides on the processor die. For that reason, energy

consumption for the MCDRAM is included in the PACKAGE_ENERGY domain, while DDR4 is accounted for in DRAM_ENERGY domain. To have a

consistent set of tests, power measurements and power limits were collected and applied at thePACKAGE level in the hierarchy. When a power limit

is applied at the PACKAGE level, there is an implicit power limit adjustment applied at the DRAM since it is a “child” of PACKAGE in the powercap

semantics. All other writable power attributes are left to their default values for the duration of testing. However, power measurements are collected

for analysis at both thePACKAGE andDRAM levels. Note that, according to the Intel MSR documentation,18(p37) the PACKAGE domain has two power

limit/widows (a short and a long term), while the DRAM domain has only the long term one. In our experiments, as mentioned above, we left the

power limit (short and long) as well as the power windows (short and long) to their default values. We also note that the sampling rate used in our

experiment is 100 ms. A deviation of less than 3% in the power measurement was observed between different runs of the same experiment.

4 DISCUSSION

Representative workloads with specific computational characteristics were chosen from linear algebra routines and well-known scientific bench-

marks. The linear algebra routines chosen were dgemm, dgemv, and daxpy. Other workloads that represent larger scientific applications are the

Jacobi algorithm, a Lattice Boltzmann benchmark, the XSBench kernel from a Monte Carlo neutronics application, and the High Performance Con-

jugate Gradient (HPCG) benchmark. Each of these workloads is instrumented with power measurement and power limiting capabilities using the

probing framework outlined in Section 3.

4.1 Representative kernel study

To study and analyze the effect of real applications on power consumption and energy requirements, we chose kernels that can be found in HPC

applications and that can be distinctly classified by their computational intensity. The idea is that, through this analysis, we will be able to draw

lessons that help developers understand and predict the possible trade offs in performance and energy savings of their respective applications. We

decided to perform an extensive study that covers several linear algebra kernels and basic linear algebra subroutines (BLAS) in particular because

they are at the core of many scientific applications (eg, climate modeling, computational fluid dynamics simulations, materials science simulations).
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BLAS routines are available through highly optimized libraries on most platforms and are used in many large-scale scientific application codes.

These routines consist of operations on matrices and vectors (eg, vector addition, scalar multiplication, dot products, linear combinations, and matrix

multiplication) and are categorized into three different levels, determined by operation type. Level 1 addresses scalar and vector operations, level 2

addresses matrix-vector operations, and level 3 addresses matrix-matrix operations.

First, we study the daxpy level-1 BLAS routine, which multiplies a scalar 𝛼 with a vector x and adds the results to another vector y such that y =
𝛼x+ y. For the 2n floating point operations (FLOPs) (multiply and add), daxpy reads 2n doubles and writes n doubles back. On modern architectures,

such an operation is bandwidth/communication limited by the memory. An optimized implementation of daxpy might reach the peak bandwidth for

large vector sizes, but, in terms of computational performance, it will only reach about 5%-10% of a compute system's theoretical peak. Usually,

the linear algebra community prefers to show attainable bandwidth in gigabytes per second (GB/s) rather than floating point operations per second

(FLOPS/s).

Second, we examine the dgemv level-2 BLAS routine, which is a matrix-vector operation that computes y = 𝛼Ax + 𝛽y; where A is a matrix; x, y are

vectors; and𝛼, 𝛽 are scalar values. This routine performs 2n2 FLOPs on (n2+3n) ∗ 8 bytes for read and write operations, resulting in a data movement

of approximately (8n2 + 24n)∕2n2 = 4 + 12∕n bytes per FLOP. When executing a dgemv on matrices of size n, each FLOP uses 4 + 12∕n bytes of

data. With an increasing matrix size, the number of bytes required per FLOP stalls at 4 bytes, which also results in bandwidth-bound operations. The

difference here, compared to daxpy, is that when the processor slows too much, the performance of dgemv might be affected more than the daxpy.

The third routine we study is the dgemm level-3 BLAS routine, which performs a matrix-matrix multiplication computing C = 𝛼AB + 𝛽C; where

A,B,C are all matrices; and 𝛼, 𝛽 are scalar values. This routine performs 2n3 FLOPs (multiply and add) for 4n2 data movements, reading the A,B,C

matrices and writing the results back to C. This means that dgemm has a bytes-to-FLOP ratio of (4n2 ∗ 8)∕2n3 = 16∕n. When executing a dgemm

on matrices of size n, each FLOP uses 16∕n bytes of data. This routine is characterized as compute-intensive and is bound by the computational

capacity of the hardware and not by the memory bandwidth. As the size of the matrix increases, the number of bytes required per FLOP decreases

until the peak performance of the processor is reached. The dgemm has a high data reuse, which allows it to scale with the problem size until the

performance is near the machine's peak.

All plots in this section adhere to the following conventions for displaying data. To quantify the effect of power capping on performance and to

study the behavior of each routine, we fixed the problem size (eg, matrix or vector size) and ran each experiment for 10 iterations. For each iteration,

we dropped the power in 10 or 20 Watts steps, starting at 220 Watts and bottoming out at 120 Watts. The plotted data includes the applied power

cap (black curve), the processor's clock frequency (orange curve), the package power that includes the MCDRAM power (green curve), and the

DRAM power (cyan curve). Thus, each “step" shown in the graph reflects a new power limit that was applied before the execution of the operation.

Note that the plotted power limit (black curve) is collected using the instrumentation tool after it is explicitly set by the powercap component. This

serves as a sanity check to verify that a power limit applied through the powercap component is actually accepted and enforced by the Linux kernel.

4.2 Study of the dgemm routine

Figure 1 shows the power data collected from a dgemm operation that was instrumented with the PAPI powercap tool. Figure 1A shows executions

with data allocated to NUMA node 0 (DDR4), and Figure 1B shows executions with data allocated to NUMA node 1 (MCDRAM). Since the dgemm
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FIGURE 1 Average power measurements (Watts on y axis) of the dgemm level-3 BLAS routine when the KNL is in FLAT mode. The dgemm
routine is run repeatedly for a fixed matrix size of 18 000 × 18 000. For each iteration, we dropped the power in 10-Watt or 20-Watt decrements,
starting at 220 Watts and bottoming out at 120 Watts. The processor clock frequency, as measured at each power level, is shown on the right axis.
A, FLAT mode: dgemm: data allocated to DDR4; B, FLAT mode: dgemm: data allocated to MCDRAM
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routine is known to be compute intensive and underclocking and undervolting the processor is part of our energy-saving strategy, we did not expect

to obtain any energy savings without a corresponding drop in performance. In both graphs, we can see that the performance of the dgemm routine

drops as the power limit is set lower. Also, as Figure 1 illustrates, the performance of a compute-intensive routine is independent of the data-access

bandwidth; in fact, we observe that both data allocations provide roughly the same performance. This is because the FLOPs-to-bytes ratio for

compute-intensive routines is high, which allows such an implementation to efficiently reuse the low-level caches, thereby hiding the bandwidth

costs associated with transferring the data to/from memory.

Moreover, Figure 1 provides valuable information for three observations:

1. Results like these are a clear indication that this type of routine is skewed toward high algorithmic intensity rather than memory utilization.

Understanding that a given application has high algorithmic intensity could prompt exploration into possible optimizations that trade execution

time for power.

2. This figure provides confirmation that the powercap component, which uses RAPL, achieves its power limiting though DVFS scaling. This

evidence can be seen in the frequency value, which, as it drops, corresponds to a decrease in power.

3. Finally, we can confirm that the power consumption of the MCDRAM on KNL processors is not reported in the DRAM power values (cyan curve).

This can be confirmed by comparing the cyan curves representing DRAM power consumption in both Figure 1A and Figure 1B. When data is

allocated to the DDR4, the power consumed by the DRAM is high, around 22 Watts (Figure 1A). However, when the data is allocated to the

MCDRAM, the power consumed by the DRAM is only 6 Watts (Figure 1B).

Additionally, in Figure 1, we show the GFLOP/s per Watt efficiency rate at each power cap value (yellow numbers). For someone more interested in

energy efficiency than performance, we can see that even though dgemm is a compute-intensive kernel, sometimes, a lower power cap can provide

similar or even a slightly higher GFLOP/s per Watt rate. For example, setting the power limit at 220 Watts, 200 Watts, or 180 Watts will provide a sim-

ilar GFLOP/s per Watt ratio. Note, however, that a very low power cap will dramatically affect the performance and efficiency of compute-intensive

routines like dgemm.

4.3 Study of the dgemv routine

Bandwidth-limited applications are characterized by memory-bound algorithms that perform relatively few FLOPs per memory access. For these

types of routines, which have low arithmetic intensity, the floating-point capabilities of the processor are generally not important, rather, the mem-

ory latency and bandwidth limit the application's performance. We performed a set of experiments similar to our dgemm investigation to analyze

the power consumption and the performance behavior of the dgemv level-2 BLAS kernel. It is useful to show the bandwidth achieved with different

power limits since bandwidth is the key factor that determines the performance. When the peak hardware bandwidth is achieved, there is no addi-

tional performance to gain because the hardware itself will be at its theoretical peak. Since dgemv reads n2 elements to perform 2n2 operations, the

peak performance, a highly optimized implementation of dgemv in double precision (8 bytes), can reach is bandwidth∕4, where bandwidth is approx.

90 GB/s for DDR4 and ∼425 GB/s for MCDRAM.

Unlike dgemm, the majority of the execution time in dgemv is spent on memory operations, as depicted in Figures 2A and 2B. In Figure 2B, we

observe that capping the power from 220 Watts down to 180 Watts does not affect the performance of dgemv. This results in a power saving of
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FIGURE 2 Average power measurements (Watts on y axis) of the dgemv level-2 BLAS routine when the KNL is in FLAT mode. The dgemv routine is
run repeatedly for a fixed matrix size of 18 000 × 18 000. For each iteration, we dropped the power cap in 10-Watt or 20-Watt decrements, starting
at 220 Watts and bottoming out at 120 Watts. A, FLAT mode: dgemv: data allocated to DDR4; B, FLAT mode: dgemv: data allocated to MCDRAM
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40 Watts while maintaining the same performance (GFlop/s) and the same time to solution. Similarly, this trend can be noted in the energy efficiency

values (numbers in yellow or black), where a power limit between 220 Watts and 180 Watts renders in approx. 15% of energy saving with a negligible

performance penalty (of less than 5%). Moving the cap below 180 Watts, however, significantly degrades the performance.

Figure 2A shows the dgemv results with the data allocated to the DDR4 memory. Since dgemv is memory bound, we expect a different behavior

when allocating data to the DDR4 versus MCDRAM given that the two memory types have very different bandwidths. Compared to Figure 2B (data

in MCDRAM), it is clear in Figure 2A that even when the power limit is set above 160 Watts, the DDR4 bandwidth slows the CPU performance to

the point that the CPU only needs about 160 Watts to continue successful and meaningful computation.

For DDR4, we observed an average power consumption of around 35 Watts on our KNL machine. The cyan curve in Figure 2A shows that the

DDR4 was being utilized at maximum power during the entire execution. This results in lower CPU utilization and power consumption since the

DDR4 performance is the primary bottleneck. The data shown in the Figure clarifies a historical misconception that capping power consumption

always provides a benefit for memory-bound kernels. If the CPU's power consumption is already low, then power capping will not have any effect

unless it is set lower than the CPU's internal throttling. For our dgemv DDR4 allocation case, setting the power level above 180 Watts does not

make any difference and will not render any change in energy usage. On the other hand, once we reach the point where forcing a power limit has an

effect (lower than 180 Watts), we observe characteristics similar to our MCDRAM allocation case. For example, neither the performance nor the

bandwidth are affected as we move the power cap from 180 Watts down to 140 Watts; however we do start to see appreciable energy savings here,

around 10% savings at 140 Watts. Furthermore, capping the power at 120 Watts results in 17% energy savings with some performance degradation

(∼8%).

When comparing the two storage options overall, the performance is very different. For MCDRAM data allocations, the performance is about 4×
higher compared to DDR4 data allocations. This is expected since MCDRAM provides a bandwidth of about 425 GB/s, whereas DDR4 provides only

about 90 GB/s. In terms of total energy (DRAM + PACKAGE energy), the 4× increase in performance results in a more than 3× benefit in energy

savings when using MCDRAM over DDR4.

Based on our experiment with a memory-bound routine, we learned that it is possible to obtain significant energy savings without any real loss

in performance. Overall, capping the package power at around 40 Watts below the (observed) power draw of the default setting provides about

15%-17% energy savings without any significant reduction in the time to solution.

Note that capping DRAM power (below its default power consumption) for dgemv (memory bound kernels) will affect the time-to-solution of the

memory bound kernel, however, most likely not in a beneficial way that allows for energy savings. For that, we do not perform DRAM capping in this

paper.

4.4 Study of the daxpy routine

To complete our examination of all three levels of BLAS routines, a similar set of experiments was performed for the daxpy level-1 BLAS routine.

We observed similar outcomes with daxpy as we did with the dgemv kernel. The performance of the MCDRAM option is on average approx. 4×
higher than the DDR4 option, for the same reason: MCDRAM provides about 4× higher memory bandwidth. As shown in both graphs of Figure 3,

the power limits used for these tests started at 220 Watts and were stepped down to 120 Watts in 20- or 10-Watt decrements.
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FIGURE 3 Average power measurements (Watts on y axis) of the daxpy level-1 BLAS routine when the KNL is in FLAT mode. The daxpy routine is
run repeatedly for a fixed vector of length 106 per step. At each iteration, we dropped the power cap in 10-Watt or 20-Watt decrements, starting
at 220 Watts and bottoming out at 120 Watts. A, FLAT mode: daxpy: data allocated to DDR4; B, FLAT mode: daxpy: data allocated to MCDRAM
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The primary takeaway from the data shown in Figure 3B is that, for MCDRAM storage, the execution times for power limits of 220-180 Watts,

are all nearly identical. Below 180 Watts, the performance begins to degrade; again, this is similar to the dgemv results. These findings show that

when running a dgemv or daxpy memory-bound routine with data allocated to the MCDRAM, performance is unchanged when power is capped

anywhere in the 220-180–Watt range. When the data is allocated to DDR4; however, the power can be capped at 130 Watts without significantly

affecting performance, as can be observed from Figure 3A.

Ultimately, this lower power cap can provide significant energy savings if many instances of these memory-bound workloads are needed (eg,

iterative simulation schema or computational fluid dynamics simulations where a Jacobi or Lattice Boltzmann iteration must be used). This infor-

mation validates the notion that energy savings for memory-bound computational workloads can be attained relatively easily by applying modest

power caps.

4.5 Benchmarks and mini-applications

To confirm the findings that we observed during our experiments with the three levels of BLAS kernels, all of which have different computational

intensities, we ran tests (with power caps) on a number of larger benchmark applications and other mini-apps that are more representative of

real-world scientific applications. These benchmarks and mini-apps include the Jacobi application, the Lattice Boltzmann (LBM) benchmark, the

High Performance Conjugate Gradient (HPCG) benchmark, the XSBench mini-app, and the Stream benchmark.

To evaluate the power efficiency and gain for every application described here, we launch the application under a power cap limit and mea-

sure its performance (the mean elapsed time required for completion) and its power consumption (CPU package). For each application, two sets of

experiments are performed: (1) with the data allocated to the DDR4 and (2) with the data allocated to the MCDRAM. Every graph consists of 5-6

experiments where we solve the same problem with a different power cap. We used the same problem size for each experiment so that the x axis

(time) reflects the real computation time, which allows us to compute the percentage of power gain and/or time delay that occurs. Our findings for

each application are presented in the following subsections.

4.5.1 Jacobi application

The Jacobi application used in our testing solves a finite difference discretization of the Helmholtz equation using the Jacobi iterative method. The

Jacobi method implements a 2-D, five-point stencil that requires multiple memory accesses per update. This means that the application has a high

memory bandwidth and has a low computational intensity. This application is comparable to daxpy, and we expect that the lessons learned from our

experiments with daxpy will enable us to find power savings for the Jacobi application.

Figure 4 presents the power consumption of the CPU package when running the Jacobi algorithm on a 12 800 × 12 800 grid with data allocated

to the DDR4 (left) and the MCDRAM (right). The x axis represents the time required to finish the computation, which reflects the achievable per-

formance for each power cap. The experiments show that, when data is allocated to the MCDRAM (Figure 4B), the power cap can range from 205

Watts down to 170 Watts without any loss of performance. That means, at 170 Watts, the application's time to solution does not change, but the

application consumes around 14% less energy. Dropping the cap to 155 Watts renders only a slight increase in the time to solution but saves even
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FIGURE 4 Average power measurements (Watts on y axis) of Jacobi algorithm on a 12 800 × 12 800 grid for different power caps. DDR4 on the
left. MCDRAM on the right. A, FLAT mode: data allocated to DDR4; B, FLAT mode: data allocated to MCDRAM
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FIGURE 5 Average power measurements (Watts on y axis) of LBM application for different power caps. DDR4 on the left. MCDRAM on the right.
A, FLAT mode: data allocated to DDR4; B, FLAT mode: data allocated to MCDRAM

more energy. The charts show a trend that is nearly identical to what we observed for dgemv and daxpy. Similar behavior is also seen when the

data is allocated to the DDR4 (Figure 4A). The default power consumption is around 185 Watts and can be capped down to 135 Watts without an

increase in the time to solution. This instantaneous power saving of 50 Watts becomes even more significant when extrapolated over the entire run

time of the algorithm, resulting in a 25% energy saving. The data shown here is similar to what we observed with our representative kernels for

memory-bound routines (Section 4.1). Additionally, we can see that this memory-bound computation is about 3.5× faster when the data is allocated

to MCDRAM than when the data is allocated to DDR4; this is also similar to what we observed and reported in Section 4.1.

4.5.2 LBM benchmark

The LBM benchmark is a computational fluid dynamics method used to simulate incompressible fluids in 3-D. This code was modified from the SPEC

2006 benchmark suite19 to enable multi-threaded execution using OpenMP. Computationally, the benchmark is the most important part of a larger

code that is used in material science to simulate the behavior of fluids with free surfaces and their gas bubbles. LBM is widely used in simulations

of turbulence, multi-phase flows, oil reservoir modeling, flows around and inside vehicles, and other complex flows. The LBM numerical scheme is a

discretization, both in coordinate and velocity spaces, of the time dependent Maxwell-Boltzmann equation for the distribution of fluid particles in

phase space. Like many stencil methods, LBM has a low computational complexity and a high memory-access pattern.

Figure 5 shows the CPU power measurement and the time to solution for the LBM application at different power caps. As expected from the

discussion in Section 4.1, the data in Figure 5 demonstrates the power savings that bandwidth-bound applications can obtain without increasing the

time to solution. This is an attractive result since the LBM algorithm is usually used in long computational fluid dynamics simulations that consists

of thousand of LBM calls. Even minor power savings become incredibly significant when extrapolated over an extended run time. For applications

where the data allocated to the MCDRAM, about 80 Watts can be saved for each LBM iteration without any significant hit to the time to solution,

resulting in 6% energy saving. The power savings are less pronounced when data is allocated to the DDR4, but about 30 Watts can be saved for each

LBM iteration without any significant hit to the time to solution, which results in 12% less energy consumption. As we saw with Jacobi, dgemv, and

daxpy, the LBM algorithm is also about 3.6× faster when the data is allocated to MCDRAM than when the data is allocated to DDR4, owing to the

MCDRAM's increased bandwidth.

4.5.3 HPCG benchmark

The HPCG benchmark is designed to closely match a broad set of important applications that have a mix of computational and memory access

requirements.20 The performance of optimized HPCG implementations is heavily influenced by memory system performance but not solely by how

fast data streams from memory. Memory latency, synchronous global and neighborhood collectives, and thread control transfer, all of which have

strong dependencies on memory system performance, are important factors in the performance of an optimized version of HPCG. We obtained an

optimized version of the HPCG benchmark from the Intel DeveloperZone.21 This benchmark has a mix of low and high computational complexity in

various parts.

Figure 6 shows the experiments with the HPCG benchmark. HPCG performs a conjugate gradient Krylov solve that consists of a set of

memory-bound operations highlighted by the daxpy, the ddot product, the sparse matrix vector product, and the multi-grid setup. Based on what
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FIGURE 6 Average power measurements (Watts on y axis) of HPCG benchmark on a 192 × 192 × 192 (3-D) grid with varying power caps. DDR4
on the left. MCDRAM on the right. A, FLAT mode: data allocated to DDR4; B, FLAT mode: data allocated to MCDRAM

was studied and presented above, one might expect that, with appropriate power caps, applications that use these techniques would see significant

power savings without any negative hit to the time to solution. In fact, Figure 6B shows that a savings of about 30 Watts can be obtained, with the

data allocated to the MCDRAM, while maintaining the same time to solution (5% energy saving). Similarly, Figure 6A shows a savings of 40 Watts,

with the data allocated to DDR4, for a shifted range of power capping levels, which results in approximately 17% less energy consumption.

4.5.4 XSBench mini-app

XSBench represents a key computational kernel of the OpenMC Monte-Carlo neutron transport application. The purpose of this benchmark is to

evaluate the performance of a node's memory subsystem. This is a single-node benchmark that uses OpenMP for node-level parallelism. XSBench

was obtained from the Collaborative Oak Ridge Argonne Livermore (CORAL) benchmark codes website.22 XSBench stresses the system through

memory capacity, random memory access, memory latency, threading, and memory contention, and it is expected to have high memory requirements

and a low computational intensity.

Figure 7 shows a Monte-Carlo neutron transport application characterized by the XSbench suite. In this experiment, we investigated the effect

of our proposed power capping module on a real scientific application. Our results show that significant energy savings can be obtained when using

our power capping technique. In fact, dropping the power cap to around 50-60 Watts below default resulted in a energy savings of roughly 5% for
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FIGURE 7 Average power measurements (Watts on y axis) of XSbench Monte-Carlo neutron transport application for varying power caps. DDR4
on the left. MCDRAM on the right. A, FLAT mode: data allocated to DDR4; B, FLAT mode: data allocated to MCDRAM
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FIGURE 8 Average power measurements (Watts on y axis) of the Stream benchmark using a vector of size 6.7108 for varying power caps. DDR4
on the left. MCDRAM on the right. A, FLAT mode: data allocated to DDR4; B, FLAT mode: data allocated to MCDRAM

MCDRAM and 30% for DDR4. This result confirms that applications with memory-bound workloads can achieve impressive power savings while

maintaining the same time to solution.

4.5.5 Stream benchmark

Stream is a simple synthetic benchmark program designed to measure sustainable memory bandwidth (in MB/s) and the computation rate for simple

vector kernels (ie, copy, scale, add, and triadd).23 As a benchmark, the sustainable memory bandwidth is easy to understand and is likely to be well

correlated with the performance of applications with low computational intensity and limited cache reuse. For our experiments on KNL, we used a

version of Stream that included the Intel-recommended compile optimizations for the KNL architecture.

We evaluated the Stream benchmark23 with a range of power capping levels. For a fixed problem size, the benchmark is called repeatedly; we

capped the power at 20 Watts below default for each call. Figure 8A shows the results obtained during this experiment when the data was allocated

to the DDR4. Figure 8B shows the results obtained when the data was allocated to the MCDRAM. As shown in these graphs, the Stream benchmark

achieves close to the peak bandwidth when running at the default power level. The attainable bandwidth is roughly the same when the power

cap is dropped about 30-40 Watts, regardless of whether the data is allocated to DDR4 or MCDRAM, presenting a significant power savings with

little-to-no performance degradation.

5 RELATED WORK

There are multiple related works that focus on power measurement and the use of power-capping controls for scientific applications. The Power-

Pack project24 provides an interface for measuring power from a variety of external power sources. The API also provides routines for starting and

stopping data collection on the remote machine, and the framework is designed to attribute power consumption to specific devices. PowerPack is

also used to study the efficiency of DVFS.

Global Extensible Open Power Manager (GEOPM)25 is a power management framework targeting high-performance computing that is designed

to be extended using plugins that implement new algorithms and features. Power information is queried via Model Specific Registers (MSRs), and

control policy is also applied via the MSRs. An example plugin manages a power budget for a whole system, minimizing the time-to-solution while

remaining within the power budget.

The READEX (Run-time Exploitation of Application Dynamism for Energy-efficient Exascale computing) project26,27 is a EU Horizon 2020 effort

that is creating tools to achieve efficient execution on Exascale systems. These tools use automatic analysis to identify dynamism in an application,

then a lightweight runtime library is used to perform runtime tuning actions during the application's execution.

Adagio is a runtime system that makes dynamic voltage scaling (DVS) practical for complex scientific applications.28 Adagio shares our goal

of incurring negligible penalty to an application's time to solution while achieving energy savings. This is accomplished by using a history-based

scheduling mechanism that executes tasks at different power caps (DVS) based on the “energy slack” observed in previous executions.

Kimura et al29 examine slack in unbalanced work distributions generated from distributed DAG executions and use DVFS to adapt the exe-

cution speed for tasks in order to balance the execution without increasing the overall execution time. Bhalachandra et al30 use several system

metrics (eg, TOR Table-Of-Requests occupancy) to characterize memory behavior and apply coarse-grained and fine-grained power policies
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implemented using DVFS. They demonstrate substantial power savings on mini-apps with minimal performance change using these system metrics.

Porterfield et al31 present experiments on distributed memory applications, enforcing power limits from within MPI communication libraries when

collective operations are occurring. This approach is capable of saving energy for large-scale applications with minimal costs to execution time.

Additionally, the Linux kernel has begun to expose RAPL-based power management via the sysfs powercap interface, which provides simpler

and safer access to the low-level power controls. The Linux perf command-line interface has begun exposing and managing some of the hardware

counters, but the power management is still handled by accessing the sysfs powercap file system.

Finally, there's PUPiL,32 which is a hardware/software power capping framework that uses hardware controls like DVS in combination with flex-

ible software to enable capping in applications in such a way that PUPiL can be considered a replacement for RAPL as a transparent power-capping

framework.

6 CONCLUSION

Designing numerical libraries and scientific applications with energy consumption as a primary constraint presents significant challenges for devel-

opers. This paper presents results of a study where PAPI's new power control functionality was used to limit the power consumption in a set of

representative kernels on the Intel KNL computing platform. PAPI's new powercap component extends the current PAPI interface from a passive

read-only interface to an active interface that allows writing values in addition to reading them. This means that users and third-party tools need only

a single hook to PAPI in order to access any hardware performance counters across a system, including the new power-capping functionality.

This paper demonstrates how PAPI enables power tuning to reduce overall energy consumption without, in many cases, a loss in performance. We

present a detailed analysis of the performance of different kernels and the power consumption of various hardware components when subjected to

a range of power caps. The kernels in these experiments were chosen not only because they represent a significant fraction of real-world scientific

workloads but also because they have different computation-to-memory-traffic ratios. All experiments were performed on KNL configured in flat

mode (ie, the MCDRAM is used as addressable memory), and for each case, studies were performed with data allocated to the MCDRAM and to

the DDR4.

Our experiments show that, depending on the computational density of the kernel and the speed of the memory used to store the data, the power

consumption of some of these kernels could be limited using PAPI in ways that led to an overall reduction of energy consumption (up to 30%) without

reducing the performance of the kernel. This demonstrates that the usefulness of the powercap component, which allows applications to control

the power limit of the hardware, is not only theoretical but can be used in the libraries and kernels that will drive the software stack of tomorrow's

supercomputers.
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