
A Comparison of Counting and Sampling Modesof Using Performan
e Monitoring HardwareShirley V. MooreInnovative Computing Laboratory, University of TennesseeKnoxville, TN 37996-3450 USAshirley�
s.utk.eduUniversity of Tennessee Computer S
ien
e DepartmentTe
hni
al Report UT-CS-02-478Abstra
t. Performan
e monitoring hardware is available on most mod-ern mi
ropro
essors in the form of hardware 
ounters and other registersthat re
ord data about pro
essor events. This hardware may be usedin 
ounting mode, in whi
h aggregate events 
ounts are a

umulated,and/or in sampling mode, in whi
h time-based or event-based samplingis used to 
olle
t pro�ling data. This paper dis
usses uses of these twomodes and 
onsiders the issues of eÆ
ien
y and a

ura
y raised by ea
h.Impli
ations for the PAPI 
ross-platform hardware 
ounter interfa
e arealso dis
ussed.1 Introdu
tionMost modern mi
ropro
essors provide hardware support for 
olle
ting perfor-man
e data [2℄. Performan
e monitoring hardware usually 
onsists of a set ofregisters that re
ord data about the pro
essor's fun
tion. These registers rangefrom simple event 
ounters to more sophisti
ated hardware for re
ording datasu
h as data and instru
tion addresses for an event, and pipeline or memorylaten
ies for an instru
tion. The performan
e monitoring registers are usuallya

ompanied by a set of 
ontrol registers that allow the user to 
on�gure and
ontrol the performan
e monitoring hardware. Many platforms provide hard-ware and operating system support for delivering an interrupt to performan
emonitoring software when a 
ounter over
ows a spe
i�ed threshold.Hardware performan
e monitors are used in one of two modes: 1) 
ountingmode to 
olle
t aggregate 
ounts of event o

urren
es, or 2) statisti
al samplingmode to 
olle
t pro�ling data based on 
ounter over
ows. Both modes have theiruses in performan
e modeling, analysis, and tuning, and in feedba
k-dire
ted
ompiler optimization. In some 
ases, one mode is required or preferred overthe other. Platforms vary in their hardware and operating system support forthe two modes. Some platforms, su
h as IBM AIX Power3, primarily support
ounting mode. Some, su
h as the Compaq Alpha, primarily support pro�lingmode. Others, su
h as the IA-64, support both modes about equally well. Eithermode may be derived from the other. For example, even on platforms that donot support hardware interrupt on 
ounter over
ow, timer interrupts 
an be



used to periodi
ally 
he
k for 
ounter over
ow and thereby implement statisti
alsampling in software. Or, if the platform primarily supports statisti
al pro�ling,event 
ounts 
an be estimated by aggregating pro�ling data. However, the degreeof platform support for a parti
ular mode 
an greatly a�e
t the a

ura
y of thatmode.Although aggregate event 
ounts are sometimes referred to as \exa
t 
ounts",and pro�ling is statisti
al in nature, sour
es of error exist for both modes. As inany physi
al system, the a
t of measuring perturbs the phenomenon being mea-sured. The 
ounter interfa
es ne
essarily introdu
e overhead in the form of extrainstru
tions, in
luding system 
alls, and the interfa
es 
ause 
a
he pollution that
an 
hange the 
a
he and memory behavior of the monitored appli
ation. The
ost of pro
essing 
ounter over
ow interrupts 
an be a signi�
ant sour
e of over-head in sampling-based pro�ling. Furthermore, a la
k of hardware support forpre
isely identifying an event's address may result in in
orre
t attribution ofevents to instru
tions on modern super-s
alar, out-of-order pro
essors, therebymaking pro�ling data ina

urate.Be
ause of the wide range of performan
e monitoring hardware available ondi�erent pro
essors and the di�erent platform-dependent interfa
es for a

essingthis hardware, the PAPI proje
t was started with the goal of providing a stan-dard 
ross-platform interfa
e for a

essing hardware performan
e 
ounters [1℄.For a related proje
t, see [10℄. PAPI proposes a standard set of library routinesfor a

essing the 
ounters as well as a standard set of events to be measured. Thelibrary interfa
e 
onsists of a high-level and a low-level interfa
e. The high-levelinterfa
e provides a simple set of routines for starting, reading, and stopping the
ounters for a spe
i�ed list of events. The low-level interfa
e allows the user tomanage events in EventSets and provides the more sophisti
ated fun
tionalityof user 
allba
ks on 
ounter over
ow and SVR4-
ompatible statisti
al pro�ling.Referen
e implementations of PAPI are available for a number of platforms (e.g.,Cray T3E, SGI IRIX, IBM AIX Power, Sun Ultraspar
 Solaris, Linux/x86, andLinux/IA-64). The implementation for a given platform attempts to map asmany of the standard PAPI events as possible to the available platform-spe
i�
events. The implementation also attempts to use available hardware and op-erating system support { e.g., for 
ounter multiplexing, interrupt on 
ounterover
ow, and statisti
al pro�ling.Through intera
tion with the high performan
e 
omputing 
ommunity, thePAPI developers have 
hosen a set of hardware events deemed relevant and use-ful in tuning appli
ation performan
e. Be
ause modern mi
ropro
essors havemultiple levels in the memory hierar
hy, optimizations that improve memoryutilization 
an have major e�e
ts on performan
e. PAPI provides a large num-ber of events having to do with the memory hierar
hy { e.g., 
a
he misses fordi�erent levels of the memory hierar
hy, and TLB (translation lookaside bu�er)misses. PAPI metri
s in
lude 
ounts of the various types of instru
tions 
om-pleted, in
luding integer, 
oating point, load, and store instru
tions. Also in-
luded are events for measuring how heavily di�erent fun
tional units are beingused, and for dete
ting when and why pipeline stalls are o

urring. The appli-




ation programmer may be able to use pipeline performan
e data, together with
ompiler output �les, to restru
ture appli
ation 
ode so as to allow the 
ompilerto do a better job of software pipelining. Another useful measure is the numberof mispredi
ted bran
hes. A high number for this event indi
ates that some-thing is wrong with the 
ompiler options or that something is unusual aboutthe algorithm. See [1℄ for a more detailed dis
ussion of uses of PAPI metri
s forappli
ation performan
e tuning.The remainder of the paper is organized as follows: Se
tion 2 dis
usses usagemodels of hardware performan
e monitoring. Se
tion 3 dis
usses a

ura
y issues.Se
tion 4 explores impli
ations for the PAPI interfa
e. Se
tion 5 gives 
on
lusionsand des
ribes plans for future work.2 Usage ModelsThere are basi
ally two models of using performan
e monitoring hardware:{ the 
ounting model, for obtaining aggregate 
ounts of o

urren
es of spe
i�
events, and{ the sampling model, for determining the frequen
ies of event o

urren
es pro-du
ed by program lo
ations at the fun
tion, basi
 blo
k, and/or instru
tionlevels.The �rst step in performan
e analysis is to measure the aggregate perfor-man
e 
hara
teristi
s of the appli
ation or system under study [8, 13℄. Aggregateevent 
ounts are determined by reading hardware event 
ounters before and af-ter the workload is run. Events of interest in
lude 
y
le and instru
tion 
ounts,
a
he and memory a

ess at di�erent levels of the memory hierar
hy, bran
hmispredi
tions, and 
a
he 
oheren
e events. Event rates, su
h as 
ompleted in-stru
tions per 
y
le, 
a
he miss rates, and bran
h mispredi
tions rates, 
an be
al
ulated by dividing 
ounts by the elapsed time.The pro�ling model 
an be used by appli
ation developers, optimizing 
ompil-ers and linkers, and run-time systems to relate performan
e problems to programlo
ations. With adequate support for symboli
 program information, appli
ationdevelopers 
an use pro�ling data to identify performan
e bottlene
ks in terms ofthe original sour
e 
ode. Appli
ation performan
e analysis tools 
an use pro�lingdata to identify performan
e 
riti
al fun
tions and basi
 blo
ks. Compilers 
anuse pro�ling data in a feedba
k loop to optimize instru
tion s
hedules.For example, on the SGI Origin the perfex and ssrun utilities are availablefor analyzing appli
ation performan
e [13℄. perfex 
an be used to run a programand report either "exa
t" 
ounts of any two sele
ted events for the R10000 (orR12000) hardware event 
ounters, or to time-multiplex all 32 
ountable eventsand report extrapolated totals. This data is useful for identifying what perfor-man
e problems exist (e.g., poor 
a
he behavior identi�ed by large number of
a
he misses). ssrun 
an be used to run the program in sampling mode in orderto lo
ate where in the program the performan
e problems are o

urring.



Tools su
h as vprof [15℄ and HPCView [7℄ make use of pro�ling data providedby sampling mode to analyze appli
ation performan
e. vprof provides routinesto 
olle
t statisti
al pro�ling information, using either time-based or 
ounter-based sampling (using PAPI), as well as both 
ommand-line and graphi
al toolsfor analyzing exe
ution pro�les on Linux/Intel ma
hines. HPCView uses datagathered using ssrun on SGI R10K/R12K systems, or uprofile on CompaqAlpha Tru64 Unix systems, followed by \prof -lines", and 
orrelates this datawith program sour
e 
ode in a browsable display.Aggregate 
ounts are frequently used in performan
e modeling to parame-terize the models. For examples, the methodology des
ribed in [14℄ generates{ a ma
hine signature whi
h is a 
hara
terization of the rate at whi
h a ma-
hine 
arries out fundamental operations independent of any parti
ular ap-pli
ation, and{ an appli
ation pro�le whi
h is a detailed summary of the fundamental oper-ations 
arried out by the appli
ation independent of any parti
ular ma
hine.The method applies an algebrai
 mapping of an appli
ation pro�le onto a ma-
hine signature to arrive at a performan
e predi
tion. A ben
hmark 
alled MAPS(Memory A

ess Pattern Signature) measures the rate at whi
h a single pro
es-sor 
an sustain rates of loads and stores depending on the size of the problem andthe a

ess pattern. Hardware performan
e 
ounters are used to measure 
a
hehit rates of routines and loops in an appli
ation whi
h are then mapped onto theMAPS 
urve. Similarly, the \ba
k-of-the-envelope" performan
e predi
tion tooldes
ribed in [12℄ makes use of aggregate event 
ounts to 
onstru
t hardware andsoftware pro�les. A given hardware and software pro�le pair are then 
ombinedin algebrai
 equations to produ
e performan
e predi
tions.3 A

ura
y IssuesPrevious work has shown that hardware 
ounter data may not be a

urate,espe
ially when the granularity of the measured 
ode is insuÆ
ient to ensurethat the overhead introdu
ed by 
ounter interfa
es does not dominate the event
ounts [9℄. The analysis in [9℄ made use of three mi
roben
hmarks to study eightMIPS R12000 events. For ea
h of the mi
roben
hmarks, predi
ted events 
ountswere 
ompared with the measured 
ounts for both the perfex and libperfexinterfa
es. For the loop ben
hmark, the 
ounts measured using libperfex werewithin 5 per
ent of the predi
ted 
ounts for four events when the number of loopiterations was at least 250. However, to get the 
ounts generated using perfexwithin 5 per
ent of the predi
ted 
ounts, the number of loop iterations had to beat least 100,000. To relate this work to the PAPI interfa
e on various platforms,we measured the overheads for starting/stopping and for reading the 
ountersin terms of pro
essor 
y
les. These results, as well as overheads we measured forlibperfex, are shown in the table below.Sin
e the 
on
lusion in [9℄ is that, given the overhead of the 
ounter interfa
eon a platform, the a

ura
y of 
ounter data depends heavily on the granularity



Linux/x86 Linux/IA-64 Cray T3E IBM Power3 MIPS R12KPAPI start/stop 3524 22115 3325 14199 24850(
y
les/
all pr)PAPI read 1299 6526 1514 3126 9810(
y
les/
all)libperfex start/read 5842(
y
les/
all pr)of the measured 
ode, we would expe
t the number of iterations required to getwithin 5 per
ent error using PAPI to be 
lose to the 250 required for libperfex onthe SGI MIPS R12K, with the ex
eption of the PAPI SGI MIPS R12K interfa
e,whi
h appears to be less eÆ
ient that libperfex.Many pro�ling tools rely on gathering samples of the program 
ounter value(PC) on a periodi
 
ounter over
ow interrupt. Ideally, this method should pro-du
e a PC sample histogram where the value for ea
h instru
tion address isproportional to the total number of events 
aused by that instru
tion. On mod-ern out-of-order pro
essors, however, it is often diÆ
ult or impossible to identifythe exa
t instru
tion that 
aused the event.The Compaq Pro�leMe approa
h addresses the problem of a

urately at-tributing events to instru
tions by sampling instru
tions rather than events[5,6℄. An instru
tion is 
hosen to be pro�led whenever the instru
tion 
ounterover
ows a spe
i�ed random threshold. As a pro�led instru
tion exe
utes, infor-mation is re
orded in
luding the instru
tion's PC, the number of 
y
les spent inea
h pipeline stage, whether the instru
tion 
aused I-
a
he or D-
a
he misses,the e�e
tive address of a memory operand or bran
h target, and whether theinstru
tion 
ompleted or if not, why it aborted. By aggregating samples from re-peated exe
utions of the same instru
tion, various metri
s 
an be estimated forea
h instru
tion. Information about individual instru
tions 
an be aggregatedto summarize the behavior of larger units of 
ode. The Pro�leMe hardware alsosupports paired sampling, whi
h permits the sampling of multiple instru
tionsthat may be in 
ight 
on
urrently and provides information for analyzing inter-a
tions between instru
tions.To pre
isely identify an event's address, the Itanium pro
essor provides a setof event address registers (EARs) that re
ord the instru
tion and data addressesof data 
a
he misses for loads, or the instru
tion and data addresses of data TLBmisses [8℄. To use EARs for statisti
al sampling, one 
on�gures a performan
e
ounter to 
ount an event su
h as data 
a
he misses or retired instru
tions andspe
i�es an over
ow threshold. The data 
a
he EAR repeatedly 
aptures theinstru
tion and data address of a
tual data 
a
he load misses. When the 
ounterover
ows, an interrupt is delivered to the monitoring software. The EAR in-di
ates whether or not a quali�ed event was 
aptured, and if so, the observedevent addresses are 
olle
ted by the software whi
h then rewrites the perfor-man
e 
ounter with a new over
ow threshold. The dete
tion of data 
a
he loadmisses requires a load instru
tion to be tra
ked during multiple 
lo
k 
y
les frominstru
tion issue to 
a
he miss o

urren
e. Sin
e multiple loads may be in 
ight



simultaneously and the data 
a
he miss EAR 
an only tra
e a single load at atime, the me
hanism will not always 
apture all data 
a
he misses. The pro
es-sor randomizes the 
hoi
e of whi
h load instru
tions are tra
ked to prevent thesame data 
a
he load miss in a regular sequen
e from always being 
aptured,and the a

ura
y is 
onsidered to be suÆ
ient for statisti
al sampling.Sampling by de�nition introdu
es statisti
al error. Samples for individual in-stru
tions are used to estimate instru
tion-level event frequen
ies by multiplyingthe number of sampled event o

urren
es by the inverse of the sampling rate.For example, assume an average sampling rate of one sample every S fet
hedinstru
tions. Let k be the number of samples having a property P. The a
tualnumber of fet
hed instru
tions with property P may be estimated as kS. Let Nbe the total number of instru
tions, and let f be the fra
tion of those havingproperty P. Then the expe
ted value of kS is fN, and kS will 
onverge to fNas the number of samples in
reases. However, the rate of 
onvergen
e may varydepending on the frequen
y of property P and the 
oeÆ
ient of variation ofkS. Infrequent events or long sampling intervals will require longer runs to getenough samples for a

urate estimates.4 Impli
ations for PAPIThe PAPI 
ross-platform interfa
e to hardware performan
e 
ounters supportsboth 
ounting and sampling modes. For 
ounting mode, routines are providedin both the high-level and low-level interfa
es for starting, stopping, and read-ing the 
ounters. For sampling mode, routines are provided in the low-levelinterfa
e for setting up an interrupt handler for 
ounter over
ow and for gen-erating SVR4-
ompatible pro�ling data with sampling based on any 
ounterevent. Beneath the platform-independent high-level and low-level interfa
es liesa platform-dependent substrate that implements platform-dependent a

ess tothe 
ounters. To port PAPI to a new platform, only the substrate needs to be re-implemented. Sin
e platform dependen
ies are isolated in the substrate, 
hangesin the implementation at this level do not a�e
t the platform-independent in-terfa
es, other than making the operations more eÆ
ient or providing platform-independent features that had not previously been available on that platform.The PAPI substrate implementations attempt to use the most eÆ
ient anda

urate fa
ilities available for native a

ess to the 
ounters. Furthermore, PAPIattempts to use hardware support for 
ounter over
ow interrupts and pro�lingwhere available. Where hardware and operating system support for 
ounter over-
ow interrupts and pro�ling is not available, PAPI implements these features insoftware on top of hardware support for 
ounting mode. However, the 
onversehas not been attempted { i.e., on platforms su
h as the Compaq Alpha Tru64that primarily supports sampling mode, PAPI does not 
urrently implement
ounting mode in software on top of sampling mode. Although su
h an imple-mentation is theoreti
ally possible, it raises questions about the a

ura
y of theresulting event 
ounts sin
e they would be estimated from instru
tion samplesrather than ea
h event being 
ounted by the hardware.



Although the PAPI interfa
e supports pro�ling based on PC sampling (or,where available, on hardware support for identifying the instru
tion address foran event), it does not provide a

ess to other information that may be avail-able for the instru
tion that 
aused an event, su
h as data operand addressesor laten
y information. Nor does PAPI support quali�
ation by op
ode or byinstru
tion or data addresses in either 
ounting or sampling modes, althoughsu
h quali�
ation is available on some platforms su
h as the IA-64. For exam-ple, the Itanium pro
essor provides a way to determine the address asso
iatedwith a 
a
he miss. It also provides a way to limit 
a
he miss 
ounting to missesasso
iated with a user-determined area of memory. These fa
ilities 
ould enablepresentation of data about 
a
he behavior in terms of program data stru
turesat the sour
e 
ode level. Work reported in [3℄ has shown that su
h information
an be extremely useful in identifying performan
e bottlene
ks 
aused by bad
a
he behavior. In [3℄, the data were obtained through use of a 
a
he simulatorwhi
h runs 
onsiderably slower than the original appli
ation (e.g., by a 
ouple oforders of magnitude) and does not model details su
h as pipelining and multipleinstru
tion issue. Through use of appropriate hardware support (e.g., as on theItanium), similar data 
ould be obtained more a

urately and eÆ
iently.Although the PAPI library itself does not have any fun
tionality for estimat-ing or 
ompensating for errors, some utility programs have been provided withthe PAPI distribution that make some initial attempts. The 
ost utility mea-sures the overheads in both the number of additional instru
tions and the num-ber of ma
hine 
y
les to exe
uting the PAPI start/PAPI stop 
all pair and thePAPI read 
all. The 
alibrate utility runs a ben
hmark for whi
h the numberof 
oating point operations is known and reports the output of the PAPI flops
all 
ompared with the known number. Error measurement and 
ompensationmay be most appropriately implemented at the tool layer rather than at thelibrary layer. However, the PAPI library may be able to provide me
hanisms toenable tools to 
olle
t the ne
essary data.5 Con
lusions and Future WorkIt is 
lear that both 
ounting and sampling modes of using hardware perfor-man
e monitors have their uses and that both should be supported on as manyplatforms as possible. However, more work is needed to determine whi
h featuresare most desirable to support in a 
ross-platform interfa
e and to study a

ura
yissues related to both models.Be
ause PAPI presents a portable interfa
e to hardware 
ounters, PAPI isa good vehi
le for exploring usability and a

ura
y issues. PAPI is a proje
t ofthe Parallel Tools Consortium [11℄, whi
h provides a forum for dis
ussion andstandardization of fun
tionality that may be added in the future. Be
ause of la
kof experien
e with newly available features su
h as event quali�
ation and dataaddress re
ording, it seems desirable to experiment with these features beforeattempting to standardize interfa
es to them. The low-level PAPI interfa
e hasa routine (PAPI add pevent) for implementing programmable events by passing



a pointer to a 
ontrol blo
k to the underlying PAPI substrate for that platform.The routine 
ould be used, for example, to set up event quali�
ation on theItanium. A 
orresponding low-level routine (PAPI read pevent) has been addedto the developmental version of PAPI to allow arbitrary information to be 
ol-le
ted. We plan to use programmable events to experiment with new hardwareperforman
e monitoring features that are be
oming available, with the goal oflater proposing standard interfa
es to the most useful features. The PAPI profil
all simply generates PC histogram data of where in the program over
ows ofa spe
i�ed hardware 
ounter o

ur. We plan to implement a modi�ed versionof this routine that will take a 
ontrol blo
k as an additional input and allowreturn of arbitrary information, so as to enable 
olle
tion of additional infor-mation about the sampled instru
tion (e.g., data addresses, pipeline or memorya

ess laten
ies). The goal will again be future standardization of the most usefulpro�ling features.Through the use of mi
roben
hmarks as in [9℄, we plan to evaluate the a

u-ra
y of 
ounter values obtained by the PAPI interfa
e on all supported platforms.Where possible, we will provide 
alibration utilities that attempt to 
ompensatefor measurement errors. We also plan to do statisti
al studies of the a

ura
yand 
onvergen
e rates of pro�ling data on di�erent platforms, and to investigatethe feasibility and a

ura
y of implementing 
ounting mode in software on topof hardware-supported pro�ling mode.For the PAPI software and supporting do
umentation, as well as pointersto referen
e materials and mailing lists for dis
ussion of issues des
ribed in thispaper, see the PAPI web site at http://i
l.
s.utk.edu/papi/.Referen
es1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mu

i, P.: A Portable ProgrammingInterfa
e for Performan
e Evaluation on Modern Pro
essors. International Journalof High Performan
e Computing Appli
ations 14:3 (Fall 2000) 189{204.2. Browne, S., Dongarra, J., Garner, N. London, K., Mu

i, P.: A S
alable Cross-Platform Infrastru
ture for Appli
ation Performan
e Optimization Using Hard-ware Counters. SC'2000. Dallas, Texas. November,2000.3. Bu
k, B., Hollingsworth, J.K.: Using Hardware Performan
e Monitors to IsolateMemory Bottlene
ks. SC'2000. Dallas, Texas. November, 2000.4. Burger, D., Austin, T. M.: The SimpleS
alar Tool Set, Version 2.0. University ofWis
onsin-Madison Computer S
ien
es Department Te
hni
al Report 1942. June,1997. http://www.
s.wis
.edu/~ms
alar/simples
alar.html5. Dean, J., Hi
ks, J., Waldspurger, C. A., Weihl, W. E., Chrysos, G.: Pro�leMe:Hardware Support for Instru
tion-Level Pro�ling on Out-of-Order Pro
essors. 30thSymposium on Mi
roar
hite
ture (Mi
ro-30). De
ember, 1997.6. Dean, J., Waldspurger, C. A., Weihl, W. E.: Transparent, Low-Overhead Pro�lingon Modern Pro
essors. Workshop on Pro�le and Feedba
k-Dire
ted Compilation.Paris, Fran
e. O
tober, 1998.7. HPCView: http://www.
s.ri
e.edu/~dsystem/hp
view/8. Intel IA-64 Ar
hite
ture Software Developer's Manual, Volume 4: Itanium Pro
es-sor Programmer's Guide. Intel, July 2000. http://developer.intel.
om/



9. Korn, W., Teller, P., Castillo, G.: Just how a

urate are performan
e 
ounters? 20thIEEE International Performan
e, Computing, and Communi
ations Conferen
e.Phoenix, Arizona. April, 2001.10. PCL - the Performan
e Counter Library: http://www.kfa-jueli
h.de/zam/PCL/11. Parallel Tools Consortium: http://www.ptools.org/12. Pressel, D.: Envelope: A New Approa
h to Performan
e Predi
tion. Departmentof Defense HPC Users Group Conferen
e. Biloxi, Mississippi. June, 2001.13. Origin 2000 and Onyx2 Performan
e Tuning and Optimization Guide. SGI Do
u-ment number 007-3430-003. July, 2001. http://te
hpubs.sgi.
om/14. Snavely, A., Wolter, N., Carrington, L.: Modeling Appli
ation Performan
e by Con-volving Ma
hine Signatures with Appli
ation Pro�les. IEEE 4th Annual Workshopon Workload Chara
terization. Austin, Texas. De
ember, 2001.15. The Visual Pro�ler: http://aros.
a.sandia.gov/~
ljanss/perf/vprof/


