
Can Hardware Performance Counters Produce Expected, Deterministic Results?

Vincent M. Weaver and Jack Dongarra

Innovative Computer Laboratory

University of Tennessee

{vweaver1,dongarra}@eecs.utk.edu

Abstract

Experiments involving hardware performance counters

would ideally have deterministic results when run in strictly

controlled environments. In practice counters that should

be deterministic (such as retired instructions) show varia-

tion from run to run on the x86 64 architecture. This causes

difficulties when undertaking certain performance-counter

related tasks, such as simulator validation and performance

analysis. These variations also impede software-based de-

terministic thread-interleaving, useful for debugging and

tuning multi-threaded workloads on modern CMP systems.

We investigate a variety of x86 64 implementations (in-

cluding DBI tools) and discover the sources of variations

from expected count totals. The largest impact on retired

instruction totals is due to the inclusion of hardware inter-

rupt counts. This is difficult to compensate for, limiting the

utility of the counters. In addition, counts generated by spe-

cific instructions can be counted differently across imple-

mentations, leading to cross-machine variations in aggre-

gate counts.

We briefly investigate ARM, IA64, POWER and SPARC

systems and find that on these platforms the counts do not

include hardware interrupts. Non-deterministic limitations

to counter use may be a particular feature of the x86 64

architecture.

We also apply our methodology to larger programs and

find that run-to-run variation can be minimized, but it is

difficult to determine known “good” reference counts for

comparison.

1 Introduction

Before using performance counters, it is important to

understand the limitations of the underlying hardware. A

naı̈ve user might expect deterministic results: repeated

identical program runs should give repeatable results. In

practice this is nearly impossible to achieve.

It is well known that most programs run on modern com-

puting systems will behave in a non-deterministic manner.

This is usually due to hardware effects passed on to applica-

tions by the operating system. Even benchmarks designed

to give repeatable results, such as SPEC CPU, can acciden-

tally expose operating system behaviors [23].

Many important hardware events, such as cache and cy-

cle counts, are by definition not deterministic on modern

out-of-order machines [17]. There are three qualities we

look for when evaluating whether an architecture has an

available useful deterministic event:

• It does not change run-to-run due to the microarchitec-

ture of the processor,

• It is obvious from code investigation what the expected

count should be, and

• The count happens with enough frequency to be useful

in program analysis.

In general the only events capable of deterministic behav-

ior are the various retired instruction counters, as these (in

theory) depend solely on the underlying ISA and should be

stable run-to-run and across machines. Even these retired

instruction events exhibit variation on typical applications,

due to:

• Operating system interaction [16],

• Program layout [23, 17],

• Measurement overhead [27],

• Multi-processor variation [1], and

• Hardware implementation details [23, 21].

In our experiments we carefully control our environment to

avoid these sources of variability.

Many users of performance counters can tolerate varia-

tion in the results. Often, due to the small number of coun-

ters available, sampling or multiplexing is used during per-

formance measurements. This adds significant run-to-run

variation; in this situation the determinism of the underly-

ing counter hardware does not matter. In other cases the

inherent non-determinism of the application is so large that

it overshadows any limitation of the counting infrastructure.

1

Despite the common case of not caring about determin-

ism, there are situations where obtaining exact counts is

important. Benchmarks used when validating architectural

simulators against real hardware should in theory give ex-

act, identical results [22, 9]. Repeatable analysis involving

basic block vectors (BBVs) requires identical results, as di-

vergences of just one instruction are enough to change the

basic blocks chosen [24]. Feedback Directed Optimization

(FDO) works best when performance samples match ex-

actly to the code being executed [7]. Performance compar-

ison between systems with the same instruction set archi-

tecture (ISA) using the instructions per cycle (IPC) metric

requires that the instruction count match as closely as pos-

sible between machines. Debugging and analyzing multi-

threaded applications can be difficult without some manner

of deterministic threading to ensure repeatable program be-

havior; various implementations of this require a determin-

istic performance event [19, 26, 3, 5]. Certain methods of

intrusion analysis that involve logging and replaying of sys-

tem behavior also work best if a deterministic performance

event is available [10].

This paper is not concerned about the determinism of

applications or the operating system, but whether the hard-

ware performance counter subsystem itself can be used un-

der ideal conditions to obtain deterministic results. Proces-

sor vendors will make no guarantees about determinism or

counter accuracy; therefore we must study the limitations

of the counters so that we can use them with confidence in

future research.

2 Experimental Setup

Analysis of hardware performance counter accuracy is

difficult: it requires exact knowledge of all executing in-

structions. This precludes using existing benchmarks writ-

ten in high level languages as the resulting binaries are com-

piler dependent and there is not a “known” correct instruc-

tion count. Compilers also rarely use the full complement of

available opcodes, leaving many unexplored corner cases.

Even though some divergences in counts might be visible

in the total aggregate values, the root causes of the diver-

gence can be nearly impossible to discover, depending on

complex interactions deep within a program.

We avoid the variation problems inherent in high-level

benchmarks by writing a large custom benchmark in as-

sembly language. This initial test case is an elaborate mi-

crobenchmark with over 200 million dynamic instructions.

This is larger than the interval size used in many computer

architecture investigations. The benchmark attempts to ex-

ercise the full x86 64 ISA while having no outside depen-

dencies (by calling OS syscalls directly, much like the tech-

niques used by Weaver and McKee [25]).

Due to the CISC nature of the architecture it is difficult

Table 1. Machines used in this study.
Processor Kernel

Intel Atom 230 2.6.32 perf events

Intel Core2 T9900 2.6.32 perf events

Intel Nehalem X5570 2.6.31 perf events

Intel Nehalem-EX X7560 2.6.34 perf events

Intel Pentium D 2.6.28 perfmon2

AMD Phenom 9500 2.6.29 perfmon2

AMD Istanbul 8439 2.6.32 perf events

to make a completely comprehensive test. We exercise most

integer, x87 floating point, MMX, and SSE instructions (up

to and including SSE3). We attempt to use various combi-

nations of register accesses, operand sizes (8 through 128

bit), memory accesses, and the wide variety of x86 address-

ing modes. Sections of the code are looped many thousands

of times to make anomalies stand out in the overall instruc-

tion count and to allow binary searches for extra counts.

We do not test the effects of more subtle potential causes

of variation, such as crossing cache-line boundaries, cross-

ing page boundaries, causing unaligned instruction fetches,

unaligned memory accesses, etc., as our experiments show

these have minimal effect on event counts. The source to

the benchmark is available from our website.

We ran our assembly benchmark 10 times each on 7 dif-

ferent x86 64 machines as shown in Table 1. Due to circum-

stances beyond our control the the test machines are running

different Linux kernel revisions. We find that the different

kernel and performance measurement infrastructures have

no impact on the results. We use the perf tool on systems

that support the perf events interface, and the pfmon

tool systems using perfmon2 [11] enabled kernels.
The perf tool only has built-in named support for a

small subset of events; others have to be specified using a
raw event code. We use the libpfm4 library to determine
these codes. We run perf as such:

perf stat -e r5001c0:u ./retired_instructions

The 0x5001c0 code corresponds to RETIRED LOADS on

Core2 processors and the :u mask specifies we only care

about user-space (not kernel) counts.
The pfmon utility included with perfmon2 has a much

more user-friendly interface that uses proper event names.
It is run like this:

pfmon -e RETIRED_LOADS ./retired_instructions

A full list of available counters can be found in the architec-

tural manuals available from the various vendors [12, 2].

We compare the results of our benchmarks against an

“expected” value determined via code inspection. We also

run more limited tests on additional architectures.

Modern processors have hundreds of available perfor-

mance events; we limit our search to those described as

2

T
a
b
le

2
.
E
v
e
n
ts

u
s
e
d
in

th
is

p
a
p
e
r.
V
a
lu
e
s
in

p
a
re
n
th
e
s
is

a
re

ra
w

e
v
e
n
ts

u
s
e
d
b
y
th
e
p
e
r
f
u
ti
li
ty

.

E
ve

n
t

In
te

l
A

to
m

In
te

l
C

o
re

2
In

te
l
N

e
h
a
le

m
/

N
e
h
a
le

m
-E

X
In

te
l
P

e
n
ti
u
m

D
A

M
D

P
h
e
n
o
m

/
Is

ta
n
b
u
l

R
e
ti
re

d
IN

S
T

R
U

C
T

IO
N

S
R

E
T

IR
E

D
IN

S
T

R
U

C
T

IO
N

S
R

E
T

IR
E

D
IN

S
T

R
U

C
T

IO
N

S
R

E
T

IR
E

D
IN

S
T

R
R

E
T

IR
E

D
:N

B
O

G
U

S
N

T
A

G
R

E
T

IR
E

D
IN

S
T

R
U

C
T

IO
N

S
In

s
tr

u
c
ti
o
n
s

(i
n
s
tr
u
c
ti
o
n
s
:u
)

(i
n
s
tr
u
c
ti
o
n
s
:u
)

(i
n
s
tr
u
c
ti
o
n
s
:u
)

(i
n
s
tr
u
c
ti
o
n
s
:u
)

(i
n
s
tr
u
c
ti
o
n
s
:u
)

R
e
ti
re

d
B

ra
n
c
h
e
s

B
R

A
N

C
H

IN
S

T
R

U
C

T
IO

N
S

B
R

A
N

C
H

IN
S

T
R

U
C

T
IO

N
S

B
R

A
N

C
H

IN
S

T
R

U
C

T
IO

N
S

B
R

A
N

C
H

R
E

T
IR

E
D

R
E

T
IR

E
D

B
R

A
N

C
H

R
E

T
IR

E
D

R
E

T
IR

E
D

R
E

T
IR

E
D

:M
M

N
P

:M
M

N
M

:M
M

T
P

:M
M

T
M

IN
S

T
R

U
C

T
IO

N
S

(b
ra
n
c
h
e
s
:u
)

(b
ra
n
c
h
e
s
:u
)

(b
ra
n
c
h
e
s
:u
)

(b
ra
n
c
h
e
s
:u
)

(r
5
0
0
0
c
2
:u
)

R
e
ti
re

d
L
o
a
d
s

n
/a

IN
S

T
R

E
T

IR
E

D
:L

O
A

D
S

M
E

M
IN

S
T

R
E

T
IR

E
D

F
R

O
N

T
E

N
D

E
V

E
N

T
:N

B
O

G
U

S
,

n
/a

:L
O

A
D

S
U

O
P

S
T

Y
P

E
:T

A
G

L
O

A
D

S
(r
5
0
0
1
c
0
:u
)

(r
5
0
0
1
0
b
:u
)

R
e
ti
re

d
S

to
re

s
n
/a

IN
S

T
R

E
T

IR
E

D
:S

T
O

R
E

S
M

E
M

IN
S

T
R

E
T

IR
E

D
IN

S
T

R
R

E
T

IR
E

D
:N

B
O

G
U

S
T
A

G
,

n
/a

:S
T

O
R

E
S

U
O

P
S

T
Y

P
E

:T
A

G
S

T
O

R
E

S
(r
5
0
0
2
c
0
:u
)

(r
5
0
0
2
0
b
:u
)

M
u
lt
ip

lie
s

M
U

L
:A

R
M

U
L

A
R

IT
H

:M
U

L
n
/a

D
IS

P
A
T

C
H

E
D

F
P

U
:O

P
S

M
U

LT
IP

LY
(r
5
0
8
1
1
2
:u
)

(r
5
1
0
0
1
2
:u
)

(r
5
0
0
2
1
4
:u
)

(r
5
0
0
2
0
0
:u
)

D
iv

id
e
s

D
IV

:A
R

D
IV

A
R

IT
H

:D
IV

n
/a

n
/a

(r
5
0
8
1
1
3
:u
)

(r
5
1
0
0
1
3
:u
)

(r
1
d
4
0
1
1
4
:u
)

F
P

1

X
8
7

C
O

M
P

O
P

S
E

X
E

F
P

C
O

M
P

O
P

S
E

X
E

F
P

C
O

M
P

O
P

S
E

X
E

:X
8
7

E
X

E
C

U
T

IO
N

E
V

E
N

T
:N

B
O

G
U

S
1
,

R
E

T
IR

E
D

M
M

X
A

N
D

:A
N

Y
A

R
X

8
7

F
P

U
O

P
:A

L
L
:T

A
G

1
F

P
IN

S
T

R
U

C
T

IO
N

S
:X

8
7

(r
5
0
8
1
1
0
:u
)

(r
5
0
0
0
1
0
:u
)

(r
5
0
0
1
1
0
:u
)

(r
5
0
0
1
c
b
:u
)

F
P

2
n
/a

X
8
7

O
P

S
R

E
T

IR
E

D
:A

N
Y

IN
S

T
R

E
T

IR
E

D
:x

8
7

n
/a

R
E

T
IR

E
D

M
M

X
A

N
D

F
P

IN
S

T
R

U
C

T
IO

N
S

:A
L
L

(r
5
0
fe
c
1
:u
)

(r
5
0
0
2
c
0
:u
)

(r
5
0
0
7
c
b
:u
)

S
S

E
S

IM
D

IN
S

T
R

E
T

IR
E

D
S

IM
D

IN
S

T
R

R
E

T
IR

E
D

F
P

C
O

M
P

O
P

S
E

X
E

:S
S

E
F

P

E
X

E
C

U
T

IO
N

E
V

E
N

T
:N

B
O

G
U

S
2
,

R
E

T
IR

E
D

S
S

E
O

P
E

R
A
T

IO
N

S
:A

L
L

P
A

C
K

E
D

S
P

U
O

P
:A

L
L
:T

A
G

2
,

P
A

C
K

E
D

D
P

U
O

P
:A

L
L
:T

A
G

2
(r
5
0
1
fc
7
:u
)

(r
5
0
0
0
c
e
:u
)

(r
5
0
0
4
1
0
:u
)

(r
5
0
7
f0
3
:u
)

R
e
ti
re

d
U

O
P

S
R

E
T

IR
E

D
U

O
P

S
R

E
T

IR
E

D
U

O
P

S
R

E
T

IR
E

D
:A

N
Y

U
O

P
S

R
E

T
IR

E
D

:N
B

O
G

U
S

R
E

T
IR

E
D

U
O

P
S

U
o
p
s

(r
5
0
1
0
c
2
:u
)

(r
5
0
0
fc
2
:u
)

(r
5
0
0
1
c
2
:u
)

(r
5
0
0
0
c
1
:u
)

H
a
rd

w
a
re

H
W

IN
T

R
C

V
∗

H
W

IN
T

R
C

V
H

W
IN

T
:R

C
V

n
/a

IN
T

E
R

R
U

P
T

S
T
A

K
E

N
In

te
rr

u
p
ts

(r
5
1
0
0
c
8
:u
)

(r
5
0
0
0
c
8
:u
)

(r
5
0
0
1
1
d
:u
)

(r
5
0
0
0
c
f:
u
)

∗
T
h
is
co
u
n
te
r
d
o
es

n
o
t
ap
p
ea
r
to

w
o
rk
,
te
st
ed

o
n
an

A
to
m

N
2
7
0
an
d
an

A
to
m

2
3
0
.

3

counting retired or committed instructions. In general the

following types of retired instruction counts are available

on most processors:

• Overall retired instructions. This event is available

and well tested on most architectures. Weaver and Mc-

Kee [23] find upward of 2% error on 32-bit x86 with

SPEC CPU.

• Retired branches

• Retired loads and stores. Olszewski et al. [19] found

retired stores to be the sole deterministic counter on

Core 2 systems.

• Retired multiplies and divides.

• Retired µops Unfortunately µops are implementation

dependent.

• Retired floating point and SSE There is no standard

way of counting FP or SSE. The instructions counted

vary, as does whether full ops or µops are counted.

• Miscellaneous Many processors provide retired

counts of unusual instructions, such as fxch, cpuid,

move operations, serializing instructions, memory bar-

riers, and not-taken branches. While these are useful

when analyzing specific program bottlenecks, they are

less useful for large-scale validation work.

Table 2 lists the names of the events for which we present

detailed results. We do not present results for various un-

common events, events that always return zero (or fail in

other ways), or events that turn out to be speculative.

3 Evaluation

We first look at results found using our assembly micro-

benchmark on x86 64. We then look at other architectures

to see if the same limitations apply. We analyze methods

for mitigating the variations in counts. Finally we attempt to

apply our methodology to larger more realistic benchmarks.

3.1 Assembly Benchmark Results

3.1.1 Retired Instructions

Even a common and well understood event like Retired In-

structions can have significant variation, as shown in Ta-

ble 3. The sources of overcount we found are described

below.

Hardware Interrupt Extra CountsMost x86 64 events

are incremented an extra time for every hardware interrupt

that occurs (the most common hardware interrupt is the

periodic timer, causing a noticeable runtime-related over-

count). This interrupt behavior was originally undocu-

mented when we first described it, but now appears in some

vendor documentation. This overcount is inherently unpre-

dictable, but often can be measured with an additional per-

formance event which allows adjustment of total aggregate

results.

Instruction Double-counts All x86 processors count

FP instructions containing the fwait prefix as two

instructions (this makes sense, as “single” instructions

containing an implicit fwait are actually pseudo-

ops for the individual instructions. The Pentium D

INSTRUCTIONS RETIRED:NBOGUSNTAG event double

counts the following instructions: fldcw, fldenv,

frstor, maskmovq, emms, cvtpd2pi (mem),

cvttpd2pi (mem), sfence, and mfence.

FP Exception Counts On all x86 processors an extra

instruction happens if the x87 top-of-stack pointer over-

flows; care is taken in our benchmark to avoid this condi-

tion. The AMDmachines overcount by one when fninit,

fnsave, and fnclex instructions execute and one of the

FP exception status word flags (such as PE or ZE) is set.

Operating System Counts We find an additional count

happens when the floating point unit is used for the first

time; this is likely due to the lazy FP saving mechanism

used by the OS to avoid context-switch overhead for non-

floating point applications. Additional counts are generated

when a page fault occurs; in general the first time a fresh

page of memory is accessed it causes a page fault which

counts as an extra instruction.

Pentium D Counts The Pentium D processor has

two different events counting retired instructions. The

newer (not available on earlier Pentium 4 models) event is

INSTRUCTIONS COMPLETED:NBOGUS which behaves

like the corresponding event on other processors. The

other event, INSTRUCTIONS RETIRED:NBOGUSNTAG

is very different. It is not affected by hardware interrupts

(unless those interrupts cause a string instruction to re-start).

This has the potential to be a deterministic event, however

various instructions are counted twice (as mentioned previ-

ously).

3.2 Other “Deterministic” Events

Retired Branches Table 4 shows results for retired

branches. As with retired instructions, the hardware inter-

rupt and page table counts affect the results. Branch counts

include all control flow changes, including syscalls.

On AMD processors, the perf event preset

branches:u event counts the wrong value. We

supplied a fix which was incorporated into the 2.6.35

kernel; care must be taken to use the proper raw event on

kernels before then.

On Core2 processors the cpuid instruction also counts

as a branch.

Retired Loads Table 5 shows results for retired loads.

4

Table 3. Retired instructions compared to ex­
pected 226,990,030. AMD due to FP instr when
PE set. Pentium D due to instr counted twice.

Machine Before Adjustment Adjusted

Core2 10,879±319 13±1

Atom 11,601±495 -41±12

Nehalem 11,409±3 8±2

Nehalem-EX 11,915±9 8±2

Pentium D
(inst retired)

2,610,571±8 561±3

Pentium D
(inst completed)

10,794±28 -50±5

Phenom 310,601±11 12±0

Istanbul 311,830±78 11±1

Table 4. Retired branches compared to ex­
pected 9,240,001. Core2 due to cpuid over­
count. Roughly 10k overcount due to HW

interrupt/page­faults.
Machine Before Adjustment Adjusted

Core2 111,002±332 13±1

Atom 11,542±11 -43±4

Nehalem 11,409±4 8±1

Nehalem-EX 11,914±7 8±1

Pentium D 10,773±2 -56±5

Phenom 10,598±5 9±0

Istanbul 11,819±10 8±2

Table 5. Retired load differences compared to ex­
pected value of 79,590,000. Over/under due to

instructions being counted twice or not at all.
Machine Before Adjustment Adjusted

Core2 1,710,807±376 14±1

Atom — —

Nehalem -288,590±3 9±1

Nehalem-EX -288,086±7 8±3

Pentium D 2,402,843,955±12 3096±17

Phenom — —

Istanbul — —

Table 6. Retired store differences compared to
expected value of 24,060,000. Overcounts due to

instruction double­counts.
Machine Before Adjustment Adjusted

Core2 0±0 0±0

Atom — —

Nehalem 411,408±4 9±1

Nehalem-EX 411,914±6 9±1

Pentium D 163,402,604±185 11,776±175

Phenom — —

Istanbul — —

Table 7. Retired µops, multiplies, and divides. These values vary greatly from machine to machine.
Machine µops Multiplies Divides

Core2 14,234,856,824± 8,926 15,800,049± 68 5,800,016± 33

Atom 12,651,163,475± 63,870 13,700,000± 0 7,000,000± 0

Nehalem 11,746,070,128±258,282 19,975,243± 1202 3,125,067± 48

Nehalem-EX 11,746,732,506± 47,996 8,514,161±758,870 3,246,165±9,162

Pentium D 12,551,781,963± 4,601 n/a n/a

Phenom 10,550,974,722± 36,819 69,242,930± 62,492 n/a

Istanbul 10,551,189,637±139,283 69,796,975±219,398 n/a

Table 8. Retired FP, MMX and SSE instructions.
Machine FP1 FP2 SSE

Core2 72,600,239±187 39,099,997±0 23,200,000± 0

Atom 38,800,000± 0 n/a 88,299,597± 792

Nehalem 50,150,590±131 17,199,998±2 24,200,849± 154

Nehalem-EX 50,155,704±562 17,199,998±2 24,007,005± 197,401

Pentium D 100,400,310±413 n/a 54,639,963±4,943,158

Phenom 26,600,001± 0 112,700,001±0 15,800,000± 0

Istanbul 26,600,001± 0 112,700,001±0 15,800,000± 0

5

This event is not supported on all of the processors we in-

vestigate.

Extra loads are counted on exceptions: first floating point

usage, page faults, x87 FPU exceptions and SSE exceptions.

Conditional move instructions will always register a load

from memory, even if the condition is not met. The fbstp

“store 80-bit BCD” instruction counts as a load. The cmps

string compare instruction (where two values from distinct

memory are loaded and then compared) counts as only be-

ing a single load.

On Core2 machines the leave instruction counts as two

loads. The fstenv, fxsave, and fsave floating point

state-save instructions also count as loads. The maskmovq

and maskmovdqu count loads even though they only write

to memory. The movups, movupd and movdqu instruc-

tions count as loads even if their operands indicate a store-

to-memory operation.

On Nehalem processors the paddb, paddw, and

paddd do not count as load operations even if the their

operands indicate a load from memory.

The Pentium D event has very complicated limitations.

The counter exposes internal state, apparently counting the

microcoded loads separately. Unlike other x86 processors,

software prefetches are not counted as loads and page faults

count as 5 loads total. Push of a segment (fs/gs), movdqu

(load), lddqu, movupd (load), and fldt all count as two

loads instead of one. fldenv counts as 7 loads, frstor

counts as 23 loads, and fxrstor counts as 26. The

movups (store) instruction counts as a load. The fstps

instruction counts as two (not zero) loads.

Unlike other x86 counters that treat a rep-prefixed string

instruction as a single atomic instruction, on Pentium D the

loads are broken out and counted separately, sometimes at

a cache-line granularity. The rep lods and rep scas

instructions count each repeated load individually. The

rep movs instructions performs the moves in blocks of

16-bytes, then goes one-by-one for the remainder (see Fig-

ure 1). The rep cmps instruction counts each compare

instruction as two individual loads.

Retired Stores Table 6 shows results for retired stores.

This is an important event: the corresponding Core2 event

was found by Olszewski et al. [19] to be deterministic and

we have reproduced this result.

All processors (with the exception of Core2) also count

hardware interrupts and page faults as a store.

On Nehalem processors the cpuid, sfence, and

mfence instructions all count as stores (these are all se-

rializing instructions). clflush also counts as a store.

As with retired loads, the Pentium D processor has

elaborate retired store behavior that likely exposes inter-

nal microcode behavior. As with Nehalem, the cpuid,

sfence, mfence and clflush instructions count as a

stores. The enter instruction counts an extra store for

each nested stack frame. The fbstp, fstps, fstpt,

movups (store), movupd (store), movdqu (store), and

maskmovdqu instructions counts as two stores. The

fstenv instruction counts as seven stores, fsave as 23

and fxsave as 25. The rep stos string instruction

counts stores in 16B blocks (unless going backwards where

it’s individual). The rep movs instruction counts stores

in 16B blocks.

Multiplies and Divides Table 7 shows the numbers of

multiplies and divides for each processor. Some of these

counts are obviously speculative; the documentation for the

counters is not always clear. The implementation of this

event varies from model to model; some count integer only,

some count floating point and SSE too, and some count

multiple times for one instruction. On Core2 divq (64-bit

divide) instructions count also as a multiply and mulq (64-

bit multiplies) count as two. These instructions are possibly

rare enough in some codes that they may not be useful.

Floating Point and SSE Table 8 shows results for var-

ious floating point, MMX and SSE events. Some of these

events appear to be deterministic, most notably the events

on the AMD machines. Unfortunately these events are hard

to predict via code inspection. Some events are retired,

some speculative; some count retired instructions, some

count retired µops. Some instruction count only math in-

structions, some count any sort of instruction where floating

point is involved. Comparisons between machines will not

work due to these variations, and these events are not useful

for obtaining deterministic counts on integer-only bench-

marks.

µops Table 7 shows the number of retired µops for each

processor. Unfortunately µop behavior is implementation

specific and cannot be relied on when comparing different

machines.

3.3 Other Architectures

In addition to the x86 64 architecture, we investigate

other architectures to see if they have similar limitations

with regard to determinism. We use the ll assembly bench-

mark [25] modified to repeat 10,000 times. This is not as

comprehensive as the test used for x86, but should catch any

obvious issues (such as hardware interrupts being counted).

ARM We count retired instructions on an ARM Cortex-

A8 core. Unfortunately the performance counters on this

architecture cannot select only user-space events; kernel

events are always counted too, which makes all of the avail-

able events non-deterministic.

IA64 On a Merced system the STORES RETIRED,

LOADS RETIRED, and IA64 INST RETIRED counters

appear to be deterministic.

POWER On a POWER6 system we find the

instructions:u count to be deterministic, but

6

0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096
Value in RCX for the rep movsb instruction

0

64

128

192

256

320

M
e

a
s
u

re
d

 L
o

a
d

s
 o

n
 P

e
n

ti
u

m
 D

Figure 1. On Pentium D, the rep movs string instruction counts retired loads based on 16­byte

chunks moved, plus individual loads for any remainder.

the branches:u count is not.

SPARC Finally, on a SPARC Niagara T-1 system we

find that the INSTR CNT event is deterministic.

3.4 Compensating for Overcounts

Once the limitations to deterministic events are known,

attempts can be made to compensate for them.

For aggregate counts, the compensation factors can be

applied at the end. Thus for retired instructions if coun-

ters are available that measure hardware interrupts and page

faults, then an adjusted count can be created that matches

expected values. Some implementations (such as Atom and

Pentium D) do not have a built-in hardware interrupt event.

It is possible to work around this under Linux by reading the

/proc/interrupts file before and after a benchmark

run, but this adds additional error and counts interrupts that

happen outside of process context. Events that double-count

instructions are not possible to adjust using solely hardware

methods, in our experiments we use DBI instrumentation to

determine the instruction mix.

Compensation becomes even more difficult when using

hardware counters in overflow mode, such as wanting the

hardware to signal an interrupt after exactly 1million retired

instructions (this is what is wanted for deterministic thread-

ing implementations). One workaround for this is described

in the ReVirt project [10]; they set the counter to underflow

at a value before the value wanted, then adjust the count to

be accurate and then slowly single step the program until

the desired count occurs.

3.5 DBI Tools

In addition to counts generated by the hardware counters,

we also investigate results attainable with dynamic binary

instrumentation (DBI) tools. These tools are often used in

program analysis, and it is beneficial if their results match

actual hardware.

We use Pin [14] version 2.8-33586 to generate the ref-

erence results in this study. We also evaluate the exp-bbv

and cachegrind tools that come with Valgrind [18] version

3.6 and a current git checkout of Qemu [4] that is patched

to generate instruction statistics.

The current versions of all the tools by default report re-

peated string instructions as having a count equivalent to the

times repeated. Actual hardware reports a repeated string

instruction as only one instruction. Without modifying the

code base, neither Pin, Valgrind, nor Qemu will match the

hardware counters.

We have modified the tools to take this into account, and

for Pin the results for the assembly benchmark match the

expected values and real hardware exactly. We were unable

to fully evaluate Valgrind as it currently does not handle

numerous infrequent instructions that are not generated by

gcc but generated by our test. Qemu works well, but the

patches needed for it to generate counts are intrusive and

complicated.

3.6 Full­sized benchmarks

We attempt to use our methods to get deterministic runs

of the SPEC CPU 2000 [20] benchmarks. We compile these

programs statically using gcc 4.3 and the -O3 -sse3

7

Table 9. Results for retired instructions on SPEC CPU 2000.
Benchmark Pin Results Counter Results Difference

164.gzip.graphic 65,982,806,258+/-0 65,985,332,330+/-9 2,526,072
164.gzip.log 27,630,471,231+/-0 27,630,661,869+/-297 190,638
164.gzip.program 134,182,216,830+/-0 134,184,158,711+/-25 1,941,881
164.gzip.random 50,551,063,959+/-0 50,553,651,410+/-241 2,587,451
164.gzip.source 63,534,557,188+/-0 63,534,886,361+/-711 329,173

168.wupwise 360,553,377,202+/-0 360,553,378,908+/-175 1,706
171.swim 211,144,484,205+/-0 211,145,870,699+/-235 1,386,494
172.mgrid 317,894,840,723+/-0 317,902,191,070+/-37 7,350,347
173.applu 329,639,819,901+/-0 329,639,964,577+/-135 144,676
175.vpr.place 91,801,778,868+/-0 91,801,906,033+/-48 127,165

175.vpr.route 65,840,452,950+/-0 65,842,333,845+/-65 1,880,895
176.gcc.166 26,039,501,852+/-0 26,053,619,535+/-69 14,117,683
176.gcc.200 69,280,861,993+/-0 69,333,288,826+/-106 52,426,833
176.gcc.expr 7,253,042,753+/-71 7,257,808,289+/-43 4,765,536
176.gcc.integrate 7,594,306,527+/-0 7,598,639,195+/-69 4,332,668

176.gcc.scilab 38,687,677,208+/-12 38,718,412,887+/-127 30,735,679
177.mesa 224,909,291,041+/-0 225,141,328,681+/-36 232,037,640
178.galgel 265,298,711,252+/-0 265,315,417,293+/-91 16,706,041
179.art.110 37,455,717,089+/-0 37,684,112,743+/-46 228,395,654
179.art.470 41,559,174,782+/-0 41,815,556,622+/-70 256,381,840

181.mcf 47,176,435,708+/-0 47,178,182,387+/-41 1,746,679
183.equake 91,830,166,829+/-0 91,831,754,253+/-486 1,587,424
186.crafty 140,410,682,095+/-0 140,491,624,577+/-46 80,942,482
187.facerec 249,446,706,530+/-0 249,466,271,565+/-20 19,565,035
188.ammp 282,267,674,633+/-0 282,273,791,341+/-85 6,116,708

189.lucas 205,650,970,148+/-0 205,650,971,675+/-54 1,527
191.fma3d 252,617,528,064+/-0 252,621,707,010+/-130 4,178,946
197.parser 263,198,435,420+/-0 263,268,978,039+/-227 70,542,619
200.sixtrack 542,747,136,304+/-0 542,751,505,285+/-13 4,368,981
252.eon.cook 59,410,255,668+/-144 59,432,884,285+/-211 22,628,617

252.eon.kajiya 79,522,489,405+/-92 79,548,194,010+/-119 25,704,605
252.eon.rushmeier 46,636,612,121+/-577 46,652,449,863+/-73 15,837,742
253.perlbmk.535 2,696,610,456+/-2 2,698,843,490+/-199 2,233,034
253.perlbmk.704 2,764,426,301+/-4 2,766,432,903+/-243 2,006,602
253.perlbmk.850 5,655,963,871+/-22 5,661,167,625+/-253 5,203,754

253.perlbmk.957 4,508,337,217+/-2 4,512,393,547+/-203 4,056,330
253.perlbmk.diffmail 30,233,369,642+/-22 30,339,690,700+/-164 106,321,058
253.perlbmk.makerand 1,090,891,857+/-22 1,090,909,156+/-150 17,299
253.perlbmk.perfect 19,657,248,256+/-22 19,666,664,723+/-198 9,416,467
254.gap 183,293,201,373+/-0 183,443,753,693+/-20 150,552,320

255.vortex.1 162,104+/-0 162,215+/-10 111
255.vortex.2 161,905+/-0 162,016+/-10 111
255.vortex.3 162,024+/-0 162,135+/-10 111
256.bzip2.graphic 104,650,996,309+/-0 104,716,216,837+/-399 65,220,528
256.bzip2.program 92,138,659,767+/-0 92,195,366,446+/-283 56,706,679

256.bzip2.source 75,683,045,767+/-0 75,737,142,438+/-309 54,096,671
300.twolf 294,394,181,323+/-0 294,395,384,751+/-203 1,203,428
301.apsi 335,965,776,144+/-0 335,998,221,972+/-190 32,445,828

8

Table 10. Results for retired stores on SPEC CPU 2000.
Benchmark Pin Results Counter Results Difference

164.gzip.graphic 9,220,255,442+/-0 9,220,318,816+/-1 63,374
164.gzip.log 2,869,442,570+/-0 2,869,475,599+/-2 33,029
164.gzip.program 15,043,298,768+/-0 15,043,347,481+/-0 48,713
164.gzip.random 7,333,288,257+/-0 7,333,345,900+/-1 57,643

164.gzip.source 7,099,846,266+/-0 7,099,884,570+/-1 38,304
168.wupwise 33,509,937,868+/-0 33,509,937,948+/-0 80
171.swim 18,657,590,092+/-0 18,657,604,499+/-0 14,407
172.mgrid 19,780,977,379+/-0 19,780,992,153+/-0 14,774
173.applu 36,944,783,307+/-0 36,944,806,144+/-0 22,837

175.vpr.place 10,506,996,023+/-0 10,507,367,334+/-1 371,311
175.vpr.route 8,498,211,242+/-0 8,498,625,210+/-1 413,968
176.gcc.166 6,126,548,968+/-0 6,126,646,078+/-2 97,110
176.gcc.200 10,809,876,957+/-0 10,810,247,099+/-14 370,142
176.gcc.expr 1,262,579,952+/-14 1,262,641,060+/-4 61,108

176.gcc.integrate 1,472,392,036+/-0 1,472,436,588+/-3 44,552
176.gcc.scilab 6,544,043,598+/-1 6,544,314,779+/-10 271,181
177.mesa 35,256,814,647+/-0 35,256,814,675+/-0 28
178.galgel 25,736,467,292+/-0 25,736,468,525+/-0 1,233
179.art.110 3,467,916,650+/-0 3,467,916,650+/-0 0

179.art.470 3,792,351,365+/-0 3,792,351,365+/-0 0
181.mcf 3,101,673,836+/-0 3,101,673,836+/-0 0
183.equake 6,401,707,007+/-0 6,401,707,013+/-0 6
186.crafty 14,715,329,050+/-0 14,715,329,550+/-0 500
187.facerec 17,108,726,507+/-0 17,175,891,130+/-6 67,164,623

188.ammp 31,435,756,072+/-0 31,435,756,072+/-0 0
189.lucas 18,135,992,918+/-0 18,135,993,050+/-0 132
191.fma3d 42,289,894,809+/-0 42,326,598,083+/-13 36,703,274
197.parser 32,254,247,249+/-0 32,254,090,688+/-0 -156,561
200.sixtrack 24,831,293,048+/-0 24,831,447,915+/-1 154,867

252.eon.cook 9,168,538,965+/-10 9,168,538,925+/-21 -40
252.eon.kajiya 12,616,424,674+/-5 12,616,424,618+/-39 -56
252.eon.rushmeier 7,321,524,013+/-47 7,321,523,805+/-0 -208
253.perlbmk.535 502,744,026+/-0 502,853,217+/-1 109,191
253.perlbmk.704 515,446,194+/-1 515,464,538+/-0 18,344

253.perlbmk.850 1,077,046,593+/-2 1,077,124,158+/-1 77,565
253.perlbmk.957 853,729,475+/-0 853,824,516+/-0 95,041
253.perlbmk.diffmail 5,192,919,547+/-2 5,192,873,218+/-0 -46,329
253.perlbmk.makerand 188,774,998+/-2 188,774,884+/-1 -114
253.perlbmk.perfect 3,498,063,997+/-2 3,498,435,094+/-0 371,097

254.gap 25,380,689,015+/-0 25,380,688,751+/-0 -264
255.vortex.1 22,413+/-0 22,405+/-0 -8
255.vortex.2 22,403+/-0 22,395+/-0 -8
255.vortex.3 22,410+/-0 22,402+/-0 -8
256.bzip2.graphic 14,992,496,929+/-0 14,992,496,932+/-0 3

256.bzip2.program 12,378,627,404+/-0 12,378,627,408+/-0 4
256.bzip2.source 8,647,185,380+/-0 8,647,185,382+/-0 2
300.twolf 30,735,278,724+/-0 30,735,278,725+/-0 1
301.apsi 39,722,966,049+/-0 39,722,972,988+/-0 6,939

9

compiler options. We run on a Core2 machine with a

perf events enabled kernel.

Care is made to turn off address layout randomization

and attempt to set the environment up in an exacting way

previously shown to minimize run-to-run variation [23].

Despite this care, some variation is caused by the Pin DBI

tool, as it adds various environment variables.

Table 9 shows results for retired instructions on each

benchmark, with the reference Pin result, the adjusted mea-

sured value, and the difference between the two. Likewise,

Table 10 shows results for retired stores.

The results show large divergences which are still under

investigation. A first glance might indicate that there are

roughly 5 extra instructions for every malloc(). In ad-

dition slight difference in the alignment of the stack cause

the glibc strlen() and other string instructions to follow

different paths and accumulate extra instruction counts.

4 Related Work

While many studies use hardware performance counters,

there has been little research into the accuracy of the counts.

Our work is unique in looking at a wide range of architec-

tures and a wide variety of modern 64-bit machines, as well

as determining correctness based on code inspection rather

than using a simulator.

Zaparanuks et al. [27] investigate the accuracy of the

cycle count on various x86 processors and Mytkowicz et

al. [17] investigate sources of non-determinism in run-time.

Neither of these metrics are defined by the ISA to be deter-

ministic so it is expected that they vary.

Korn, Teller, and Castillo [13] validate perfor-

mance counters of the MIPS R12000 processor via

microbenchmarks, reporting up to 25% error with

instructions decoded when comparing against a

hardware simulator. Black et al. [6] investigate the num-

ber of retired instructions and cycles on the PowerPC 604

platform, comparing their results against a cycle-accurate

simulator. Cycle-accurate simulators have their own inher-

ent error, so unless that is known exactly it limits what can

be learned about the accuracy of the hardware counters be-

ing compared.

Our previous work [23] investigates the determinism of

the RETIRED INSTRUCTION counter on a wide range of

32-bit x86 processors using the SPEC CPU benchmarks;

while this found many sources of variation it was limited

to one event and did not fully determine the causes of non-

determinism.

Maxwell et al. [15] look at accuracy of performance

counters on a variety of architectures, reporting less than

1% error with retired instructions when using a microbench-

mark. DeRose et al. [8] look at variation and error with per-

formance counters on a Power3 system, but only for startup

and shutdown costs; they do not report total benchmark be-

havior.

Olszewski et al. [19], while attempting to create a

user-space deterministic multi-threading library, find that

RETIRED STORES is deterministic on Core2 processors.

They do not describe their methodology for how this was

determined, nor do they look at any other architectures.

Bergan et al. [5] use retired instructions while doing deter-

ministic multi-threading; they use the methodology of Dun-

lap et al. [10] which used retired branches on AMD ma-

chines but stopped early and single-stepped to avoid hard-

ware interrupt issues. All of these works need deterministic

counters to work, but they do not comment in detail on the

relative strengths of the counters they end up using.

5 Conclusions and Future Work

Most potentially deterministic events on x86 64 are af-

fected by the hardware interrupt count. This severely lim-

its the usefulness of events in situations where exact deter-

ministic behavior is necessary. We were able to compen-

sate for the counts after the fact, but this is complicated and

not possible in certain situations. The only widely-available

non-floating point deterministic event found on any of the

x86 64 systems investigated was RETIRED STORES on

the Core2.

Our investigation of non-x86 architectures shows that

deterministic events are possible and that the hardware in-

terrupt count issue is a limitation particular to x86 systems.

Ideally the various chip vendors can improve the handling

of deterministic events in future processor revisions.

We have started to apply our methodology to larger

benchmarks; so far the results are inconclusive. Initial re-

sults seem to show that the differences in counts are due

to non-determinisms in the applications rather than further

issues with the hardware.

We hope to extend our work to the study of non-

deterministic events, such as cycle counts and cache events.

This type of event is more difficult to analyze; this initial

study of deterministic events provides confidence in the un-

derlying hardware.

Despite the fact that hardware counters are used exten-

sively for performance analysis, chip designers remain re-

luctant to make guarantees about the accuracy of the counts.

It would be advantageous to researchers and other users of

the counts if deterministic events could be made available

on x86 hardware.

Acknowledgements

We would like to thank Heechul Yun, Dan Terpstra, and

the PAPI team their valuable feedback on this paper.

10

This work was supported in part by the U.S. Depart-

ment of Energy Office of Science under contract DE-FC02-

06ER25761, by the National Science Foundation under

Grant No. 0910899, as well as Software Development for

Cyberinfrastructure (SDCI) Grant No. NSF OCI-0722072

Subcontract No. 207401.

References

[1] A. Alameldeen and D. Wood. Variability in architectural simulations

of multi-threaded commercial workloads. In Proc. 9th IEEE Sympo-

sium on High Performance Computer Architecture, 2003.

[2] AMD. AMD Family 10h Processor BIOS and Kernel Developer

Guide, 2009.

[3] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-

enforced deterministic parallelism. In Proc. 9th USENIX Symposium

on Operating System Design and Implementation, Oct. 2010.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In Proc.

USENIX Annual Technical Conference, FREENIX Track, pages 41–

46, Apr. 2005.

[5] T. Bergan, N. Hunt, L. Ceze, and S. Gribble. Deterministic process

groups in dOS. In Proc. 9th USENIX Symposium on Operating Sys-

tem Design and Implementation, Oct. 2010.

[6] B. Black, A. Huang, M. Lipasti, and J. Shen. Can trace-driven sim-

ulators accurately predict superscalar performance? In Proc. IEEE

International Conference on Computer Design, pages 478–485, Oct.

1996.

[7] D. Chen, N. Vachharajani, R. Hundt, S.-W. Liao, V. Ramasamy,

P. Yuan, W. Chen, andW. Zheng. Taming hardware event samples for

FDO compilation. In Proc. 8th IEEE/ACM International Symposium

on Code Generation and Optimization, pages 42–53, Apr. 2010.

[8] L. DeRose. The hardware performance monitor toolkit. In Proc. 7th

International Euro-Par Conference, pages 122–132, Aug. 2001.

[9] R. Desikan, D. Burger, S. Keckler, and T. Austin. Sim-alpha: a

validated, execution-driven Alpha 21264 simulator. Technical Re-

port TR-01-23, Department of Computer Sciences, The University

of Texas at Austin, 2001.

[10] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt: En-

abling intrusion analysis through virtual-machine logging and replay.

In Proc. 5th USENIX Symposium on Operating System Design and

Implementation, Dec. 2002.

[11] S. Eranian. Perfmon2: a flexible performance monitoring interface

for Linux. In Proc. 2006 Ottawa Linux Symposium, pages 269–288,

July 2006.

[12] Intel. Intel Architecture Software Developer’s Manual, Volume 3:

System Programming Guide, 2009.

[13] W. Korn, P. Teller, and G. Castillo. Just how accurate are perfor-

mance counters? In 20th IEEE International Performance, Comput-

ing, and Communication Conference, pages 303–310, Apr. 2001.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. Reddi, and K. Hazelwood. Pin: Building customized

program analysis tools with dynamic instrumentation. In Proc. ACM

SIGPLAN Conference on Programming Language Design and Im-

plementation, pages 190–200, June 2005.

[15] M. Maxwell, P. Teller, L.Salayandia, and S. Moore. Accuracy of

performance monitoring hardware. In Proc. Los Alamos Computer

Science Institute Symposium, Oct. 2002.

[16] N. McGuire, P. Okech, and G. Schiesser. Analysis of inherent ran-

domness of the Linux kernel. In Proc. 11th Real-Time Linux Work-

shop, 2009.

[17] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney. Producing

wrong data without doing anything obviously wrong! In Proc. 14th

ACM Symposium on Architectural Support for Programming Lan-

guages and Operating Systems, Mar. 2009.

[18] N. Nethercote and J. Seward. Valgrind: A framework for heavy-

weight dynamic binary instrumentation. In Proc. ACM SIGPLAN

Conference on Programming Language Design and Implementation,

pages 89–100, June 2007.

[19] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deter-

ministic multithreading in software. In Proc. 14th ACM Symposium

on Architectural Support for Programming Languages and Operat-

ing Systems, Mar. 2009.

[20] Standard Performance Evaluation Corporation. SPEC CPU bench-

mark suite. http://www.specbench.org/osg/cpu2000/, 2000.

[21] V. Weaver. Using Dynamic Binary Instrumentation to Create Faster,

Validated, Multi-core Simulations. PhD thesis, Cornell University,

May 2010.

[22] V. Weaver and S. McKee. Are cycle accurate simulations a waste of

time? In Proc. 7th Workshop on Duplicating, Deconstructing, and

Debunking, pages 40–53, June 2008.

[23] V. Weaver and S. McKee. Can hardware performance counters be

trusted? In Proc. IEEE International Symposium on Workload Char-

acterization, pages 141–150, Sept. 2008.

[24] V. Weaver and S. McKee. Using dynamic binary instrumentation to

generate multi-platform simpoints: Methodology and accuracy. In

Proc. 3rd International Conference on High Performance Embedded

Architectures and Compilers, pages 305–319, Jan. 2008.

[25] V. Weaver and S. McKee. Code density concerns for new architec-

tures. In Proc. IEEE International Conference on Computer Design,

pages 459–464, Oct. 2009.

[26] H. Yun. DPTHREAD: Deterministic multithreading library, 2010.

[27] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of perfor-

mance counter measurements. In Proc. IEEE International Sympo-

sium on Performance Analysis of Systems and Software, pages 23–

32, Apr. 2009.

11

