124

PerfMiner: Cluster-Wide Collection, Storage
and Presentation of Application Level Hardware
Performance Data

Philip J. Mucci’»®*, Daniel Ahlin?, Johan Danielsson?,
Per Ekman?, and Lars Malinowski?

! Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 Center for Parallel Computers, Royal Institute of Technology, Stockholm, Sweden

Abstract. We present PerfMiner, a system for the transparent collec-
tion, storage and presentation of thread-level hardware performance data
across an entire cluster. Every sub-process/thread spawned by the user
through the batch system is measured with near zero overhead and no di-
lation of run-time. Performance metrics are collected at the thread level
using tool built on top of the Performance Application Programming
Interface (PAPI). As the hardware counters are virtualized by the OS,
the resulting counts are largely unaffected by other kernel or user pro-
cesses. PerfMiner correlates this performance data with metadata from
the batch system and places it in a database. Through a command line
and web interface, the user can make queries to the database to report
information on everything from overall workload characterization and
system utilization to the performance of a single thread in a specific ap-
plication. This is in contrast to other monitoring systems that report
aggregate system-wide metrics sampled over a period of time. In this
paper, we describe our implementation of PerfMiner as well as present
some results from the test deployment of PerfMiner across three different
clusters at the Center for Parallel Computers at The Royal Institute of
Technology in Stockholm, Sweden.

1 Introduction

Until unlimited compute power becomes pervasive, HPC systems must be care-
fully managed in order to maximize the users’ productivity and the operating
sites’ return on investment. In most supercomputer installations, the cost of the
machines and their maintenance is passed along to the user in terms of dollars
per CPU hour. The user then either directly purchases compute time from the
site or he applies for a grant from a central authority; often the same authority
that funds the purchase and operation of the machine. This process is designed
to balance a budget, equating an hour of CPU usage with an amortized cost of

* Work by this author has been partially supported by the Department of Energy Sci-
DAC program (grant DE-FC02-01ER25490) and the Los Alamos Computer Science
Institute (contract 86192-001-04 49).

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 124-133, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

PerfMiner 125

installation, operation and maintenance of a large machine. If we consider that
the lifetime of a supercomputer or large cluster is about four years before it’s
retired, the above process appears wasteful, as it makes no attempt to optimize
the use of either financial or computational resources. Compute time from user
to user and group to group is treated equally; even though the amount of work
that can be accomplished during each CPU hour can differ by many orders of
magnitude. For example, a user with a large allocation and an inefficient code
can easily ’steal’ otherwise available resources from less well-funded users. The
allocation is not based on computational work nor efficiency, rather it’s based
on a rough estimate of the number of CPU hours required to accomplish a given
problem. Given the same budget, it is certainly possible that this user could solve
much larger problems with an optimized code. The converse does not necessarily
hold, as a user with a small budget and a large problem must strive to achieve
some degree of efficiency in order to complete his work in the allotted time. If the
allocation policy was biased towards actual computational resource requirements
AND towards the efficient use of those resources, aggregate throughput of the
system would rise and more CPU hours would be available to the community as
a whole. Consider these other cases:

Purchase of a New Computing Resource. Procurements are often run in two
different modes; either the customer submits a set of benchmarks to be op-
timized by the vendor or the vendor provides access to hardware resources on
which the customer runs the benchmarks. These benchmarks run the gamut from
microbenchmarks that measure particular machine parameters to full-blown ap-
plications. Benchmarks by their very nature, attempt to represent a very large
code base with a very small code base. If hardware performance data could be
collected for every application and correllated with data from the batch system
and other sources, specific criteria that bound application performance could be
used to guide the procurement process. For example, answers to questions like
“Do the majority of our applications demonstrate high level 2 cache hit rates and
thus are sensitive to cache size and front side bus frequency?” provide specific
information about what kind of hardware should be purchased.

Improving the Software Development Cycle. While there are many excellent open
source performance analysis tools available[TAU][SvPablo][Paradyn][Mucci], vir-
tually all of them require the user to change his environment, Makefiles or source
code. While simple for computer scientists, this process is fraught with potential
error for scientists and engineers who are focused on their field of research. One
or two failed attempts at using a performance tool is enough to permanently
deter a scientist from making further efforts to characterize the behavior of his
application. If the monitoring system could itself provide a completely trans-
parent mechanism to measure important performance characteristics and the
user could access that information quickly and easily, the process of application
performane analysis could become an integral part of the software development
process.

126 Philip J. Mucci et al.

Performance Focused System Administration. As mentioned above, by having
access to detailed performance data about all applications, system administra-
tors could systematically address applications and their users that make ineffi-
cient use of compute resources. Centers with application specialist teams could
deploy staff on the basis of low performance and high CPU hour consumption.
This type of targeted optimization effort has the potential of optimizing a sites
heavy users and reap continued benefits through successive generations of ma-
chines as the big users’ applications receive the attention they deserve.

1.1 The Design of PerfMiner

A performance collection system must be carefully designed in order to meet
the above goals. Most importantly, it must be transparent, lightweight and very
efficient. Such a system can be split up into four components:

Integration into the User’s Environment. Changes to the user’s environment
should not be required by the system.

Collection of Hardware Performance Data. The data must be collected at a
sufficiently fine granularity to allow thread-level performance analysis.
Post-processing of the Data and Storage into a Scalable Database. The data-
base must be carefully designed to support queries that may span tables
with ten’s of millions of rows.

Presentation of the Data to the User Community. The interface must be as
simple as possible, yet should facilitate rapid “drill-down” investigation from
widest granularity down to the thread level.

In order to meet the above needs, a performance collection system must be care-
fully designed. First and foremost, it must be focused on the simplicity of it’s
user interface and the speed of which it operates. As the system could be run-
ning on many clusters across a site and measure every job through the system,
the amount of data could grow quite large. The system has four basic compo-
nents: Integration into the user’s environment and/or batch system. This must
be completely transparent to the user, but yet facilitate conditional execution
of monitoring for debugging and other purposes. Collection of the job and hard-
ware performance data. This must also be completely transparent to the user
with no modifications to the user’s job. Post-processing of the data and inser-
tion into a database. The database must be carefully designed to support queries
that may span tables with ten’s of millions of rows. Furthermore, the schema
should facilitate the rapid development of reasonably complex queries in order
to accommodate the demands of its user base. Presentation of the data to the
users, system-administrators and managers. This interface must be as simple as
possible to guarantee maximum acceptance into a daily usage cycle. Complex
functionality should be hidden from the main interface yet remain accessible to
those wishing to dig deeper. The interface should facilitate rapid “drill-down”
investigation from widest granularity down to the thread level.

PerfMiner is an perfomance monitoring system that attempts to meet the above
goals. To test our initial implementation, we deployed PerfMiner for a subset of

PerfMiner 127

users for three weeks across all three of PDC’s clusters, Roxette, a cluster of 16
dual Pentium IIT nodes, Lucidor, a cluster of 90 dual Itanium 2 systems, and
Beppe, a 100 processor Pentium IV cluster that is one of the six SweGrid clusters
spread across Sweden. All systems have gigabit ethernet as an interconnect, with
the exception of Lucidor which also contains Myrinet-D cards in every node.

In the next four sections, we describe each of the components of the PerfMiner
system, working our way from the integration into the batch system to the Web
interface presented to the user. Following that, we present the results discuss the
relevance of a few queries made to the PerfMiner database. We then conclude
with a review of related work and some comments about the future of PerfMiner.

2 Integration of PerfMiner into the Easy Batch System

One of the challenges of the implementation of PerfMiner at PDC was how to
manage the integration into the batch system. PDC runs a modified version of
the Easy[FEasy] scheduler. At it’s core, Easy is a reservation system that works
by enabling the user’s shell in /etc/passwd on the compute nodes. The user is
free to login directly to any subset of the reserved nodes. There is no restriction
on using MPI as a means to access these nodes from the front end. In this
way, Easy serves the needs of PDC’s data processing community who frequently
submit ensembles of serial jobs, often written in Perl. Given this, we could not
count on mpirun as our single point of entry to the compute nodes. This left
us with only one means to guarantee the initiation of the collection process: the
installation of a shell wrapper as the user’s login shell, pdesh.sh (PDC Shell).
The reader may wonder why we didn’t choose to use a system shell startup
script. Unfortunately, the Bourne shell does not execute the system scripts in
/etc when started as a non-login shell (C-Shell does). By the installation of a
wrapper script, every process, whether started via ssh, kerberized telnet/rsh or
MPI was guaranteed to be executed in our environment. Due to the design of the
Easy scheduler, this modification was rather trivial to perform. Easy maintains
two password files, password.complete and passwd. The former contains valid
shells for all users. The latter contains valid shells only for that user who has
reserved the node. This file is constructed on the fly by Easy when the job has
come to the top of the queue.

The steps for job execution and finalization occur as follows:

First, a preamble script is initiated by Easy: (pdcsh-pre.sh)

1. Check if the cluster, charge group, user and host were enabled for use with
PAPI Monitoring. If not, bail out.

2. Verify the existence of the output directory tree.

3. In the above directory, create two files:
— BUSY, which is a zero length file that indicates that this job is running and
that monitoring is taking place.
— METADATA, which contains job information that is cross referenced with
that from PapiEx. It contains the following fields: cluster name, job ID,

128 Philip J. Mucci et al.

username, number of nodes reserved, charge group (CAC), start time and
the finish time of the job. The finish time is filled in by the postamble script
described below.

Second, Easy conditionally modifies the user’s shell in the passwd files:
(adduser.py)

1. Check if the cluster, charge group, user and host were enabled for use with
PDCSH. If not, bail out.
2. Give the user PDC shell as his login shell on all reserved nodes.

When any job is started on any node, it will run under PDC shell and all
subprocesses and threads will be monitored. (pdcsh.sh)

1. Execute a common cluster wide setup script. (for other administrative pur-
poses)

2. Determine the following:
— Whether or not we are a login shell.
— The user’s actual shell from passwd.complete.

3. If the cluster, charge group, user and host are enabled for PAPI Monitoring,
execute the PAPI monitoring script.

4. Execute the user’s actual shell appropriately. (as a login shell or not)

The PAPI monitoring script performs the following: (papimon.sh)

1. Check for the file that contains the prepared arguments to Papikx.
2. Check that these arguments are correct.

3. Verify the existence of the output directory tree.

4. Set the output environment variable to PapiEx.

5. Set up the library preload environment variables.

At this point, the user’s job runs to completion. The only processes not monitored
are those that are either statically linked or they access PAPI or the hardware
performance monitors directly. Upon completion of the job, a postamble runs on
the front end. This script does the following: (pdcsh-post.sh)

1. Check if the cluster, charge group, user and host were enabled for use with
PAPI Monitoring. If not, bail out.

2. Append the job finish time to the METADATA file.

Remove BUSY file .

4. Schedule the parsing and submission of collected data to the PerfMiner
database and remove/backup the original files.

@

3 Collecting Hardware Performance Data Transparently
with PapiEx

At the lowest level, PerfMiner can use any mechanism to collect application
performance data. However, other methods require the user to recompile his

PerfMiner 129

application or use customized batch scripts. For our setup, we wanted a system
that would be completely transparent to the user, requiring no modifications
to user’s environment, application code or run-time libraries. Existing binaries
would continue to run as they did prior to the deployment of the software. To
accomplish this, we decided to use PapiEx, a tool based on the PAPI[PAPI].
PapiEx can run unmodified dynamically linked binaries and monitor them with
PAPI. It follows all spawned subprocesses and threads and generates output for
each. In PerfMiner, the output of PapiEx is directed to a file, which is then later
parsed by a perl script upon job completion.

4 Scalable Database Design

We chose to use Postgres as the database back end for PerfMiner. The primary
reason for choosing Postgres was prior experience and its support for kerber-
ized authentication. Care has been taken to avoid the use of any nonstandard
SQL that could prevent the use of Mysql, Oracle or another SQL95 compliant
database. Access to the database has been abstracted through the use of both
Perl and PHP’s DBI interface, providing further portability. Much work has
been done to keep the PerfMiner database as robust as possible. In an early
implementation of PerfMiner, we rather hastily built a database schema around
a common set of queries we were hoping to run. We quickly realized that this
was neither general nor robust enough to support queries spanning millions of
rows. Thus a new database was designed, focusing on flexibility, extensibility
and easy of implementation of sophisticated queries. Our goal was to have as
much of the query processing be done by the database server itself instead of
the client. Thus queries processing vast quantities of data can be performed on
underpowered web servers.

4.1 Direct Measurements

There are only two truly static items of knowledge in the database. First, all
measurements have a target (or scope) that is one of cluster, job, node, process
or thread. Secondly, there is a hierarchy of these targets; a cluster contains jobs,
which contain nodes, which contain processes, which contain threads. These tar-
gets can can be regarded as one to many mappings and naturally produce keys for
addressing the collected data. For instance, a specific threads measurements are
accessed by specifying cluster, job, node, process identifier and possibly thread
identifier as the primary key. Since no assumptions of existence of any specific
measurement are made, it is not possible to minimize the tables by putting all
measurements of thread scope in the table that specifies which threads exist (un-
less you are prepared to accept null values and that the underlying database is
able to insert columns in preexisting tables). Instead, each measurement resides
in a separate table. The database also contains additional tables that describe
the scope, type and meaning of each of the collected measurements. This ensures
that no measurement is stored differently from any other. The primary advan-
tage of this approach is that it makes it possible to combine measurements and

130 Philip J. Mucci et al.

construct reports in a uniform way. In PerfMiner, this means that any change in
the data collected from PapiEx or from the batch system, results in the creation
of a table and associated metainformation. Thus, no changes need be made to
the database or to the query engine.

4.2 Derived Measurements

The measurement floating point operations per second (or FLOPS) is an ex-
ample of a derived measurement having thread scope. It combines the direct
measurement, floating point operations, with the derived measurement, dura-
tion, which in turn is derived from clockrate and total cycles. The database is
designed to store information about the derived measurements in the same way
that it stores the direct measurements. The query author does not have to know
if a derived or direct measurement is being referenced in his query.

4.3 Problems with the Current Approach

Putting the measurements in different tables can be perceived as discarding the
fact that they are collected simultaneously and belong to the same thread. When
the data is harvested, the application knows that a certain value of total cycles is
associated with a certain value of total floating point operations. The only way
to reconstruct this information is by joining the two tables, an O(n?) operation.
This can be mitigated by instructing the database to build indexes for the fields
of every metric table that serve as keys. This reduces the cost of the join to
O(nlogn) or less depending on the method used for indexing. However, adding
indexes aggravates another problem caused by the nature of the measurements.
Since the target of most measurements is threads, and the key for addressing a
certain thread is made up of cluster, job, node, process, thread (of which three
are TEXT-fields), the key component will strongly dominate the storage demand
for most tables. A solution to this is to create synthetic keys for tables where
this is a problem.

5 The PerfMiner User Interface

For the current implementation of PerfMiner, the front end runs on an Apache
web server with PHP and JpGraph[JpGraph] installed. JpGraph is an open
source graphing library built upon PHP and the GDGD library. The user is
presented with a simple interface through which he can construct queries to
be visualized. The resulting graph is dynamically generated with JpGraph along
with a corresponding image map, such that the user can click on a corresponding
portion to “drill-down” to more interesting data. As developers, we are presented
with the canonical problem of balancing functionality with interface complexity.
For our initial implementation, we chose a small subset of the available data as
targets of our queries. We chose to present a query interface that specified the
logical-AND of any four items present in the job’s METADATA file: four on which

PerfMiner 131

to scope the queries and one choice by which to group Cluster, Charge Group,
User and Job ID. Each column is updated from the selections to it’s left. Should
the user choose a combination that results in the availability of a single job ID,
an additional dialog is presented with the names of all the processes in that job.

6 Evaluation

PerfMiner aims to meet the needs of three different user bases (users, system
administrators and managers), through a common information collection infras-
tructure. For the user community, we provide a simple way of providing perfor-
mance information about recently submitted jobs without any changes to the
user’s application or environment. This information can contain the efficiency
of various components, the overall processing time of each component or more
details hardware performance metrics. The ultimate goal is to not only provide
performance information but to provide information as to why the components
of that job are performing a certain way. In Figure 1, we have used PerfMiner to
plot instructions per cycle (IPC) against the executable name. This particular
user has submitted a shell script to perform a run of Gamess, an ab-initio quan-
tum chemistry package. Here we find that Gamess was the fifth most inefficient
executable. This data was taken from our Xeon cluster.

11

09 F—

07 — —

06 — —

05 — — — —

04 — — —— —

03+ e e — —

Instructions Per Cycle

0.2 — — — — —

01+ — — 1

0 T T T T T T T
bash uname Klist afslog gamess cat perl grep gunzip sed Is gzip tar sendmail

Process

Fig. 1. PerfMiner Graph of Instructions Per Cycle of a Serial Job

For the administrator and support staff community, we may not be so interested
in per-process performance, but rather the throughput of the system as a whole.
In Figure 2, we have asked the system to plot the average level 1 data cache
hit rate of all jobs and sort the results by user. We find that the user who
has consumed the most compute cycles has the second lowest miss rate of all
jobs. This kind of query is extremely powerful when aiming to maximize the
throughput of a particular system. It’s not hard to envision a scenario where
application specialists approach a user and offer help on code optimizaton.

Lastly, PerfMiner’s goal is to be able to facilitate a good understanding of ex-
actly how the systems are being used by the various user communities. By doing
so, they can plan appropriately for future procurements. The central idea here

132 Philip J. Mucci et al.

0.18
0.17
0.16
0.15
0.14 —
0.13
012 7
0.11

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

p— Total Cycles Per User

Level 1 Data Cache Miss Rate

T T
jennie peterbr ulfa smeds elenius f97-mal lama liuyq

User

Fig. 2. PerfMiner Graphs of Level 1 Data Cache Miss Rates and Total Cycle Con-
sumption by User

being that they can focus their procurements on having the type of hardware ap-
propriate for the problems being solved. Should the user workload demonstrate
high cache hit-rates and counts of floating point instructions, perhaps a system
with a similar size cache but a higher core clock frequency and deeper floating
point pipeline would be an appropriate upgrade. Should the workload demon-
strate low processor utilization and low TLB-miss rates, perhaps an upgrade of
the I/O subsystem would be more appropriate than a processor upgrade. The
key here is to remove the guesswork involved in the procurement process. Instead
of focusing next generation purchases on either artificial benchmark suites or a
select group of applications, the procurement could be based on exactly what
the user community has demonstrated a need for.

7 Related Work

PerfMiner is most closely related to (and inspired by) the pioneering work done
by Rick Kufrin et al at the National Center for Supercomputing Applications
[Kufrinl]. In that work, a locally developed PAPI based tool PerfSuite[PerfSuite]
is used to collect information on jobs in the batch system. The primary dif-
ferences between our work are the collection mechanism, the design of the
database and the user interface. There are numerous systems in existence that
do cluster-wide performance monitoring. Many of them like Ganglia|Ganglial,
SuperMon[SuperMon|, CluMon[CluMon], NWPerf[NWPerf] and SGI's Perfor-
mance CoPilot[PCP] are extensible frameworks capable of presenting any met-
ric. All these systems gather their metrics only on a system wide basis through
a daemon process that scrapes the /proc filesystem.

References

[SvPablo] Reed, D. A., et al. Scalable Performance Analysis: The Pablo Performance
Analysis Environment. Proc. Scalable Parallel Libraries Conf. IEEE Computer
Society. (1993) 104-113

PerfMiner 133

[Easy] Lifka, D., Henderson, M., Rayl, K.: Users guide to the argonne sp scheduling
system. Technical Report ANL/MCS-TM-201 (1995)

[Paradyn] Miller, B. et al. The Paradyn Parallel Performance Measurement Tool. IEEE
Computer 28/11 (1995) 37-46

[TAU] Mohr, B., Malony, A., Cuny, J.: TAU Tuning and Analysis Utilities for Portable
Parallel Programming. Parallel Programming using C++, M.I.T. Press. (1996)

[PAPI] Mucci, P. et al. A Scalable Cross-Platform Infrastructure for Application Per-
formance Tuning Using Hardware Counters. Proceedings of Supercomputing
2000. (2000)

[GD] Boutell.Com, Inc. GD Graphics Library. http://www.boutell.com/gd

[JpGraph] Persson, J. JpGraph - OO Graph Library for PHP.
http://www.aditus.nu/jpgraph/index.php

[PerfSuite] Kufrin, R. The PerfSuite Collection of Performance Analysis Tools.
http://perfsuite.ncsa.uiuc.edu

[Ganglia] The Ganglia Scalable Distributed Monitoring System.
http://ganglia.sourceforge.net

[PCP] Performance Co-Pilot http://oss.sgi.com/projects/pcp

[SuperMon]| SuperMon High Performance Cluster Monitoring.
http://supermon.sourceforge.net

[CluMon] Fullop, J. CluMon Cluster Monitoring System.
http://clumon.ncsa.uiuc.edu

[NWPerf] Mooney, R. et al. NWPerf: A System Wide Performance Monitoring Tool
Poster Session 31, Supercomputing 2004, Pittsburg, PA.

[Petrini] Petrini, F. et al. The Case of the Missing Supercomputer Perfor-
mance:Achieving Optimal Performance on the 8,192 Processors of ASCI Q Pro-
ceedings of Supercomputing 2003. (2003)

[Mucci] Mucci, P. et al. Application Performance Analysis Tools for Linux Clusters.
Linux Clusters: The HPC Revolution 2004, Austin, TX. (2004)

[Kufrinl] Kufrin, R. et al. Automating the Large-Scale Collection and Analysis of
Performance Data on Linux Clusters Linux Clusters: The HPC Revolution 2004,
Austin, TX. (2004)

[Kufrin2] Kufrin, R. et al. Performance Monitoring/Analysis of Overall Job Mix on
Large—Scale Pentium and Itanium Linux Clusters SIAM Parallel Processing,
San Francisco, CA. (2004)

[Monitor] Mucci, P., Tallent, N. Monitor - user callbacks for library, process and thread
initialization/creation/destruction. http://www.cs.utk.edu/~mucci/monitor

