
Power Monitoring with PAPI for Extreme Scale
Architectures and Dataflow-based Programming

Models

Heike McCraw∗, James Ralph∗, Anthony Danalis∗, Jack Dongarra∗†‡
∗Innovative Computing Laboratory (ICL), University of Tennessee, Knoxville, TN, USA

†Oak Ridge National Laboratory, Oak Ridge, TN, USA
‡University of Manchester, Manchester, UK

Abstract—For more than a decade, the PAPI performance-
monitoring library has provided a clear, portable interface to the
hardware performance counters available on all modern CPUs
and other components of interest (e.g., GPUs, network, and I/O
systems). Most major end-user tools that application developers
use to analyze the performance of their applications rely on PAPI
to gain access to these performance counters.

One of the critical roadblocks on the way to larger, more
complex high performance systems, has been widely identified as
being the energy efficiency constraints. With modern extreme
scale machines having hundreds of thousands of cores, the
ability to reduce power consumption for each CPU at the
software level becomes critically important, both for economic
and environmental reasons. In order for PAPI to continue
playing its well established role in HPC, it is pressing to provide
valuable performance data that not only originates from within
the processing cores but also delivers insight into the power
consumption of the system as a whole.

An extensive effort has been made to extend the Perfor-
mance API to support power monitoring capabilities for various
platforms. This paper provides detailed information about three
components that allow power monitoring on the Intel Xeon Phi
and Blue Gene/Q. Furthermore, we discuss the integration of
PAPI in PARSEC – a task-based dataflow-driven execution
engine – enabling hardware performance counter and power
monitoring at true task granularity.

I. INTRODUCTION

Parallel application performance analysis tools on large
scale computing systems typically rely on hardware counters
to gather performance data. For more than a decade, the PAPI
performance-monitoring library has provided consistent plat-
form and operating system independent access to the hardware
performance counters available on different CPU families and
other components of interest (e.g., GPUs, network, and I/O
systems) [1], [2], [3], [4].

With the increase in scale, complexity, and heterogeneity
of modern extreme scale systems, it is anticipated that the
design of future HPC machines will be driven by energy
efficiency constraints. With supercomputers having hundreds
of thousands of cores, the ability to reduce power consumption
by just a couple of Watts per CPU quickly adds up to major
power, cooling, and monetary savings [5].

In order for PAPI to continue playing its well established
role in HPC performance optimization, it is crucial to provide

valuable performance data that not only originates from within
the processing cores but also pays more attention to the power
consumption of the system as a whole. We have already
demonstrated the merit of transparent access to power and
energy measurements via PAPI for Intel Sandy Bridge (and
its successors) and for NVIDIA GPUs in [5]; the viability of
PAPI RAPL energy consumption and power profiles for study-
ing advanced dense numerical linear algebra in [6]; and the
relevance of PAPI providing power and energy measurement
abilities for virtualized cloud environments in [7]. Recently, an
additional effort has been made to extend the Performance API
with new components supporting transparent power monitoring
capabilities for Intel Xeon Phi co-processors and the IBM
Blue Gene/Q system. This paper provides detailed information
describing these new components as well as exploring the
usefulness of each of them with different case studies.

Exposing performance counter and energy readings for
post-mortem analysis is only a partial target for PAPI. A
tight integration with an execution environment that can take
advantage of this information online – specifically, during the
execution of the monitored application – is of high interest.
Ideally, such a programming environment will amend either its
execution pattern and behavior to match specific goals (e.g.,
lowering energy consumption), or adjust the frequency, and
thus the power usage, based on the known application behav-
iors. We discuss therefore the integration of PAPI in PARSEC,
which is a task-based dataflow-driven execution engine that
enables efficient task scheduling on distributed systems, pro-
viding a desirable portability layer for application developers.
Dataflow-based programming models, in contrast to the control
flow model (e.g., as implemented in languages such as C),
have become increasingly popular, especially on distributed
heterogeneous architectures. Consequently, performance mea-
surement tools for task-based dataflow-driven runtimes, like
the Parallel Runtime Scheduling and Execution Controller
(PARSEC) [8], [9], have become increasingly important. Our
early prototyping work of the integration of PAPI into PARSEC
has proven to be valuable as it allows hardware performance
counter measurements at a finer granularity – more precisely,
at true task granularity as opposed to thread/process granularity
– providing a richer and more precise mapping between PAPI
measurements and application behavior.

In this paper we outline two new PAPI components that
support power and energy monitoring for the Intel Xeon Phi
co-processors and the IBM Blue Gene/Q system. A detailed

978-1-4799-5548-0/14/$31.00 ©2014 IEEE 385

description of their monitoring capabilities is provided in addi-
tion to case studies that validate and verify the measurements.
Furthermore, we briefly describe PARSEC, and then focus on
the integration of PAPI into PARSEC, exploring the benefits of
measuring hardware counter data at task granularity.

II. OVERVIEW

A. Performance API (PAPI)

While PAPI can be used as a stand-alone tool, it is more
commonly applied as a middleware by third-party profiling,
tracing, sampling, even auto-tuning tools – such as TAU [10],
Scalasca [11], Vampir [12], HPCToolkit [13], CrayPat [14],
Active Harmony [15], among others – to provide coherent
access to performance counters that can be found on a wide
variety of architectures.

The events that can be monitored involve a wide range
of performance-relevant architectural features: cache misses,
floating point operations, retired instructions, executed cycles,
and many others. Over time, other system components, beyond
the processor, have gained performance interfaces (e.g., GPUs,
network and I/O interfaces). To address this change, PAPI
was redesigned to have a component-based architecture that
applies a modular concept for accessing these new sources
of performance data [2]. With this redesign, additional PAPI
components have been developed to also address subsets of
data and communication domains – enabling users to measure
I/O performance, and to monitor synchronization and data
exchange between computing elements.

Furthermore, more attention has been paid to the moni-
toring of power usage and energy consumption of systems.
A number of PAPI components have been publicly available
since the PAPI 5.0.0 release, allowing for transparent power
and energy readings via (a) the Intel RAPL (“Running Average
Power Limit”) interface [16] for Intel Sandy Bridge chips and
its successors, and (b) the NVML (“NVIDIA Management
Library”) interface [17] for NVIDIA GPUs. More details on
this work is described in [5], [6], [7]. In recent work, we build
on these results and extended PAPI’s current power monitoring
features to other architecture; specifically Intel Xeon Phi co-
processors and the IBM Blue Gene/Q architecture.

B. PARSEC

A new direction that we have been exploring in PAPI is the
support for task-based counter measurements. This is important
because task-based runtime systems, such as PARSEC (Parallel
Runtime Scheduling and Execution Controller) [8], [9], are be-
come increasingly popular in the high performance computing
community. The PARSEC framework is a task-based dataflow-
driven system designed as a dynamic platform that can address
the challenges posed by distributed heterogeneous hardware
resources. PARSEC contains schedulers that orchestrate the
execution of the tasks on the available hardware, based on
different criteria, such as data locality, task priority, resource
contention, etc. In addition, task scheduling is affected by the
dataflow between the tasks that comprise the user applica-
tion. To store the information regarding the tasks and their
dependencies PARSEC uses a compact, symbolic representa-
tion known as a Parameterized Task Graph (PTG) [18]. The
runtime combines the information contained in the PTG with

supplementary information provided by the user – such as the
distribution of data onto nodes, or hints about the relative
importance of different tasks – in order to make efficient
scheduling decisions.

PARSEC is an event driven system. Events are triggered
when tasks complete their execution, or data exchanges be-
tween tasks on different nodes occur. When an event occurs,
the runtime examines the dataflow of the tasks involved to
discover the future tasks that can be executed based on the
data generated by the completed task. Since the tasks and their
dataflow are described in the PTG, discovering the future tasks,
given the task that just completed, does not involve expensive
traversals of DAG structures stored in program memory. This
contrasts to other task scheduling systems which rely on
building the whole DAG of execution in memory at run-time
and traversing it in order to make scheduling decisions.

In PARSEC the runtime performs all necessary data ex-
changes without user intervention. This is possible because the
PTG provides the necessary information regarding the data that
each task needs in order to execute, and the runtime is aware
of the mapping of tasks onto compute nodes.

Optimizing a task-based application can be achieved by
optimizing the dataflow between tasks, and/or optimizing the
tasks themselves. Acquiring sufficient information about the
behavior of individual tasks through measurement tools such
as PAPI, is critical for performing such optimizations. To this
end, PARSEC includes a modular instrumentation system with
modules that can be selectively loaded at initialization by the
user. In Section V we demonstrate how PAPI measurements
can provide insight about the execution of a linear algebra code
when using a task-based implementation over PARSEC versus
a legacy alternative.

III. POWER MONITORING ON XEON PHI CO-PROCESSORS

Power and energy measurement activities continue to be
of importance for both PAPI and the larger HPC community.
The latest PAPI release (5.3) offers two components that allow
for monitoring of power usage and energy consumption on the
Intel Xeon Phi (a.k.a. MIC) architecture.

A. Direct Power Reading

The “micpower” component runs in native mode, mean-
ing, both the actual application as well as PAPI are running
natively on the co-processor and its operating system, without
being offloaded from a host system. This component provides
access to an on-board power sensor on the Xeon Phi which
allows measurement of current and voltage (and computed
power) for various subsystems on the MIC card at roughly 50
milliseconds resolution. The power values are periodically read
from the contents of the file /sys/class/micras/power.
Table I provides a list of events that a user can choose from to
obtain power readings for an application running on the Xeon
Phil co-processor.

B. Offloaded Power Reading

The second component, called “host_micpower”, ap-
pears to be more convenient for users as PAPI is offloaded
from the host system, and only the application is running on the

386

(a) Power Usage (b) Energy Consumption

Fig. 1: PAPI Power measurements of 9 Hessenberg reductions (each with a different matrix size) performed on Xeon Phi.

Event Description
tot0, tot1 Total (average) power consumption over two different time

windows (uW)
pcie power measured at the PCI-express input

(connecting CPU with the Phi) (uW)
inst Instantaneous power consumption reading (uW)

imax Maximum instantaneous power consumption observed (uW)
c2x3, c2x4 power measured at the input of the two power connectors

located on the card (uW)
vccp Power supply to the cores (core rail)

(Current (uA), Voltage (uV), and Power reading (uW))
vddg Power supply to everything but the cores and memory

(uncore rail) (Current (uA), Voltage (uV), and Power reading (uW))
vddq Power supply to memory subsystem (memory rail)

(Current (uA), Voltage (uV), and Power reading (uW))
The vccp, vddg, and vddq rails are powered from the PCI Express connector
and the supplementary 12V inputs [19].

TABLE I: Power events on the Intel Xeon Phi co-processor

Xeon Phi. In this case, the power data is exported through the
MicAccess API, which is distributed with the Intel Manycore
Platform Software Stack (MPSS) [20]. The additional support
for reading Phi power from the host system, makes it much
easier to measure power consumption of MIC code at fairly
high resolution without actually instrumenting the MIC code
directly. The events that can be monitored are the same as for
the micpower component, which are listed in Table I.

As part of the host_micpower component – and mainly
as convenience for the users – PAPI ships a utility that can be
used to gather power (and voltage) measurements. The tool
works by using PAPI to poll the MIC power statistics every
100 milliseconds and dumps each statistic to different files,
which then can be use for post-mortem analysis.

C. Case Study: Hessenberg Reduction

For our case study we are running a Hessenberg reduction
kernel from the MAGMA library [21] computed on the Xeon
Phi coprocessor utilizing all 244 cores. For the power read-
ings, we are using the host_micpower component and the

measurement utility with a sampling rate of 100 milliseconds.
We have validated the power measurements obtained from
this instrumentation to ensure that it correlates with software
activity on the hardware. Figure 1a shows the total power
data over two time windows (black solid line for window 0;
magenta solid line for window 1). The light-blue line shows
power data measured at the PCI-Express bus that connects the
CPU host with the co-processor. Furthermore, the two dotted
lines show power measured at the input of the two power
connectors that are located on the card.

The Hessenberg reduction is computed nine times, each
with a different matrix size. The numbers on top of each
curve show the chosen matrix size. The measured power data
clearly mimics the computational intensity of the Hessenberg
computations. The factorization starts off on the entire matrix
– in this case consuming most of the power – and as the
factorization progresses, it operates on smaller and smaller
matrices, resulting in less and less power usage.

Additionally, the energy consumption can be computed
from the power numbers measured by PAPI. In Figure 1b, the
energy consumption curve is placed on top of the power usage
graph. The power plot clearly demonstrates a declining power
usage for the window between the Hessenberg computations,
when data is exchanged with the CPU host. As expected,
this is also reflected on the energy curve in a form of a
decreased slope for this time window. The energy slope peaks
again as soon as the next computation starts. The total energy
consumption until completion is 22.4 kWs.

IV. POWER MONITORING ON BLUE GENE/Q

The Blue Gene/Q (BG/Q) system is the third generation in
the IBM Blue Gene line of massively parallel, energy efficient
supercomputers that increases not only in size but also in
complexity compared to its Blue Gene predecessors. Recent
studies ([22], [23]) show that gaining insight into the power
usage and energy consumption of applications running on the
BG/Q system is of high interest to the HPC community. Since

387

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350

A
v
e
ra

g
e
 P

o
w

e
r

(W
a
tt

s)

Time (seconds)

Total
CPU

DRAM
Optics

PCIExpress
Network

Link Core
SRAM

(a) Matrix-Matrix Multiply

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

A
v
e
ra

g
e
 P

o
w

e
r

(W
a
tt

s)

Time (seconds)

Total
CPU

DRAM
Optics

PCIExpress
Network

Link Core
SRAM

(b) 3D-FFT

Fig. 2: PAPI BG/Q Power Usage sampled at 300ms

PAPI is a portable cross-platform interface that allows users on
many types of machines to access performance information,
we build on this model and extended PAPI’s previous BG/Q
support (described in [4]) with power monitoring capabilities.
We have developed a PAPI component for a high speed power
measurement API for Blue Gene/Q, called EMON, to provide
access to power and energy data on BG/Q in a transparent
fashion. This additional PAPI support enables users and tool
developers to use their PAPI instrumented code as is on BG/Q
without having to learn a new set of library and instrumentation
primitives.

A Blue Gene/Q rack contains two mid-planes, each con-
sisting of 16 node-boards. With each node-board comprising
32 compute cards, the card itself holds an 18-core PowerPC
A2 processor and 16 GB of memory. Out of the 18 cores,
only 16 are used to perform mathematical calculations.1 Each
processor operates at a moderate clock frequency of 1.6 GHz,
consuming a modest 55 Watts at peak [24]. Also, each node-
board contains a field programmable gate array (FPGA) that
captures all temperature and voltage data [25]. More details
on the IBM Blue Gene/Q architecture are discussed in [25],
[26].

A. EMON Power Reading

The PAPI “bgq-emon” component exposes the power data
through the IBM EMON API. Power is supplied to a node-
board by two identical main power modules providing seven
high voltage Direct Current (DC) power lines. Each power line
from one main power module is paired with the equivalent
line from the other module, and a step down transformer
provides final voltage for the compute cards. These lines or
“domains” are described in Table II. These are also the power
statistics that can be monitored through the PAPI bgq-emon
component.

Current is measured on each of the 14 domains leaving
the main power modules, and voltage is measured after the

1The 17th core is used for node control tasks such as offloading I/O
operations which ”talk” to Linux running on the I/O node. The 18th core
is a spare core which is used when there are corrupt cores on the chip.

Domain Description
1 Chip core voltage (0.9V)
2 Chip memory interface and DRAM (1.35V)
3 Optics (2.5V)
4 Optics + PCIexpress (3.5V)
6 Chip HSS network transceiver (1.5V)
8 Link chip core (1V)
7 Chip SRAM voltage (0.9+0.15V)

TABLE II: Power Domains on BG/Q node-boards

final step-down transformation. The FPGA queries a micro-
controller for each measurement point sequentially and is
able to take a complete sample in ∼500µs. The IBM EMON
interface accesses this data from the node-board FPGA, which
includes a 1-10ms blocking delay for the caller.

It is important to note that we have also developed a
PAPI interface for EMON2 which is a more advanced power
measurement API for BG/Q. This API provides integrated
power and energy measurements at the node level. Since
the EMON2 functionality is not included in the supported
firmware yet, nor is it distributed with the driver on the BG/Q
systems at ANL (Mira/Vesta) and Juelich-Germany (JuQueen),
we have not been able to test (and release) our component yet.
The current EMON interface has an update latency of ∼300ms,
while the new EMON2 interface should allow for ∼10ms
sampling, and for finer granularity sampling on a subset of
the domains.

B. Case Studies

In the following demonstrations PAPI was used to collect
the data via the bgq-emon component. On one rank per
node-board we register to receive a standard SIGPROF Unix
profiling signal, which, when received, triggers a routine to
sample EMON data. A ITIMER PROF system timer is then
requested to trigger at an interval of 300ms, calling the
sampling routine.

1) Matrix-Matrix Multiply: Our first case study performs
a matrix multiply calculation (gemm), which is a common
kernel with heavy processor and memory requirements. A

388

benchmark was constructed to run many small gemms on all
512 cores in a node-board. The observed power graph, seen in
Figure 2a, demonstrates a rapid climb to full core utilization
with a reduction past five minutes as memory is freed and
the program winds down. This experiment reproduces data
observed in [23] where the EMON API is used directly for
power readings.

2) Parallel 3D-FFT: As a second case study, we imple-
mented a parallel 3D-FFT kernel with 2D decomposition of the
data array. We start the discussion with a short overview of the
kernel implementation. Consider Ax,y,z as a three-dimensional
array of L×M×N complex numbers. The Fourier transformed
array Ãu,v,w is computed using the following formula:
Ãu,v,w :=

L−1∑
x=0

M−1∑
y=0

N−1∑
z=0

Ax,y,z exp(−2π
wz

N
)︸ ︷︷ ︸

1st 1D FT along z

exp(−2π
vy

M
)

︸ ︷︷ ︸
2nd 1D FT along y

exp(−2π
ux

L
)

︸ ︷︷ ︸
3rd 1D FT along x

(1)
Each of the three sums in Eq. 1 is evaluated by using the
fast Fourier transform algorithm (FFT) in one dimension.
To achieve a decent parallel speedup of the 3D-FFT, the
array Au,v,w is best distributed onto a two-dimensional virtual
processor grid, leaving one direction of the array local to the
processor. This allows the first set of FFTs to be evaluated
locally without any communication. Before further FFTs in the
originally distributed directions can be evaluated, the virtual
processor grid needs to be rearranged. When using a 2D
processor grid, two groups of All-to-All type communications
are required. Assuming the data array is already distributed
onto the 2D processor grid of dimension Pc × Pr, with the
z-direction being local to the processors, the basic algorithm
looks as follows:

• Each processor performs L/Pr ×M/Pc 1D-FFTs of size
N

• An all-to-all communication is performed within each of
the rows of the virtual processor grid to redistribute the
data. At the end of the step, each processor holds an
L/Pr × M × N/Pc sized section of A. These are Pr

independent all-to-all communications.
• Each processor performs L/Pr ×N/Pc 1D-FFTs of size
M .

• A second set of Pc independent all-to-all communications
is performed, this time within the columns of the virtual
processor grid. At the end of this step, each processor
holds a L×M/Pc ×N/Pr size section of A.

• Each processor performs M/Pc×N/Pr 1D-FFTs of size
L

More details on the parallelization are discussed in [27], [28].

We ran our 3D-FFT kernel on a 32 node partition, utilizing
an entire node-board on the BG/Q system at Argonne National
Laboratory, using all 16 compute cores per node for each run.
For the 32 node partition, we have a total of 512 MPI tasks, and
for the virtual 2D processor grid, we chose 16× 32, meaning
that each communicator group has 16 MPI tasks and we have
32 of those groups.

The power data for the 3D-FFT computation – running on
an entire node-board – is shown in Figure 2b for a problem
size of 10243. The entire kernel is computed five times with
a 10 second pause in-between. The power data nicely reflects
this with an expected power drop between each of the five
runs. Examining the DRAM power line (blue), for each FFT
there is an initial spike due to the generation of synthetic
data for the FFT. After the 3D data array is generated and
distributed onto the 2D virtual processor grid, the FFTW plan
is computed. This step takes the longest, for our experiment
approx. 10 seconds. The dip that spans over about 10 seconds
– immediately after the initial spike of the DRAM power line
– is precisely due to the plan creation. Following the plan,
the FFTs are computed according to Eq. 1 which includes
data redistribution between each of the three sets of 1D-
FFTs, causing the power usage to peak again. These power
measurements via the PAPI bgq-emon component closely
match the intuitive understanding of the behavior of our 3D-
FFT implementation.

V. POWER MONITORING FOR DATAFLOW-BASED
EXECUTION SYSTEMS

Harnessing the processing power of modern large scale
computing platforms has become increasingly difficult. This is
one of the reasons why dataflow-based programming models
– in contrast to the control flow model (e.g., as implemented
in languages such as C) – have become increasingly popular,
especially on distributed heterogeneous architectures. Con-
sequently, performance tools for task-based dataflow-driven
runtimes – like PARSEC – have become increasingly important.

We started exploring the integration of PAPI into PARSEC
to allow hardware performance counter measurements at pure
task granularity. Our early prototyping work proves to be
valuable as can be observed in the example below where we
demonstrate power measurements at task granularity.

Figures 3a and 3b show the power usage of a QR fac-
torization performed by two threads running on two different
sockets (packages) of a shared memory machine. Figure 3b
shows the power usage for the dataflow-based QR factorization
implemented over PARSEC. Each dot in the figure illustrates
the power measurements for one task – measured via the
PAPI linux-rapl component from within PARSEC. As a
comparison, Figure 3a shows the power usage of the legacy QR
factorization found in SCALAPACK, using the same matrix size
and block size. The power data for this run is sampled every
100 ms using the original PAPI linux-rapl component.

The linux-rapl component (featuring power and en-
ergy measurement capabilities for the Intel Sandy Bridge
architecture and its successors) ensures access to the full 32-
bits of dynamic range of the register. The RAPL events are
reported either as scaled values with units of joules, watts, or
seconds; or, with slightly different event names, they can be
reported as raw binary values, suitable for doing arithmetic.
More details on the linux-rapl component are discussed
in [5].

Figure 3a exhibits a clear pattern in the energy usage
of the two SCALAPACK threads. This matches the intuitive
understanding of the behavior of this code, since the two
threads take turns performing a panel factorization (while

389

(a) SCALAPACK: Power Usage sampled at 100ms (b) PARSEC: Power Usage at Task Granularity

Fig. 3: PAPI RAPL Power measurements of dgeqrf – MatrixSize = 11,584 – TileSize = 724 on a Sandy Bridge EP 2.60GHz,
2 sockets, running on 1 (out of 8) core per socket.

one thread works on the panel the other is idle) followed
by a trailing matrix update performed by both. We also see
that as the factorization progresses the turns become smaller
since both threads work on a smaller submatrix. Figure 3b on
the other hand shows a very different picture. Namely, when
PARSEC is used the threads perform work opportunistically,
based on the available tasks at each time as opposed to the
predetermined logical steps found in SCALAPACK. Therefore,
neither CPU is ever idle, which leads to a uniform power
consumption and a shorter execution time.

In this experiment we chose to execute only one thread
per socket. We made this choice because power is a shared
resource, i.e., there is a single counter per socket that is
shared between all threads. Measuring the power consumption
of tasks executing on multiple threads located on the same
CPU is also possible, but requires post-mortem analysis of
the measurements. In such a scenario, each measurement will
correspond to power consumed by different segments of tasks
executing on the different cores of a socket. Thus, when all
measurements have been collected, inferring the average power
consumption of each thread type requires solving a system of
linear equations [29].

VI. RELATED WORK

The PAPI interface has been widely used by HPC users
for many years, drawing on its strength as a cross-platform
and cross-architecture API. There are many other tools for
gathering performance information but they are often not as
flexible as PAPI, and none of the related tools provide an API.

The likwid lightweight performance tools project [30]
allows accessing performance counters by bypassing the Linux
kernel and directly accessing hardware. This can have low
overhead but can conflict with concurrent use of other tools
accessing the counters. It can also expose security issues, as
it requires elevated privileges to access the hardware registers
and this can lead to crashes or system compromises. likwid
provides access to traditional performance counters and also
RAPL energy readings. Unlike PAPI, likwid is not cross-
platform, only x86 processors are supported under Linux.

Only system-wide measurements are available (counters are
not saved on context-switch). Currently there is no API for
accessing values gathered with likwid; a separate tool gathers
the results and stores them in a file for later analysis.

The perf tool [31] comes with the Linux kernel. It pro-
vides performance counter measurements, both traditional and
uncore. It does not present an API; it is a complex command
line tool that either prints total results to the screen or else
records the results to disk for later analysis.

Processor vendors supply tools for reading performance
counter results. This includes Intel VTune [32], Intel VTune
Amplifier, Intel PTU [33], and AMD’s CodeAnalyst [34]. Like
likwid, these program the CPU registers directly. Since counter
state is not saved on context switch only system wide sampling
is available. There is also no API for accessing the results.

VII. CONCLUSION AND FUTURE WORK

With larger and more complex high performance systems
on the horizon, energy efficiency has become one of the
critical constraints. To allow the HPC community to monitor
power and energy consumption on the Intel Xeon Phi co-
processor and the IBM Blue Gene/Q system, PAPI has been
extended with components supporting transparent power read-
ing capabilities through existing interfaces. These additional
components allow PAPI users to monitor power in addition to
traditional hardware performance counter data without modi-
fying their applications or learning a new set of library and
instrumentation primitives.

For future PAPI releases, we will build on these compo-
nents and extend out work to (a) EMON2 for Blue Gene/Q,
and (b) other architecture (e.g., transparent access to the
Application Power Management (APM) introduced my AMD
for the 15h family of processors). We have also plans to
support distributed memory environments by integrating en-
ergy information from the interconnect, providing users with
a comprehensive view of energy efficiency for large scale
clusters.

390

Additionally, one of the main objectives of PAPI 6 will be
to offer new levels of performance counter measurements by
seamlessly incorporating technologies for monitoring at task
granularity.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their improvement
suggestions. This material is based upon work supported in
part by the DOE Office of Science, Advanced Scientific Com-
puting Research, under award No. DE-SC0006733 “SUPER -
Institute for Sustained Performance, Energy and Resilience”.
This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable
Programming Interface for Performance Evaluation on Modern Proces-
sors,” Int. J. High Perform. Comput. Appl., vol. 14, no. 3, pp. 189–204,
Aug. 2000.

[2] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Perfor-
mance Data with PAPI-C,” Tools for High Performance Computing
2009, pp. pp. 157–173, 2009.

[3] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juck-
eland, R. Dietrich, D. Poole, and C. Lamb, “Parallel performance mea-
surement of heterogeneous parallel systems with gpus,” in Proceedings
of the 2011 International Conference on Parallel Processing, ser. ICPP
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 176–
185.

[4] H. McCraw, D. Terpstra, J. Dongarra, K. Davis, and M. R., “Beyond
the CPU: Hardware Performance Counter Monitoring on Blue Gene/Q,”
in Proceedings of the International Supercomputing Conference 2013,
ser. ISC’13. Springer, Heidelberg, June 2013, pp. 213–225.

[5] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring Energy and Power with PAPI,”
in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, Sept 2012, pp. 262–268.

[6] J. Dongarra, H. Ltaief, P. Luszczek, and V. Weaver, “Energy Footprint
of Advanced Dense Numerical Linear Algebra Using Tile Algorithms
on Multicore Architectures,” in Cloud and Green Computing (CGC),
2012 Second International Conference on, Nov 2012, pp. 274–281.

[7] V. Weaver, D. Terpstra, H. McCraw, M. Johnson, K. Kasichayanula,
J. Ralph, J. Nelson, P. Mucci, T. Mohan, and S. Moore, “PAPI 5:
Measuring Power, Energy, and the Cloud,” in Performance Analysis of
Systems and Software (ISPASS), 2013 IEEE International Symposium
on, April 2013, pp. 124–125.

[8] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and
J. Dongarra, “Parsec: Exploiting heterogeneity to enhance scalability,”
IEEE Computing in Science and Engineering, vol. 15, no. 6, pp. 36–45,
nov 2013.

[9] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “Dague: A generic distributed dag engine for high per-
formance computing.” Parallel Computing, vol. 38, no. 1-2, pp. 27–51,
2012.

[10] S. S. Shende and A. D. Malony, “The Tau Parallel Performance System,”
Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–311, May
2006.

[11] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr, “The Scalasca performance toolset architecture,” Concurrency
and Computation: Practice and Experience, vol. 22, no. 6, pp. 702–719,
Apr. 2010.

[12] H. Brunst and A. Knpfer, “Vampir,” in Encyclopedia of Parallel
Computing, D. Padua, Ed. Springer US, 2011, pp. 2125–2129.

[13] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[14] “CrayPat – User’s Manual,” http://docs.cray.com/books/S-2315-50/
html-S-2315-50/z1055157958smg.html.

[15] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth, “Active Harmony:
Towards Automated Performance Tuning,” in Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, ser. SC’02. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2002, pp. 1–11.

[16] “Intel, Intel Architecture Software Developers Manual, Volume 3:
System Programming Guide, 2009.”

[17] “NVML Reference Manual, NVIDIA, 2012,” http://developer.
download.nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.
pdf.

[18] M. Cosnard and M. Loi, “Automatic task graph generation techniques,”
in HICSS ’95: Proceedings of the 28th Hawaii International Conference
on System Sciences. Washington, DC: IEEE Computer Society, 1995.

[19] “Intel, Intel Xeon Phi Coprocessor Datasheet, April, 2014.”
[20] “Intel, Intel Manycore Platform Software Stack (MPSS),”

https://software.intel.com/en-us/articles/intel-manycore-platform-
software-stack-mpss.

[21] “MAGMA: Matrix Algebra on GPU and Multicore Architectures,” http:
//icl.cs.utk.edu/magma/index.html.

[22] K. Yoshii, K. Iskra, R. Gupta, P. H. Beckman, V. Vishwanath, C. Yu,
and S. M. Coghlan, “Evaluating power monitoring capabilities on ibm
blue gene/p and blue gene/q,” in CLUSTER ’12, IEEE. Beijing, China:
IEEE, 09/2012 2012.

[23] S. Wallace, V. Vishwanath, S. Coghlan, J. Tramm, Z. Lan, and M. Pap-
kay, “Application power profiling on ibm blue gene/q,” in Cluster
Computing (CLUSTER), 2013 IEEE International Conference on, Sept
2013, pp. 1–8.

[24] M. Feldman, “IBM Specs Out Blue Gene/Q Chip,” 2011,
http://www.hpcwire.com/hpcwire/2011-08-22/ibm specs out blue
gene q chip.html.

[25] J. Milano and P. Lembke, “IBM System Blue Gene Solution: Blue
Gene/Q Hardware Overview and Installation Planning,” IBM Redbook
SG24-7872-01, 2013.

[26] M. Gilge, “IBM system Blue Gene solution: Blue Gene/Q application
development,” IBM Redbook Draft SG24-7948-00, 2012.

[27] M. Eleftheriou, J. E. Moreira, B. G. Fitch, and R. S. Germain, “A
Volumetric FFT for BlueGene/L,” Lecture Notes in Computer Science,
vol. 2913/2003, pp. 194–203, 2003.

[28] H. Jagode, “Fourier Transforms for the BlueGene/L Communication
Network,” Master’s thesis, EPCC, The University of Edinburgh, 2006,
http://www.epcc.ed.ac.uk/msc/dissertations/2005-2006/.

[29] Q. Liu, M. Moreto, V. Jimenez, J. Abella, F. J. Cazorla, and M. Valero,
“Hardware support for accurate per-task energy metering in multicore
systems,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 10, no. 4, pp. 34:1–34:27, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2541228.2555291

[30] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Proc. of the First International Workshop on Parallel Software Tools
and Tool Infrastructures, Sep. 2010.

[31] I. Molnar, “perf: Linux profiling with performance counters,” https:
//perf.wiki.kernel.org/, 2009.

[32] J. Wolf, Programming Methods for the PentiumTM III Processor’s
Streaming SIMD Extensions Using the VTuneTMPerformance Enhance-
ment Environment, Intel Corporation, 1999.

[33] “IntelTM Performance Tuning Utility,” http://software.intel.com/en-us/
articles/intel-performance-tuning-utility/.

[34] P. Drongowski, An introduction to analysis and optimization with AMD
CodeAnalystTMPerformance Analyzer, Advanced Micro Devices, Inc.,
2008.

391

