
Beyond the CPU: Hardware Performance

Counter Monitoring on Blue Gene/Q

Heike McCraw1, Dan Terpstra1, Jack Dongarra1,
Kris Davis2, and Roy Musselman2

1 Innovative Computing Laboratory (ICL), University of Tennessee, Knoxville
1122 Volunteer Blvd, Knoxville TN, 37996
{mccraw,terpstra,dongarra}@icl.utk.edu

2 Blue Gene System Performance
Dept. KOKA, Bldg. 30-2, IBM Rochester, MN 55901

{krisd,mussel}@us.ibm.com

Abstract. The Blue Gene/Q (BG/Q) system is the third generation in
the IBM Blue Gene line of massively parallel, energy efficient supercom-
puters that increases not only in size but also in complexity compared
to its Blue Gene predecessors. Consequently, gaining insight into the
intricate ways in which software and hardware are interacting requires
richer and more capable performance analysis methods in order to be
able to improve efficiency and scalability of applications that utilize this
advanced system.

The BG/Q predecessor, Blue Gene/P, suffered from incompletely im-
plemented hardware performance monitoring tools. To address these lim-
itations, an industry/academic collaboration was established early in
BG/Q’s development cycle to insure the delivery of effective performance
tools at the machine’s introduction. An extensive effort has been made to
extend the Performance API (PAPI) to support hardware performance
monitoring for the BG/Q platform. This paper provides detailed infor-
mation about five recently added PAPI components that allow hardware
performance counter monitoring of the 5D-Torus network, the I/O sys-
tem and the Compute Node Kernel in addition to the processing cores
on BG/Q.

Furthermore, we explore the impact of node mappings on the perfor-
mance of a parallel 3D-FFT kernel and use the new PAPI network com-
ponent to collect hardware performance counter data on the 5D-Torus
network. As a result, the network counters detected a large amount of
redundant inter-node communications, which we were able to completely
eliminate with the use of a customized node mapping.

1 Introduction

With the increasing scale and complexity of large computing systems the effort
of performance optimization and the responsibility of performance analysis tool
developers grows more and more. To be of value to the High Performance Com-
puting (HPC) community, performance analysis tools have to be customized

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 213–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

214 H. McCraw et al.

as quickly as possible in order to support new processor generations as well as
changes in system designs.

The Blue Gene/Q (BG/Q) system is the third generation in the IBM Blue
Gene line of massively parallel, energy efficient supercomputers. BG/Q is capa-
ble of scaling to over a million processor cores while making the trade-off of lower
power consumption over raw processor speed [4]. BG/Q increases not only in size
but also in complexity compared to its Blue Gene predecessors. Consequently,
gaining insight into the intricate ways in which software and hardware are inter-
acting requires richer and more capable performance analysis methods in order
to be able to improve efficiency and scalability of applications that utilize this
advanced system.

Performance analysis tools for parallel applications running on large scale
computing systems typically rely on hardware performance counters to gather
performance relevant data from the system. The Performance API (PAPI) [3] has
provided consistent platform and operating system independent access to CPU
hardware performance counters for more than a decade. In order to provide
the very same consistency for BG/Q to the HPC community - and thanks to a
close collaboration with IBMs Performance Analysis team - an extensive effort
has been made to extend PAPI to support hardware performance monitoring
for the BG/Q platform. This customization of PAPI to support BG/Q also
includes a growing number of PAPI components to provide valuable performance
data that not only originates from the processing cores but also from compute
nodes and the system as a whole. More precisely, the additional components
allow hardware performance counter monitoring of the 5-dimensional (5D) Torus
network, the I/O system and the Compute Node Kernel in addition to the CPU
component.

This paper provides detailed information about the expansion of PAPI to sup-
port hardware performance monitoring for the BG/Q platform. It offers insight
into supported monitoring features. Furthermore, it will discuss performance
counter data of a parallel 3-dimensional Fast Fourier Transform (3D-FFT) com-
putation. We explore the impact of a variety of node mappings on the per-
formance of a 3D-FFT kernel and use the recently introduced PAPI network
component for BG/Q to collect hardware performance counter data on the 5D-
Torus network.

This paper is organized as follows. The next section provides a brief overview
of the BG/Q hardware architecture with focus on the features that are par-
ticularly relevant for this project. Section 3 goes into detail on how PAPI has
been expanded with five components to support hardware performance counter
monitoring on the BG/Q platform. Our case study is discussed in Section 4
which includes a short description of the implementation of the parallel 3D-FFT
algorithm with a two-dimensional data decomposition as well as results of the
experimental study. We conclude and summarize our work in Section 5.

Beyond the CPU 215

2 Overview of the Blue Gene/Q Architecture

2.1 Hardware Architecture

The BG/Q processor is an 18-core CPU of which 16 cores are used to perform
mathematical calculations. The 17th core is used for node control tasks such as
offloading I/O operations which ”talk” to Linux running on the I/O node. (Note,
the I/O nodes are separate from the compute nodes; so Linux is not actually
running on the 17th core.) The 18th core is a spare core which is used when
there are corrupt cores on the chip. The corrupt core is swapped and software
transparent. In the remainder of this paper we focus on the 17 usable cores only,
since there are really only 17 logical units available on the CPU.

The processor uses PowerPC A2 cores, operating at a moderate clock fre-
quency of 1.6 GHz and consuming a modest 55 watts at peak [6]. The Blue
Gene line has always been known for throughput and energy efficiency, a trend
which continues with the A2 architecture. Despite the low power consumption,
the chip delivers a very respectable 204 Gflops [6]. This is due to a combination
of features like the high core count, support for up to four threads per core,
and a quad floating-point unit. Compared to its Blue Gene predecessors, BG/Q
represents a big change in performance, thanks to a large rise in both core count
and clock frequency. The BG/Q chip delivers 15 times as many peak FLOPS as
its BG/P counterpart and 36 times as many as the original BG/L design (see
Table 1 for comparison).

Table 1. Brief summary of the three Blue Gene versions

Version Core Architecture Instruction Set Clock Speed Core Count Interconnect Peak Performance

BG/L PowerPC 440 32-bit 700 MHz 2 3D-Torus 5.6 Gigaflops
BG/P PowerPC 450 32-bit 850 MHz 4 3D-Torus 13.6 Gigaflops
BG/Q PowerPC A2 64-bit 1600 MHz 17 5D-Torus 204.8 Gigaflops

This PowerPC A2 core has a 64-bit instruction set compared to the 32-bit
chips used in the prior BG/L and BG/P supercomputers. The A2 architecture
has a 16 KB private L1 data cache and another 16 KB private L1 instruction
cache per core, as well as 32 MB of embedded dynamic random access memory
(eDRAM) acting as an L2 cache, and 8 GB (or 16 GB) of main memory [9]. The
L2 cache as well as the main memory are shared between the cores on the chip.

Every BG/Q processor has two DDR3 memory controllers, each interfacing
with eight slices of the L2 cache to handle their cache misses (one controller
for each half of the 16 compute cores on the chip) [1,10]. This is an important
feature that will be described in more detail in the discussion of the PAPI L2Unit
component in Section 3.2.

BG/Q peer-to-peer communication between compute nodes is performed over
a 5D-Torus network (note that BG/L and P feature a 3D-Torus). Each node
has 11 links and each link can simultaneously transmit and receive data at 2
GB/s for a total bandwidth of 44 GB/s. While 10 links connect the compute

216 H. McCraw et al.

nodes, the 11th link provides connection to the I/O nodes. The I/O architecture
is significantly different from previous BG generations since it is separated from
the compute nodes and moved to independent I/O racks.

3 PAPI BG/Q Components

The general availability of PAPI for BG/Q is due to a cooperative effort of the
PAPI team and the IBM performance team. This joint effort started with careful
planning long before the BG/Q release, with the goal to design PAPI for Q as
well as to design the Blue Gene Performance Monitoring API (BGPM) according
to what is needed by PAPI and other HPC performance analysis tools, like e.g.
HPCToolkit [2] that heavily use PAPI under the covers.

In general, hardware performance event monitoring for BG/Q requires user
code instrumentation with either the native BGPM API or a tool like PAPI
which relies on BGPM. The following five sections talk about the five different
components that have been implemented in PAPI to allow users to monitor
hardware performance counters on the BG/Q architecture through the standard
Performance API interface.

3.1 Processor Unit Component

The PAPI PUnit component is handled as component 0 in PAPI - which is
the default CPU component. Each of the 17 usable A2 CPU cores has a local
Universal Performance Counting (UPC) module. Each of these modules pro-
vides 24 counters (14-bit) to sample A2 events, L1 cache related events, floating
point operations, etc. Each local UPC module is broken down into five inter-
nal sub-modules: functional unit (FU), execution unit (XU), integer unit (IU),
load/store unit (LSU) and memory management unit (MMU). These five in-
ternal sub-modules are easily identifiable through the event names. Table 2
shows an example selection of native PUnit events provided by the PAPI utility
papi_native_avail.

In addition to native events, a user can select predefined events (Presets) for
the PUnit component on BG/Q. Out of 108 possible predefined events, there are
currently 43 events available of which 15 are derived events made up of more
than one native event.

Overflow: Only the local UPC module, L2 and I/O UPC hardware support per-
formance monitor interrupts when a programmed counter overflows [1]. For that
reason, PAPI offers overflow support for only the PUnit, L2Unit, and IOUnit

components.

Fast versus Slow Overflow: Punit counters freeze on overflow until the over-
flow handling is complete. However, the L2Unit and IOUnit counters do not
freeze on overflow. The L2 and I/O counts will be stopped when the interrupt
is handled. The signal handler restarts L2 and I/O counting when done [1].

PUnit counters can detect a counter overflow and raise an interrupt within
approx. 4 cycles of the overflowing event. However, according to the BGPM

Beyond the CPU 217

Table 2. Small selection of PUnit events available on BG/Q

PUnit Event Description

PEVT_AXU_INSTR_COMMIT A valid AXU (non-load/store) instruction is in EX6, past the last flush point.
- AXU uCode sub-operations are also counted by PEVT_XU_COMMIT instead.

PEVT_IU_IL1_MISS A thread is waiting for a reload from the L2.
- Not when CI=1.
- Not when thread held off for a reload that another thread is waiting for.
- Still counts even if flush has occurred.

PEVT_IU_IL1_MISS_CYC Number of cycles a thread is waiting for a reload from the L2.
- Not when CI=1.
- Not when thread held off for a reload that another thread is waiting for.
- Still counts even if flush has occurred.

PEVT_IU_IL1_RELOADS_DROPPED Number of times a reload from the L2 is dropped, per thread
- Not when CI=1
- Does not count when not loading cache due to a back invalidate to that address

PEVT_XU_BR_COMMIT_CORE Number of Branches committed
PEVT_LSU_COMMIT_LD_MISSES Number of completed load commands that missed the L1 Data Cache.

- Microcoded instructions may be counted more than once.
- Does not count dcbt[st][ls][ep].
- Include larx.
- Does not includes cache-inhibited loads

PEVT_MMU_TLB_HIT_DIRECT_IERAT TLB hit direct entry (instruction, ind=0 entry hit for fetch)
PEVT_MMU_TLB_MISS_DIRECT_IERAT TLB miss direct entry (instruction, ind=0 entry missed for fetch)
... ...

documentation it takes up to approx. 800 cycles before the readable counter
value is updated. This latency does not affect the overflow detection, and so we
refer to a PUnit overflow as a ”Fast Overflow”.

The IOUnit and L2Unit take up to 800 processor cycles to accumulate an
event and detect an overflow. Hence, we refer to this as a ”Slow Overflow”, and
the program counters may alter up to 800 cycles or more after the event. This
delay is due to the distributed nature of the performance counters. The counters
are spread throughout the chip in multiple performance units. The hardware
design consolidates the counters into one memory space continually, however it
takes 800 cycles to visit all of the distributed units, hence the delay. The IO

and L2Units are not thread specific, so there is no basis to stop counting for a
single thread on overflow. However, the PUnit counters can be threaded, and the
hardware has the ability to arm the distributed counts and freeze on overflow.

Multiplexing: PAPI supports multiplexing for the BG/Q platform. BGPM
does not directly implement multiplexing of event sets. However, it does in-
directly support multiplexing by supporting a multiplexed event set type. A
multiplexed event set type will maintain sets of events which can be counted
simultaneously, while pushing conflicting events to other internal sets [1].

3.2 L2 Unit Component

The shared L2 cache on the BG/Q system is split into 16 separate slices. Each of
the 16 slices has a L2 UPC module that provides 16 counters with fixed events
that can be gathered separately or aggregated into 16 counters (depending on
the events chosen). Those 16 counters are node-wide, and cannot be isolated to
a single core or thread. As mentioned earlier, every BG/Q processor has two
DDR3 memory controllers, each interfacing with eight slices of the L2 cache to

218 H. McCraw et al.

handle their cache misses (one controller for each half of the 16 compute cores
on the chip) [1,10]. The counting hardware can either keep the counts from each
slice separate, or combine the counts from each slice into single values (which
is the default). The combined counts are significantly important if a user wants
to sample on overflows. Actually, the separate slice counts are not particularly
interesting except for perhaps investigating cache imbalances because consecu-
tive memory lines are mapped to separate slices. The node-wide ”combined” or
”sliced” operation is selected by creating an event set from the ”combined” (de-
fault), or ”sliced” group of events. Hence a user cannot assign events from both
groups. Currently, there are 32 L2Unit events (16 events for the ”combined” and
”sliced” case, respectively) available on the BG/Q architecture.

Overflow: If L2Unit event overflow is desired, the overflow signal is ”slow” (see
the end of Section 3.1 for details that describe the difference between fast and
slow overflow). As mentioned before, PAPI supports overflow for PUnit events
as well as L2Unit and IOUnit events.

3.3 I/O Unit Component

The Message, PCIe, and DevBus modules - which are collectively referred to
as I/O modules - together provide 43 counters. These counters are node-wide
and cannot be isolated to any particular core or thread [1]. Note, the PCIe
module is only enabled on the I/O nodes but disabled on the compute nodes.
The counters for this specific I/O sub-module exist, however, there is currently
no BGPM support for the I/O nodes. Currently, there are 44 IOUnit events
available on the BG/Q architecture. The two I/O sub-modules - Message, and
DevBus - are transparently identifiable from the IOUnit event names.

Overflow: If IOUnit event overflow is desired, the overflow signal is ”slow” (see
the end of Section 3.1 for details that describe the difference between fast and
slow overflow).

3.4 Network Unit Component

The 5D-Torus network provides a local UPC network module with 66 counters
- each of the 11 links has six 64-bit-counters. As of right now, a PAPI user
cannot select which network link to attach to. Currently, all 11 network links
are attached and this is hard-coded in the PAPI NWUnit component. We are
considering options for supporting the other enumerations for network links as
well. We can easily change to attaching the ten torus links only and leave the I/O
link out. As for measuring the performance of an application’s communication,
both of the two configurations will work without limitations because the I/O
links are not used for sending packets to another compute node. However, if
users want to evaluate the I/O performance of an application, then they can do
this via the current network component as well. This would not be the case when
we use the torus links only. Currently, there are 31 NWUnit events available on
the BG/Q architecture.

Beyond the CPU 219

3.5 CNK Unit Component

By default a custom lightweight operating system called Compute Node Kernel
(CNK) is loaded on the compute nodes while I/O nodes run Linux OS [4]. The
CNK OS is the only kernel that runs on all the 16 compute cores. In general, on
Linux kernels the “/proc” file system is the usual access method for kernel counts.
Since CNK does not have a “/proc” filesystem, PAPI uses BGPM’s “virtual unit”
that has software counters collected by the kernel. The kernel counter values are
read via a system call that requests the data from the lightweight compute node
kernel. Also, there is a read operation to get the raw value since the system
has been booted. Currently, there are 29 CNKUnit events available on the BG/Q
architecture. Table 3 provides a small selection of CNKUnit events. The CNK
functionality is heavily used by tools that support sample-based profiling like
e.g. HPCToolkit [2]. Hence, with the CNKUnit Component, this is much easier
handled on BG/Q than it was on BG/P.

Table 3. Small selection of CNKUnit events, available on the BG/Q architecture

CNKUnit Event Description

PEVT_CNKNODE_MUINT Number of Message Unit non-fatal interrupts
PEVT_CNKNODE_NDINT Number of Network Device non-fatal interrupts
PEVT_CNKHWT_SYSCALL System Calls
PEVT_CNKHWT_FIT Fixed Interval Timer Interrupts
PEVT_CNKHWT_WATCHDOG Watchdog Timer Interrupts
PEVT_CNKHWT_PERFMON Performance Monitor interrupts
PEVT_CNKHWT_PROGRAM Program Interrupts
PEVT_CNKHWT_FPU FPU Unavailable Interrupts
... ...

4 Case Study: Parallel 3D-FFT on BG/Q

As a case study, we implemented a parallel 3D-FFT kernel and want to ex-
plore how well the communication performs on the BG/Q network. The Fast
Fourier Transforms (FFT) of multidimensional data are of particular importance
in a number of different scientific applications but they are often among the
most computationally expensive components. Parallel multidimensional FFTs
are communication intensive, which is why they often prevent the application
from scaling to a very large number of processors. A fundamental challenge of
such numerical algorithms is a design and implementation that efficiently uses
thousands of nodes. One important characteristics of BG/Q is the organization
of the compute nodes in a 5D-Torus network. We will explore that in order to
maintain application performance and scaling, the correct mapping of MPI tasks
onto the torus network is a critical factor.

220 H. McCraw et al.

4.1 Definition of the Fourier Transformation

We start the discussion with the definition and the conventions used for the
Fourier Transformation (FT) in this paper. Consider Ax,y,z as a three-dimensional
array of L×M ×N complex numbers with:

Ax,y,z ∈ C x ∈ Z ∀x, 0 ≤ x < L

y ∈ Z ∀y, 0 ≤ y < M

z ∈ Z ∀z, 0 ≤ z < N

The Fourier transformed array Ãu,v,w is computed using the following formula:

Ãu,v,w :=
L−1∑

x=0

M−1∑

y=0

N−1∑

z=0

Ax,y,z exp(−2πi
wz

N
)

︸ ︷︷ ︸
1st 1D FT along z

exp(−2πi
vy

M
)

︸ ︷︷ ︸
2nd 1D FT along y

exp(−2πi
ux

L
)

︸ ︷︷ ︸
3rd 1D FT along x

(1)

As shown by the under-braces, this computation can be performed in three
single stages. This is crucial for understanding the parallelization in the next
subsection. The first stage is the one-dimensional FT along the z dimension for
all (x, y) pairs. The second stage is a FT along the y dimension for all (x,w)
pairs, and the final stage is along the x dimension for all (v, w) pairs.

4.2 Parallelization

Many previous parallel 3D-FFT implementations have used a one-dimensional
virtual processor grid - i.e. only one dimension is distributed among the proces-
sors and the remaining dimensions are kept locally. This has the advantage that
one all-to-all communication is sufficient. However, for problem sizes of about
one hundred points or more per dimension, this approach cannot offer scala-
bility to several hundred or thousand processors as required for modern HPC
architectures. For this reason the developers of the IBMs Blue Matter applica-
tion have been promoting the use of a two-dimensional virtual processor grid for
FFTs in three dimensions [5]. This requires two all-to-all type communications,
as shown in Figure 1, which illustrates the parallelization of the 3D-FFT using
a two-dimensional decomposition of the data array A of size L ×M × N . The
compute tasks have been organized in a two-dimensional virtual processor grid
with Pc columns and Pr rows using the MPI Cartesian grid topology construct.
Each individual physical processor holds an L/Pr ×M/Pc ×N sized section of
A in its local memory. The entire 3D-FFT is performed in five steps as follows:

1. Each processor performs L/Pr ×M/Pc one-dimensional FFTs of size N

Beyond the CPU 221

perform 1D-FFT
along z-dimension

(a)

perform 1D-FFT
along y-dimension

(b)

Proc 0
Proc 1

Proc 2
Proc 3

Proc 4
Proc 5

Proc 6
Proc 7

Proc 8
Proc 9

Proc 10
Proc 11

Proc 12
Proc 13

Proc 14
Proc 15

All-to-All communication

within the ROWs of the
virtual processor grid

to get data over
y-dimension

locally

perform 1D-FFT
along x-dimension

(c)

All-to-All communication

within the COLUMNs of the
virtual processor grid

to get data over
x-dimension

locally

x z

y

x

z

y

x

zy

data array
A = 8 x 8 x 8

x

z

y
Pr

Pc

2D virtual Processor grid2D virtual Processor grid
Pr x P Pc = 4 = 4 x 4 4

0

1

2

3

1
2

3

.

.

.

.

.

.

Fig. 1. Computational steps of the 3D-FFT implementation using 2D-decomposition

2. An all-to-all communication is performed within each of the rows - marked
in the four main colors - of the virtual processor grid to redistribute the
data. At the end of the step, each processor holds an L/Pr×M×N/Pc sized
section of A. These are Pr independent all-to-all communications.

3. Each processor performs L/Pr ×N/Pc one-dimensional FFTs of size M .

4. A second set of Pc independent all-to-all communications is performed, this
time within the columns of the virtual processor grid. At the end of this
step, each processor holds a L×M/Pc ×N/Pr size section of A.

5. Each processor performs M/Pc ×N/Pr one-dimensional FFTs of size L

For more information on the parallelization, the reader is referred to [5,8].

4.3 Communication Network Topology

As mentioned before, the network topology for BG/Q is a 5D-Torus. Every node
is connected to its ten neighbor nodes through bidirectional links in the ±A, ±B,
±C, ±D, and ±E directions. This appears to be a significant change compared
to BG/Q predecessors, both of which feature a 3D-Torus. Here every node is
connected to its six neighbor nodes through bidirectional links in the ±A, ±B,
and ±C directions. To maintain application performance, an efficient mapping
of MPI tasks onto the torus network is a critical factor.

The default mapping is to place MPI ranks on the BG/Q system in ABCDET
order where the rightmost letter increments first, and where < A,B,C,D,E >
are the five torus coordinates and < T > ranges from 0 to N − 1, with N
being the number of ranks per node [7]. If the job uses the default mapping and
specifies one process per node, the following assignment results:
MPI rank 0 is assigned to coordinates < 0, 0, 0, 0, 0, 0 >
MPI rank 1 is assigned to coordinates < 0, 0, 0, 0, 1, 0 >
MPI rank 2 is assigned to coordinates < 0, 0, 0, 1, 0, 0 >
The mapping continues like this, first incrementing the E coordinate, then the
D coordinate, and so on, until all the processes are mapped. The user can choose

222 H. McCraw et al.

a different mapping by specifying a different permutation of ABCDET or by
creating a customized map file.

4.4 Network Performance Counter Analysis

We ran our 3D-FFT kernel on a 512 node partition, utilizing half a rack on the
BG/Q system at Argonne National Laboratory, using all 16 compute cores per
node for each run. Table 4 summarizes the number of nodes that are available
in each of the five dimensions. Also the torus connectivity is shown for each
dimension, while 1 indicates torus connectivity for a particular dimension, 0
indicates none.

Table 4. Torus connectivity and number of nodes in each of the five dimensions for
a 512 node partition

A B C D E T

nodes 4 4 4 4 2 16

torus 1 1 1 1 1 -

For the 512 node partition, we have a total of 8,192 MPI tasks, and for the
virtual two-dimensional process grid, we chose 16 × 512, meaning that each
subgroup has 16 MPI tasks and we have 512 of those subgroups. Since we want
to know how well the communication performs on the 5D-Torus network, we
use the new PAPI network component to sample various network related events.
The number of packets sent from each node is shown in Figure 2 for a problem
size of 5123. This includes packets that originate as well as pass through the
current node. It is important to note, these are the numbers for only the all-to-
all communication within each subgroup (only first all-to-all), not including the
second all-to-all communication between the subgroups.

Fig. 2. Network counter data collected with PAPI. This event counts the number
of packets originating and passing through the current node for the first all-to-all
communication.

Beyond the CPU 223

The PAPI network counter data greatly helped to evaluate the communication
of the parallel 3D-FFT kernel as it clearly shows an unnecessary large number
of packets that cross a node if the default MPI task mapping is used. The
collected network data for a medium problem size of 5123 counts approx. 270,000
packets which originate from and pass through each single node. Note, the count
variation from node to node is due to the routing algorithm which may pass more
packets through some nodes but not others based on how congested alternative
routes are in the network. On the whole, we consider this number of packets for
such a fairly small problem size extremely high, which is also the cause of the
discovered network congestions. Without the network counter data, a user may
merely pursue with speculations about various reasons of the poor performance.
However, the data allows a much more concentrated analysis that assists with
taking more settled instead of speculative actions.

In order to resolve this type of network congestion, we examined a variety of
customized MPI task mappings, which heavily depend on the chosen 2D pro-
cessor grid of the parallel 3D-FFT implementation. For each experiment, the
network counter data distinctly indicated either a stationary or improved con-
gestion of the network. The analysis shows that the reason for the high numbers
is the placement of MPI tasks onto the network using the default mapping which
results in a lot of inter-node communications. It appears that even when using a
total of five dimensions for a torus network, the default mapping can still result
in severe performance degradations due to congestions. This stresses all the more
how critical the correct mapping of MPI tasks onto the torus network is, even
when we utilize a five-dimensional torus. The default mapping places each task
of a subgroup on a different node, as can be seen from Table 5(a) that summa-
rizes the default MPI task mapping on the 5D-Torus for one communicator.

Table 5. MPI task mappings on the 5D-Torus for the 512 node partition run, using
a 2D virtual processor grid 16 × 512. For simplicity, each table presents the mapping
of only one out of a total of 512 communicators.

(a) Default MPI-task mapping

rank A B C D E T

0 0 0 0 0 0 0
512 0 1 0 0 0 0
1,024 0 2 0 0 0 0
1,536 0 3 0 0 0 0
2,048 1 0 0 0 0 0
2,560 1 1 0 0 0 0
3,072 1 2 0 0 0 0
3,584 1 3 0 0 0 0
4,096 2 0 0 0 0 0
4,608 2 1 0 0 0 0
5,120 2 2 0 0 0 0
5,632 2 3 0 0 0 0
6,144 3 0 0 0 0 0
6,656 3 1 0 0 0 0
7,168 3 2 0 0 0 0
7,680 3 3 0 0 0 0

(b) Customized MPI-task mapping

rank A B C D E T

0 0 0 0 0 0 0
512 0 0 0 0 0 1
1,024 0 0 0 0 0 2
1,536 0 0 0 0 0 3
2,048 0 0 0 0 0 4
2,560 0 0 0 0 0 5
3,072 0 0 0 0 0 6
3,584 0 0 0 0 0 7
4,096 0 0 0 0 0 8
4,608 0 0 0 0 0 9
5,120 0 0 0 0 0 10
5,632 0 0 0 0 0 11
6,144 0 0 0 0 0 12
6,656 0 0 0 0 0 13
7,168 0 0 0 0 0 14
7,680 0 0 0 0 0 15

224 H. McCraw et al.

The above mentioned network counter data analysis for various customized
mappings promotes a mapping that places all the tasks from one subgroup onto
the same node which significantly reduced the amount of communication. Ta-
ble 5(b) presents the optimum customized MPI task mapping on the 5D-Torus
for the same communicator as was used in Table 5(a). Since each subgroup has
16 MPI tasks, and since we have 16 compute cores per node, we can place one
entire subgroup on each node. By doing so, all the high numbers reported for the
network counter were reduced to zeroes, resulting in no inter-node communica-
tion at all. The results presented in Figure 3 show that the customized mapping
gives us a performance improvement of up to a factor of approx. 10 (depend-
ing on the problem size) for the first all-to-all. Note, there was no degradation
in performance for the second all-to-all with the customized mapping. For the
entire 3D-FFT kernel - which consists of three 1D-FFT computations and two
all-to-all communications - we see an improvement ranging from 10 to 18% for
various mid-size problems.

Fig. 3. Performance comparison for the first all-to-all communication using default and
customized mapping. The table at the bottom presents the performance improvement
of the customized mapping for each problem size and for the communication as well as
the entire 3D-FFT kernel respectively.

5 Conclusion

Performance analysis tools for parallel applications running on large scale com-
puting systems typically rely on hardware performance counters to gather per-
formance relevant data from the system. In order to allow the HPC community
to collect hardware performance counter data on IBM’s latest Blue Gene system
BG/Q, PAPI has been extended with five new components.

The PAPI customization for BG/Q accesses the BGPM interface under the
covers, allowing users and third-party programs to monitor and sample hardware

Beyond the CPU 225

performance counters in a traditional way using the default PAPI interface. The
recently added PAPI components allow hardware performance counter monitor-
ing not only for the processing units but also for the 5D-Torus network, the I/O
system, and the Compute Node Kernel.

As a case study for using hardware performance monitoring beyond the CPU
we implemented a parallel 3D-FFT kernel and instrumented it with PAPI for com-
munication evaluation on the BG/Q system at ArgonneNational Laboratory. The
collected network counter data considerably helped evaluating the communication
for the 5D-torus partition as well as made us look deeper into where tasks are lo-
cated by default on the 5D network, and how to improve the task location based
on the algorithm’s features.With the default mapping of MPI tasks onto the torus
network, the network counters detected a large amount of redundant inter-node
communications. By employing a custom mapping, we were able to eliminate the
unnecessary communication and achieve more than a ten-fold bettering for the
all-to-all communication which consequently leads to up to 18% performance im-
provement for the entire 3D-FFT kernel on 8,192 cores.

Acknowledgments. This material is based upon work supported by the U.S.
Department of Energy Office of Science under contract DE-FC02-06ER25761.
Access to the early access BG/Q system at Argonne National Laboratory was
provided through the ALCF Early Science Program.

References

1. BGPM Documentation (2012)
2. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,

J., Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience 22(6), 685–701
(2010)

3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. International Journal
of High Performance Computing Applications 14(3), 189–204 (2000)

4. Budnik, T., Knudson, B., Megerian, M., Miller, S., Mundy, M., Stockdell, W.: Blue
Gene/Q Resource Management Architecture (2010)

5. Eleftheriou, M., Moreira, J.E., Fitch, B.G., Germain, R.S.: A Volumetric FFT for
BlueGene/L. In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI),
vol. 2913, pp. 194–203. Springer, Heidelberg (2003)

6. Feldman, M.: IBM Specs Out Blue Gene/Q Chip (2011),
http://www.hpcwire.com/hpcwire/2011-08-22/

ibm specs out blue gene q chip.html
7. Gilge, M.: IBM system Blue Gene solution: Blue Gene/Q application development.

IBM Redbook Draft SG24-7948-00 (2012)
8. Jagode, H.: Fourier Transforms for the BlueGene/L Communication Network. Mas-

ter’s thesis, EPCC, The University of Edinburgh (2006),
http://www.epcc.ed.ac.uk/msc/dissertations/2005-2006/

9. Morgan, T.P.: IBM Blue Gene/Q details (2011),
http://www.multicoreinfo.com/2011/02/bluegeneq

10. Morgan, T.P.: IBM’s Blue Gene/Q super chip grows 18th core (2011),
http://www.theregister.co.uk/2011/08/22/ibm_bluegene_q_chip

http://www.hpcwire.com/hpcwire/2011-08-22/ibm_specs_out_blue_gene_q_chip.html
http://www.hpcwire.com/hpcwire/2011-08-22/ibm_specs_out_blue_gene_q_chip.html
http://www.epcc.ed.ac.uk/msc/dissertations/2005-2006/
http://www.multicoreinfo.com/2011/02/bluegeneq
http://www.theregister.co.uk/2011/08/22/ibm_bluegene_q_chip

	Beyond the CPU: Hardware Performance Counter Monitoring on Blue Gene/Q
	1 Introduction

	2 Overview of the
Blue Gene/Q Architecture
	2.1 Hardware
Architecture

	3 PAPI BG/Q
Components
	3.1 Processor
Unit Component
	3.2 L2 Unit
Component
	3.3 I/O Unit
Component
	3.4 Network Unit
Component
	3.5 CNK Unit
Component

	4 Case Study:
Parallel 3D-FFT on BG/Q
	4.1 Definition of
the Fourier Transformation
	4.2 Parallelization

	4.3 Communication
Network Topology
	4.4 Network
Performance Counter Analysis

	5 Conclusion

	References

