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1 INTRODUCTION

This document describes the theoretical basis and implementation of the 

processing algorithms and data parameters for Level 3 land and vegetation heights 

for the non-polar regions of the Earth. The ATL08 product contains heights for both 

terrain and canopy in the along-track direction as well as other descriptive 

parameters derived from the measurements. At the most basic level, a derived 

surface height from the ATLAS instrument at a given time is provided relative to the 

WGS-84 ellipsoid. Height estimates from ATL08 can be compared with other 

geodetic data and used as input to higher-level ICESat-2 products, namely ATL13 

and ATL18. ATL13 will provide estimates of inland water-related heights and 

associated descriptive parameters.  ATL18 will consist of gridded maps for terrain 

and canopy features.

The ATL08 product will provide estimates of terrain heights, canopy heights, 

and canopy cover at fine spatial scales in the along-track direction. Along-track is 

defined as the direction of travel of the ICESat-2 satellite in the velocity vector. 

Parameters for the terrain and canopy will be provided at a fixed step-size of 100 m 

along the ground track referred to as a segment. A fixed segment size of 100 m was 

chosen to provide continuity of data parameters on the ATL08 data product. From 

an analysis perspective, it is difficult and cumbersome to attempt to relate canopy 

cover over variable lengths. Furthermore, a segment size of 100 m will facilitate a 

simpler combination of along-track data to create the gridded products. 

We anticipate that the signal returned from the weak beam will be 

sufficiently weak and may prohibit the determination of both a terrain and canopy 

segment height, particularly over areas of dense vegetation. However, in more arid 

regions we anticipate producing a terrain height for both the weak and strong 

beams. 

In this document, section 1 provides a background of lidar in the ecosystem 

community as well as describing photon counting systems and how they differ from 

discrete return lidar systems. Section 2 provides an overview of the Land and 
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Vegetation parameters and how they are defined on the data product. Section 3 

describes the basic methodology that will be used to derive the parameters for 

ATL08. Section 4 describes the processing steps, input data, and procedure to derive 

the data parameters. Section 5 will describe the test data and specific tests that 

NASA’s implementation of the algorithm should pass in order to determine a 

successful implementation of the algorithm.

1.1. Background

The Earth’s land surface is a complex mosaic of geomorphic units and land 

cover types resulting in large variations in terrain height, slope, roughness, 

vegetation height and reflectance, often with the variations occurring over very 

small spatial scales.  Documentation of these landscape properties is a first step in 

understanding the interplay between the formative processes and response to 

changing conditions. Characterization of the landscape is also necessary to establish 

boundary conditions for models which are sensitive to these properties, such as 

predictive models of atmospheric change that depend on land-atmosphere 

interactions. Topography, or land surface height, is an important component for 

many height applications, both to the scientific and commercial sectors. The most 

accurate global terrain product was produced by the Shuttle Radar Topography 

Mission (SRTM) launched in 2000; however, elevation data are limited to non-polar 

regions. The accuracy of SRTM derived elevations range from 5 – 10 m, depending 

upon the amount of topography and vegetation cover over a particular area. ICESat-

2 will provide a global distribution of geodetic measurements (of both the terrain 

surface and relative canopy heights) which will provide a significant benefit to 

society through a variety of applications including sea level change monitoring, 

forest structural mapping and biomass estimation, and improved global digital 

terrain models. 

In addition to producing a global terrain product, monitoring the amount and 

distribution of above ground vegetation and carbon pools enables improved 
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characterization of the global carbon budget. Forests play a significant role in the 

terrestrial carbon cycle as carbon pools. Events, such as management activities 

(Krankina et al. 2012) and disturbances can release carbon stored in forest above 

ground biomass (AGB) into the atmosphere as carbon dioxide, a greenhouse gas that 

contributes to climate change (Ahmed et al. 2013). While carbon stocks in nations 

with continuous national forest inventories (NFIs) are known, complications with 

NFI carbon stock estimates exist, including: (1) ground-based inventory 

measurements are time consuming, expensive, and difficult to collect at large-scales 

(Houghton 2005; Ahmed et al. 2013); (2) asynchronously collected data; (3) 

extended time between repeat measurements (Houghton 2005); and (4) the lack of 

information on the spatial distribution of forest AGB, required for monitoring 

sources and sinks of carbon (Houghton 2005). Airborne lidar has been used for 

small studies to capture canopy height and in those studies canopy height variation 

for multiple forest types is measured to approximately 7 m standard deviation (Hall 

et al., 2011).

Although the spatial extent and changes to forests can be mapped with 

existing satellite remote sensing data, the lack of information on forest vertical 

structure and biomass limits the knowledge of biomass/biomass change within the 

global carbon budget. Based on the global carbon budget for 2015 (Quere et al., 

2015), the largest remaining uncertainties about the Earth’s carbon budget are in its 

terrestrial components, the global residual terrestrial carbon sink, estimated at 3.0 ± 

0.8 GtC/year for the last decade (2005-2014). Similarly, carbon emissions from 

land-use changes, including deforestation, afforestation, logging, forest degradation 

and shifting cultivation are estimated at 0.9 ± 0.5 GtC /year. By providing 

information on vegetation canopy height globally with a higher spatial resolution 

than previously afforded by other spaceborne sensors, the ICESat-2 mission can 

contribute significantly to reducing uncertainties associated with forest vegetation 

carbon. 

Although ICESat-2 is not positioned to provide global biomass estimates due 

to its profiling configuration and somewhat limited detection capabilities, it is 
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anticipated that the data products for vegetation will be complementary to ongoing 

biomass and vegetation mapping efforts. Synergistic use of ICESat-2 data with other 

space-based mapping systems is one solution for extended use of ICESat-2 data. 

Possibilities include NASA’s Global Ecosystems Dynamics Investigation (GEDI) lidar 

planned to fly onboard the International Space Station (ISS) or imaging sensors, 

such as Landsat 8, or NASA/ISRO –NISAR radar mission.

1.2 Photon Counting Lidar

Rather than using an analog, full waveform system similar to what was utilized 

on the ICESat/GLAS mission, ICESat-2 will employ a photon counting lidar. Photon 

counting lidar has been used successfully for ranging for several decades in both the 

science and defense communities. Photon counting lidar systems operate on the 

concept that a low power laser pulse is transmitted and the detectors used are 

sensitive at the single photon level. Due to this type of detector, any returned photon 

whether from the reflected signal or solar background can trigger an event within 

the detector. A discussion regarding discriminating between signal and background 

noise photons is discussed later in this document. A question of interest to the 

ecosystem community is to understand where within the canopy is the photon likely 

to be reflected. Figure 1.1 is an example of three different laser detector modalities: 

full waveform, discrete return, and photon counting. Full waveform sensors record 

the entire temporal profile of the reflected laser energy through the canopy. In 

contrast, discrete return systems have timing hardware that record the time when 

the amplitude of the reflected signal energy exceeds a certain threshold amount. A 

photon counting system, however, will record the arrival time associated with a 

single photon detection that can occur anywhere within the vertical distribution of 

the reflected signal. If a photon counting lidar system were to dwell over a surface 

for a significant number of shots (i.e. hundreds or more), the vertical distribution of 

the reflected photons will resemble a full waveform. Thus, while an individual 
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photon could be reflected from anywhere within the vertical canopy, the probability 

distribution function (PDF) of that reflected photon would be the full waveform. 

Furthermore, the probability of detecting the top of the tree is not as great as 

detecting reflective surfaces positioned deeper into the canopy where the bulk of 

leaves and branches are located. As one might imagine, the PDF will differ according 

to canopy structure and vegetation physiology. For example, the PDF of a conifer 

tree will look different than broadleaf trees.

Figure 1.1. Various modalities of lidar detection. Adapted from Harding, 2009.

A cautionary note, the photon counting PDF that is illustrated in Figure 1.1 is 

merely an illustration if enough photons (i.e. hundreds of photons or more) were to 

be reflected from a target. In reality, due to the spacecraft speed, ATLAS will record 

0 – 4 photons per transmit laser pulse over vegetation.

1.3 The ICESat-2 concept 

The Advanced Topographic Laser Altimeter System (ATLAS) instrument 

designed for ICESat-2 will utilize a different technology than the GLAS instrument 

used for ICESat. Instead of using a high-energy, single-beam laser and digitizing the 

entire temporal profile of returned laser energy, ATLAS will use a multi-beam, 
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micropulse laser (sometimes referred to as photon-counting). The travel time of 

each detected photon is used to determine a range to the surface which, when 

combined with satellite attitude and pointing information, can be geolocated into a 

unique XYZ location on or near the Earth’s surface. For more information on how 

the photons from ICESat-2 are geolocated, refer to ATL03 ATBD. The XYZ positions 

from ATLAS are subsequently used to derive surface and vegetation properties. The 

ATLAS instrument will operate at 532 nm in the green range of the electromagnetic 

(EM) spectrum and will have a laser repetition rate of 10 kHz. The combination of 

the laser repetition rate and satellite velocity will result in one outgoing laser pulse 

approximately every 70 cm on the Earth’s surface and each spot on the surface is 

~13 m in diameter. Each transmitted laser pulse is split by a diffractive optical 

element in ATLAS to generate six individual beams, arranged in three pairs (Figure 

1.2). The beams within each pair have different transmit energies (‘weak’ and 

‘strong’, with an energy ratio of approximately 1:4) to compensate for varying 

surface reflectance. The beam pairs are separated by ~3.3 km in the across-track 

direction and the strong and weak beams are separated by ~2.5 km in the along-

track direction. As ICESat-2 moves along its orbit, the ATLAS beams describe six 

tracks on the Earth’s surface; the array is rotated slightly with respect to the 

satellite’s flight direction so that tracks for the fore and aft beams in each column 

produce pairs of tracks – each separated by approximately 90 m. 
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2.5 km*
3.305 km*

Weak (1)

Strong (4) Strong (4)

Weak (1)

Strong (4)

Weak (1)

Figure 1.2. Schematic of 6-beam configuration for ICESat-2 mission. The laser energy 

will be split into 3 laser beam pairs – each pair having a weak spot (1X) and a strong spot 

(4X).

The motivation behind this multi-beam design is its capability to compute 

cross-track slopes on a per-orbit basis, which contributes to an improved 

understanding of ice dynamics. Previously, slope measurements of the terrain were 

determined via repeat-track and crossover analysis. The laser beam configuration as 

proposed for ICESat-2 is also beneficial for terrestrial ecosystems compared to GLAS 

as it enables a denser spatial sampling in the non-polar regions. To achieve a spatial 

sampling goal of no more than 2 km between equatorial ground tracks, ICESat-2 will 

be off-nadir pointed a maximum of 1.8 degrees from the reference ground track 

during the entire mission. 
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Figure 1.3. Illustration of off-nadir pointing scenarios. Over land in the mid-latitudes, 

ICESat-2 will be pointed away from the repeat ground tracks to increase the density of 

measurements over terrestrial surfaces.

ICESat-2 is designed to densely sample the Earth’s surface, permitting 

scientists to measure and quantitatively characterize vegetation across vast 

expanses, e.g., nations, continents, globally. ICESat-2 will acquire synoptic 

measurements of vegetation canopy height, density, the vertical distribution of 

photosynthetically active material, leading to improved estimates of forest biomass, 

carbon, and volume.  In addition, the orbital density, i.e., the number of orbits per 

unit area, at the end of the three year mission will facilitate the production of 

gridded global products. ICESat-2 will provide the means by which an accurate 

“snapshot” of global biomass and carbon may be constructed for the mission period.

1.4 Height Retrieval from ATLAS 
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Light from the ATLAS lasers reaches the earth’s surface as flat disks of down-

traveling photons approximately 50 cm in vertical extent and spread over 

approximately 12 m horizontally. Upon hitting the earth’s surface, the photons are 

reflected and scattered in every direction and a handful of photons return to the 

ATLAS telescope’s focal plane.  The number of photon events per laser pulse is a 

function of outgoing laser energy, surface reflectance, solar conditions, and 

scattering and attenuation in the atmosphere. For highly reflective surfaces (such as 

land ice) and clear skies, approximately 10 signal photons from a single strong beam 

are expected to be recorded by the ATLAS instrument for a given transmit laser 

pulse. Over vegetated land where the surface reflectance is considerably less than 

snow or ice surfaces, we expect to see fewer returned photons from the surface. 

Whereas snow and ice surfaces have high reflectance at 532 nm (typical Lambertian 

reflectance between 0.8 and 0.98 (Martino, GSFC internal report, 2010)), canopy 

and terrain surfaces have much lower reflectance (typically around 0.3 for soil and 

0.1 for vegetation) at 532 nm. As a consequence we expect to see 1/3 to 1/9 as 

many photons returned from terrestrial surfaces as from ice and snow surfaces. For 

vegetated surfaces, the number of reflected signal photon events per transmitted 

laser pulse is estimated to range between 0 to 4 photons.

The time measured from the detected photon events are used to compute a 

range, or distance, from the satellite. Combined with the precise pointing and 

attitude information about the satellite, the range can be geolocated into a XYZ point 

(known as a geolocated photon) above the WGS-84 reference ellipsoid. In addition 

to recording photons from the reflected signal, the ATLAS instrument will detect 

background photons from sunlight which are continually entering the telescope. A 

primary objective of the ICESat-2 data processing software is to correctly 

discriminate between signal photons and background photons. Some of this 

processing occurs at the ATL03 level and some of it also occurs within the software 

for ATL08. At ATL03, this discrimination is done through a series of three steps of 

progressively finer resolution with some processing occurring onboard the satellite 

prior to downlink of the raw data. The ATL03 data product produces a classification 
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between signal and background (i.e. noise) photons, and further discussion on that 

classification process can be read in the ATL03 ATBD. In addition, all geophysical 

corrections (e.g. solid earth tide models, etc.) are applied to the position of the 

individual geolocated photons at the ATL03 level.

1.5 Accuracy Expected from ATLAS

There are a variety of elements that contribute to the elevation accuracy that 

are expected from ATLAS and the derived data products. Elevation accuracy is a 

composite of ranging precision of the instrument, radial orbital uncertainty, 

geolocation knowledge, forward scattering in the atmosphere, and tropospheric 

path delay uncertainty. The ranging precision seen by ATLAS will be a function of 

the laser pulse width, the surface area potentially illuminated by the laser, and 

uncertainty in the timing electronics. The requirement on radial orbital uncertainty 

is specified to be less than 4 cm and tropospheric path delay uncertainty is 

estimated to be 3 cm.  In the case of ATLAS, the ranging precision for flat surfaces, is 

expected to have a standard deviation of approximately 25 cm.  The composite of 

each of the errors can also be thought of as the spread of photons about a surface 

(see Figure 1.4) and is referred to as the point spread function or Znoise.

Figure 1.4. Illustration of the point spread function, also referred to as Znoise, for a series 

of photons about a surface.

The estimates of  for a photon will be represented on the ATL03 data product 

as the final geolocated accuracy in the X, Y, and Z (or height) direction. In reality, 

these parameters have different temporal and spatial scales, however until ICESat-2 

is on orbit, it is uncertain how these parameters will vary over time. As such, 
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Equation 1.1 may change once the temporal aspects of these parameters are better 

understood.  For a preliminary quantification of the uncertainties, Equation 1.1 is 

valid to incorporate the instrument related factors.

Eqn. 1.1

Although  on the ATL03 product represents the best understanding of the 

uncertainty for each geolocated photon, it does not incorporate the uncertainty 

associated with local slope of the topography. The slope component to the 

geolocation uncertainty is a function of both the geolocation knowledge of the 

pointing (which is required to be less than 6.5 m) multiplied by the tangent of the 

surface slope. In a case of flat topography (<=1 degree slope), <= 25 cm, whereas in 

the case of a 10 degree surface slope, 119 cm. The uncertainty associated with the 

local slope will be combined with  to produce the term .  multiplied by the 6.5 m 

geolocation uncertainty factor will be used to update the expected uncertainty of the 

Z heights for ATLAS, .

 Eqn. 1.2

Eqn. 1.3

Ultimately, the uncertainty that will be reported on the data product ATL08 

will include the term and the local rms values of heights computed within each data 

parameter segment. For example, calculations of terrain height will be made on 

photons classified as terrain photons (this process is described in the following 

sections). The uncertainty of the terrain height for a segment is described in 

Equation 1.4, where the root mean square term of  and rms of terrain heights are 

normalized by the number of terrain photons for that given segment.

Eqn. 1.4
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1.6 Additional Potential Height Errors from ATLAS

Some additional potential height errors in the ATL08 terrain and vegetation 

product can come from a variety of sources including:

a. Vertical sampling error.  ATLAS height estimates are based on a 

random sampling of the surface height distribution. Photons may 

be reflected from anywhere within the PDF of the reflecting 

surface; more specifically, anywhere from within the canopy.

b. Background noise.  Random noise photons are mixed with the 

signal photons so classified photons will include random outliers.

c. Complex topography.  The along-track product may not always 

represent complex surfaces, particularly if the density of ground 

photons does not support an accurate representation.

d. Vegetation.  Dense vegetation may preclude reflected photon 

events from reaching the underlying ground surface. An incorrect 

estimation of the underlying ground surface will subsequently 

lead to an incorrect canopy height determination.

e. Misidentified photons.  The product from ATL03 combined with 

additional noise filtering may not identify the correct photons as 

signal photons.

1.7 Dense Canopy Cases

Although the height accuracy produced from ICESat-2 is anticipated to be 

superior to other global height products (e.g. SRTM), for certain biomes photon 

counting lidar data as it will be collected by the ATLAS instrument present a 

challenge for extracting both the terrain and canopy heights, particularly for areas 

of dense vegetation. Due to the relatively low laser power, we anticipate that the 

along-track signal from ATLAS may lose ground signal under dense forest (e.g. 
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>96% canopy closure) and in situations where cloud cover obscures the terrestrial 

signal. In areas having dense vegetation, it is likely that only a handful of photons 

will be returned from the ground surface with the majority of reflections occurring 

from the canopy. A possible source of error can occur with both the canopy height 

estimates and the terrain heights if the vegetation is particularly dense and the 

ground photons were not correctly identified.

1.8 Sparse Canopy Cases

Conversely, sparse canopy cases also pose a challenge to vegetation height 

retrievals.  In these cases, expected reflected photon events from sparse trees or 

shrubs may be difficult to discriminate between solar background noise photons. 

The algorithms being developed for ATL08 operate under the assumption that 

signal photons are close together and noise photons will be more isolated in nature. 

Thus, signal (in this case canopy) photons may be incorrectly identified as solar 

background noise on the data product. Due to the nature of the photon counting 

processing, canopy photons identified in areas that have extremely low canopy 

cover <15% will be filtered out and reassigned as noise photons.

2.
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ATL08: DATA PRODUCT

The ATL08 product will provide estimates of terrain height, canopy height, 

and canopy cover at fine spatial scales in the along-track direction. In accordance 

with the HDF-driven structure of the ICESat-2 products, the ATL08 product will 

characterize each of the six Ground Tracks (GT) associated with each Reference 

Ground Track (RGT) for each cycle and orbit number (see Appendix 1 – ATBD 

Lexicon). Each ground track group has a distinct beam number, distance from the 

reference track, and transmit energy strength, but all beams will be processed 

independently using the same sequence of steps described within ATL08. Each 

ground track group (GT) on the ATL08 product contains subgroups for land and 

canopy heights segments as well as beam and reference parameters useful in the 

ATL08 processing. In addition, the labeled photons that are used to determine the 

data parameters will be indexed back to the ATL03 products such that they are 

available for further, independent analysis. A layout of the ATL08 HDF product is 

shown in Figure 2.1. The six GTs are numbered from left to right, regardless of 

satellite orientation.
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Figure 2.1.  HDF Data structure for ATL08 products

For each data parameter, heights for the terrain surface and canopy heights 

will be provided at a fixed segment size of 100 meters along the ground track. Based 

on the satellite velocity and the expected number of reflected photons for land 

surfaces, each segment should have more than 100 signal photons, but in some 

instances there may be less than 100 signal photons per segment. If a segment has 

less than 50 (TBD, preliminary minimum photon recommendation) signal photons 

we feel this would not accurately represent the scene. Thus, an invalid value will be 

reported in all height fields except for an interpolated surface height. Each data 

parameter step will include a latitude and longitude based on the center position 

within that segment. In the event that a terrain height cannot be determined from a 

sufficient number of ground photons, (e.g. lack of photons penetrating through 
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dense canopy), the reported terrain height will be the interpolated surface height. In 

those cases, a null value in the vegetation and canopy height product will be 

reported. 

The ATL08 product can be referenced by region, which are roughly assigned 

by continent, as shown by Figure 2.2. For the regions covering Antarctica (regions 7, 

8, 9, 10) and Greenland (region 11), the ATL08 algorithm will assume that no 

canopy is present. Note that the regions for each ICESat-2 product are not the same.

Figure 2.2.  ATL08 product regions.

2.1 Subgroup: Land Parameters 

ATL08 terrain height parameters are defined in terms of the absolute height 

above the reference ellipsoid.

Table 2.1.  Summary Table of Land parameters on ATL08

Group Data type Description Source
segment_id_beg Integer First along-track segment_id ATL03
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number in 100-m segment
segment_id_end Integer Last along-track segment_id 

number in 100-m segment 
ATL03

h_te_mean Float Mean terrain height for 
segment

computed

h_te_median Float Median terrain height for 
segment

computed

h_te_min Float Minimum terrain height for 
segment

computed

h_te_max Float Maximum terrain height for 
segment

computed

h_te_mode Float Mode of terrain height for 
segment

computed

h_te_skew Float Skew of terrain height for 
segment

computed

n_te_photons Integer Number of ground photons in 
segment

computed

h_te_interp Float Interpolated terrain surface 
height at mid-point of segment

computed

h_te_std Float Standard deviation of ground 
heights about the interpolated 
ground surface

computed

h_te_uncertainty Float Uncertainty of ground height 
estimates. Includes all known 
uncertainties such as 
geolocation, pointing angle, 
timing, radial orbit errors, etc. 

computed from 
Equation 1.4

terrain_slope Float Slope of terrain within 
segment

computed

n_photons Integer Total number of classed 
photons for 100 m segment

computed

h_te_best_fit Float Best fit terrain elevation at the 
100 m segment mid-point 
location

computed

2.1.1 Georeferenced_segment_number_beg

(parameter = segment_id_beg).  The first along-track segment_id in each 100-

m segment. Each 100-m segment consists of five sequential 20-m segments 

provided from the ATL03 product, which are labeled as segment_id. The segment_id 

is a seven digit number that uniquely identifies each along track segment, and is 

written at the along-track geolocation segment rate (i.e. ~20m along track). The four 

digit RGT number can be combined with the seven digit segment_id number to 
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uniquely define any along-track segment number. Values are sequential, with 

0000001 referring to the first segment after the equatorial crossing of the ascending 

node.

2.1.2 Georeferenced_segment_number_end

(parameter = segment_id_end).  The last along-track segment_id in each 100-m 

segment. Each 100-m segment consists of five sequential 20-m segments provided 

from the ATL03 product, which are labeled as segment_id. The segment_id is a seven 

digit number that uniquely identifies each along track segment, and is written at the 

along-track geolocation segment rate (i.e. ~20m along track). The four digit RGT 

number can be combined with the seven digit segment_id number to uniquely 

define any along-track segment number. Values are sequential, with 0000001 

referring to the first segment after the equatorial crossing of the ascending node.

2.1.3 Segment_terrain_height_mean 

(parameter = h_te_mean). Estimated mean of the terrain height above the 

reference ellipsoid derived from classified ground photons within the 100 m 

segment. If a terrain height cannot be directly determined within the segment (i.e. 

there are not a sufficient number of ground photons), only the interpolated terrain 

height will be reported. Required input data is classified point cloud (i.e. photons 

labeled as either canopy or ground in the ATL08 processing). This parameter will be 

derived from only classified ground photons.

2.1.4 Segment_terrain_height_med 

(parameter = h_te_median). Median terrain height above the reference 

ellipsoid derived from the classified ground photons within the 100 m segment. If 

there are not a sufficient number of ground photons, an invalid value will be 

reported –no interpolation will be done. Required input data is classified point cloud 

(i.e. photons labeled as either canopy or ground in the ATL08 processing). This 

parameter will be derived from only classified ground photons.
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2.1.5 Segment_terrain_height_min 

(parameter = h_te_min). Minimum terrain height above the reference 

ellipsoid derived from the classified ground photons within the 100 m segment. If 

there are not a sufficient number of ground photons, an invalid value will be 

reported –no interpolation will be done. Required input data is classified point cloud 

(i.e. photons labeled as either canopy or ground in the ATL08 processing). This 

parameter will be derived from only classified ground photons.

2.1.6 Segment_terrain_height_max 

(parameter = h_te_max). Maximum terrain height above the reference 

ellipsoid derived from the classified ground photons within the 100 m segment. If 

there are not a sufficient number of ground photons, an invalid value will be 

reported –no interpolation will be done.  Required input data is classified point 

cloud (i.e. photons labeled as either canopy or ground in the ATL08 processing). 

This parameter will be derived from only classified ground photons.

2.1.7 Segment_terrain_height_mode 

(parameter = h_te_mode). Mode of the classified ground photon heights 

above the reference ellipsoid within the 100 m segment. If there are not a sufficient 

number of ground photons, an invalid value will be reported –no interpolation will 

be done. Required input data is classified point cloud (i.e. photons labeled as either 

canopy or ground in the ATL08 processing). This parameter will be derived from 

only classified ground photons.

2.1.8 Segment_terrain_height_skew 

(parameter = h_te_skew). The skew of the classified ground photons within 

the 100 m segment. If there are not a sufficient number of ground photons, an 

invalid value will be reported –no interpolation will be done. Required input data is 

classified point cloud (i.e. photons labeled as either canopy or ground in the ATL08 

processing). This parameter will be derived from only classified ground photons.
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2.1.9 Segment_number_terrain_photons 

(parameter = n_te_photons).  Number of terrain photons identified in 

segment. 

2.1.10 Segment height_interp 

(parameter = h_te_interp). Interpolated terrain surface height above the 

reference ellipsoid from ATL08 processing at the mid-point of each segment. This 

interpolated surface is the FINALGROUND estimate (described in section 4.9).

2.1.11 Segment h_te_std 

(parameter = h_te_std). Standard deviations of terrain points about the 

interpolated ground surface within the segment. Provides an indication of surface 

roughness.

2.1.12 Segment_terrain_height_uncertainty 

(parameter = h_te_uncertainty). Uncertainty of the mean terrain height for 

the segment. This uncertainty incorporates all systematic uncertainties (e.g. timing, 

orbits, geolocation, etc.) as well as uncertainty from errors of identified photons. 

This parameter is described in Section 1, Equation 1.4. If there are not a sufficient 

number of ground photons, an invalid value will be reported –no interpolation will 

be done. Required input data is classified point cloud (i.e. photons labeled as either 

canopy or ground in the ATL08 processing). This parameter will be derived from 

only classified ground photons. The term in Equation 1.4 represents the standard 

deviation of the terrain height residuals about the FINALGROUND estimate.

2.1.13 Segment_terrain_slope 

(parameter = terrain_slope).  Slope of terrain within each segment. Slope is 

computed from a linear fit of the terrain photons. It estimates the rise [m] in relief 

over each segment [100 m]; e.g., if the slope value is 0.04, there is a 4 m rise over the 

100 m segment. Required input data are the classified terrain photons.
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2.1.14 Segment number_of_photons 

(parameter = n_photons).  Number of classed photons within each 100 m 

segment.

2.1.15 Segment_terrain_height_best_fit

(parameter = h_te_best_fit).  The best fit terrain elevation at the mid-point 

location of each 100 m segment. The mid-segment terrain elevation is determined 

by selecting the best of three fits – linear, 3rd order and 4th order polynomials – to the 

terrain photons and interpolating the elevation at the mid-point location of the 100 

m segment. For the linear fit, a slope correction and weighting is applied to each 

ground photon based on the distance to the slope height at the center of the 

segment. 

2.2 Subgroup: Vegetation Parameters  

Canopy parameters will be reported on the ATL08 data product in terms of 

both the absolute height above the reference ellipsoid as well as the relative height 

above an estimated ground. The relative canopy height, Hi, is computed as the height 

from an identified canopy photon minus the interpolated ground surface for the 

same horizontal geolocation (see Figure 2.3). Thus, each identified signal photon 

above an interpolated surface (including a buffer distance based on the instrument 

point spread function) is by default considered a canopy photon. Canopy 

parameters will only be computed for segments where more than 5% of the classed 

photons are classified as canopy photons.
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Figure 2.3. Illustration of canopy photons (red dots) interaction in a vegetated area.  

Relative canopy heights, Hi, are computed by differencing the canopy photon height from 

an interpolated terrain surface.

Table 2.2. Summary table of canopy parameters on ATL08

Group Data type Description Source
segment_id_beg Integer First along-track segment_id 

number in 100-m segment
ATL03

segment_id_end Integer Last along-track segment_id 
number in 100-m segment

ATL03

canopy_h_metrics Float Absolute (H##) and relative 
(RH##) canopy height metrics 
calculated at the following 
percentiles:  25, 50, 60, 70, 75, 
80, 85, 90, 95, 99.

computed

h_canopy_abs Float 95% height of all the individual 
absolute canopy heights for 
segment. Should be equivalent 
to H95.

computed

h_canopy Float 95% height of all the individual 
relative canopy heights for 
segment. Should be equivalent 
to RH95.

computed

h_mean_canopy_abs Float Mean of individual absolute computed
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canopy heights within segment
h_mean_canopy Float Mean of individual relative 

canopy heights within segment
computed

h_dif_canopy Float Difference between h_canopy 
and h_median_canopy

computed

h_median_canopy_abs Float Median of individual absolute 
canopy heights within segment. 
Should be equivalent to H50

computed

h_median_canopy Float Median of individual relative 
canopy heights within segment. 
Should be equivalent to RH50

computed

h_min_canopy_abs Float Minimum of individual absolute 
canopy heights within segment

computed

h_min_canopy Float Minimum of individual relative 
canopy heights within segment

computed

h_max_canopy_abs Float Maximum of individual 
absolute canopy heights within 
segment. Should be equivalent 
to H100

computed

h_max_canopy Float Maximum of individual relative 
canopy heights within segment. 
Should be equivalent to RH100

computed

h_canopy_uncertainty Float Uncertainty of the relative 
canopy height (h_canopy)

computed

canopy_openness Float STD of relative heights for all 
photons classified as canopy 
photons within the segment to 
provide inference of canopy 
openness

computed

toc_roughness Float STD of relative heights all 
photons classified as top of 
canopy within the segment

computed

h_canopy_quad Float Quadratic mean canopy height computed
n_ca_photons Integer4 Number of canopy photons 

within 100 m segment
computed

n_toc_photons Integer4 Number of top of canopy 
photons within 100 m segment

computed

canopy_closure Float Relative canopy closure computed
centroid_height Float Absolute height above 

reference ellipsoid associated 
with the centroid of all signal 
photons

computed

n_photons Integer Number of classed photons in 
100 m segment

computed

canopy_flag Integer Flag indicating that canopy was 
detected using the Landsat 
Continuous Cover data product

computed
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landsat_flag Integer Flag indicating that Landsat 
continuous cover data product 
had more than 50% values 
>100 for L-km segment

computed

2.2.1 Georeferenced_segment_number_beg

(parameter = segment_id_beg).  The first along-track segment_id in each 100-

m segment. Each 100-m segment consists of five sequential 20-m segments 

provided from the ATL03 product, which are labeled as segment_id. The segment_id 

is a seven digit number that uniquely identifies each along track segment, and is 

written at the along-track geolocation segment rate (i.e. ~20m along track). The four 

digit RGT number can be combined with the seven digit segment_id number to 

uniquely define any along-track segment number. Values are sequential, with 

0000001 referring to the first segment after the equatorial crossing of the ascending 

node.

2.2.2 Georeferenced_segment_number_end

(parameter = segment_id_end).  The last along-track segment_id in each 100-m 

segment. Each 100-m segment consists of five sequential 20-m segments provided 

from the ATL03 product, which are labeled as segment_id. The segment_id is a seven 

digit number that uniquely identifies each along track segment, and is written at the 

along-track geolocation segment rate (i.e. ~20m along track). The four digit RGT 

number can be combined with the seven digit segment_id number to uniquely 

define any along-track segment number. Values are sequential, with 0000001 

referring to the first segment after the equatorial crossing of the ascending node.

2.2.3 Canopy_height_metrics

(parameter = canopy_h_metrics). The absolute height metrics (H##) and 

relative height metrics above the estimated terrain surface (RH##) of classified 

canopy photons above the ellipsoid. The height metrics are sorted based on a 

cumulative distribution and calculated at the following percentiles:  25, 50, 60, 70, 
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75, 80, 85, 90, 95, 99. These height metrics are often used in the literature to 

characterize vertical structure of vegetation. One important distinction of these 

canopy height metrics compared to those derived from other lidar systems (e.g. 

LVIS or GEDI) is that the ICESat-2 canopy height metrics are heights above the 

ground surface. These metrics do not include the ground photons. Required input 

data are the absolute canopy heights of all canopy photons and the relative canopy 

heights of the estimated terrain surface.

2.2.4 Absolute_segment_canopy_height 

(parameter = h_canopy_abs). The absolute 95% height of classified canopy 

photon heights above the ellipsoid. The absolute height from classified canopy 

photons are sorted into a cumulative distribution, and the height associated with the 

95% height is reported. This parameter is equivalent to H95.

2.2.5 Segment_canopy_height 

(parameter = h_canopy). The relative 95% height of classified canopy photon 

heights above the estimated terrain surface. Relative canopy heights have been 

computed by differencing the canopy photon height from the estimated terrain 

surface in the ATL08 processing. The relative canopy heights are sorted into a 

cumulative distribution, and the height associated with the 95% height is reported. 

This parameter is equivalent to RH95.

2.2.6 Absolute_segment_mean_canopy 

(parameter = h_mean_canopy_abs).  The absolute mean canopy height for the 

segment. Absolute canopy heights are the photons heights above the reference 

ellipsoid. These heights are averaged.

2.2.7 Segment_mean_canopy 

(parameter = h_mean_canopy).  The mean canopy height for the segment. 

Relative canopy heights have been computed by differencing the canopy photon 
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height from the estimated terrain surface in the ATL08 processing. These heights 

are averaged.

2.2.8 Segment_dif_canopy 

(parameter = h_dif_canopy).  Difference between h_canopy and 

h_median_canopy.  This parameter is one metric to describe the vertical distribution 

of the canopy within the segment. 

2.2.9 Absolute_segment_median_canopy 

(parameter = h_median_canopy_abs).  The median absolute canopy height for 

the segment. This parameter is equivalent to H50. The absolute canopy heights are 

sorted into a cumulative distribution, and the height associated with the 50% height 

is reported. Required input data is classified point cloud (i.e. photons labeled as 

either canopy or ground in the ATL08 processing).

2.2.10 Segment_median_canopy 

(parameter = h_median_canopy).  The median relative canopy height for the 

segment. This parameter is equivalent to RH50. The relative canopy heights are 

sorted into a cumulative distribution, and the height associated with the 50% height 

is reported. Required input data is classified point cloud (i.e. photons labeled as 

either canopy or ground in the ATL08 processing).

2.2.11 Absolute_segment_min_canopy 

(parameter = h_min_canopy_abs).  The minimum absolute canopy height for 

the segment. Required input data is classified point cloud (i.e. photons labeled as 

either canopy or ground in the ATL08 processing).

2.2.12 Segment_min_canopy 

(parameter = h_min_canopy).  The minimum relative canopy height for the 

segment. Required input data is classified point cloud (i.e. photons labeled as either 

canopy or ground in the ATL08 processing).
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2.2.13 Absolute_segment_max_canopy 

(parameter = h_max_canopy_abs).  The maximum absolute canopy height for 

the segment. This product is equivalent to H100 metric reported in the literature. 

This parameter, however, has the potential for error as random solar background 

noise may not have been fully rejected. It is recommended that h_canopy or 

h_canopy_abs (i.e., the 95% canopy height) be considered as the top of canopy 

measurement. Required input data is classified point cloud (i.e. photons labeled as 

either canopy or ground in the ATL08 processing).

2.2.14 Segment_max_canopy 

(parameter = h_max_canopy).  The maximum relative canopy height for the 

segment. This product is equivalent to RH100 metric reported in the literature. This 

parameter, however, has the potential for error as random solar background noise 

may not have been fully rejected. It is recommended that h_canopy or h_canopy_abs 

(i.e., the 95% canopy height) be considered as the top of canopy measurement. 

Required input data is classified point cloud (i.e. photons labeled as either canopy or 

ground in the ATL08 processing).

2.2.15 Segment_canopy_height_uncertainty 

(parameter = h_canopy_uncertainty).  Uncertainty of the relative canopy 

height for the segment. This uncertainty incorporates all systematic uncertainties 

(e.g. timing, orbits, geolocation, etc.) as well as uncertainty from errors of identified 

photons. This parameter is described in Section 1, Equation 1.4. If there are not a 

sufficient number of ground photons, an invalid value will be reported –no 

interpolation will be done. In the case for canopy height uncertainty, the parameter 

is comprised of both the terrain uncertainty within the segment but also the top of 

canopy residuals. Required input data is classified point cloud (i.e. photons labeled 

as either top of canopy or ground in the ATL08 processing). This parameter will be 

derived from only classified top of canopy photons. The canopy height uncertainty is 

derived from Equation 1.4, shown below as Equation 1.5, represents the standard 
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deviation of the terrain points and the standard deviation of the top of canopy 

height photons.

 Eqn 1.5

2.2.16 Segment_canopy_openness 

(parameter = canopy_openness). Standard deviation of relative canopy 

heights within each segment.  This parameter will potentially provide an indicator 

of canopy openness as a greater standard deviation of heights indicates greater 

penetration of the laser energy into the canopy. Required input data is classified 

point cloud (i.e. photons labeled as either canopy or ground in the ATL08 

processing).

2.2.17 Segment_top_of_canopy_roughness 

(parameter = toc_roughness). Standard deviation of relative top of canopy 

heights within each segment.  This parameter will potentially provide an indicator 

of canopy variability. Required input data is classified point cloud (i.e. photons 

labeled as the top of the canopy in the ATL08 processing).

2.2.18 Segment_canopy_quadratic_height 

(parameter = h_canopy_quad). The relative quadratic mean height of relative 

classified canopy photons above the reference DEM available for the product. The 

quadratic mean height is computed as:

2.2.19 Segment_number_canopy_photons 

(parameter = n_ca_photons). Number of canopy photons within each 

segment. Required input data is classified point cloud (i.e. photons labeled as either 

canopy or ground in the ATL08 processing).
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2.2.20 Segment_number_top_canopy_photons 

(parameter = n_toc_photons). Number of top of canopy photons within each 

segment. Required input data is classified point cloud (i.e. photons labeled as top of 

canopy in the ATL08 processing).

2.2.21 Segment_rel_canopy_closure 

(parameter = canopy_closure).  Relative canopy closure within the segment

 

2.2.22 Centroid_height 

(parameter = centroid_height).  Optical centroid of all photons classified as 

either canopy or ground points within a segment. The heights used in this 

calculation are absolute heights above the reference ellipsoid. This parameter is 

equivalent to the centroid height produced on ICESat GLA14.

2.2.23 Segment_number_of_photons 

(parameter = n_photons).  Number of classed photons within 100 m segment.

2.2.24 Canopy_flag

(parameter = canopy_flag).  Flag indicating that canopy was detected using the 

Landsat Continuous Cover product for the L-km segment. Currently, if more than 5% 

of the Landsat CC pixels along the profile have canopy in them, we make the 

assumption canopy is present along the entire L-km segment.

2.2.25 LANDSAT_flag

(parameter = landsat_flag).  Flag indicating that more than 50% of the Landsat 

Continuous Cover product have values >100 for the L-km segment which then we 

assume canopy in present along the L-km segment.
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2.3 Subgroup: Photons

The subgroup for photons contains the classified photons that were used to 

generate the parameters within the land or canopy subgroups. Each photon that is 

identified as being likely signal will be classified as: 0 = noise, 1 = ground, 2 = 

canopy, or 3 = top of canopy. The index values for each classified photon will be 

provided such that they can be extracted from the ATL03 data product for 

independent evaluation. 

Table 2.3.  Summary Table for photon parameters for the ATL08 product

Group Data Type Description Source
classed_PC_indx Float Indices of photons tracking 

back to ATL03 that surface 
finding software identified 
and used within the 
creation of the data 
products.

ATL03

classed_PC_flag Integer Classification flag for each 
photon as either noise, 
ground, canopy, or top of 
canopy.

computed

ph_segment_id Integer Georeferenced bin number 
(20-m) associated with each 
photon

ATL03

segment_id_beg Integer First along-track segment_id 
number in 100-m segment

ATL03

segment_id_end Integer Last along-track segment_id 
number in 100-m segment

ATL03

d_flag Integer Flag indicating whether 
DRAGANN labeled the 
photon as noise or signal

computed

n_photons integer Number of classed photons 
in 100 m segment

computed

2.3.1 Indices_of_classed_photons 

(parameter = classed_PC_indx). Indices of photons tracking back to ATL03 

that surface finding software identified and used within the creation of the data 

products for a given segment.
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2.3.2 Photon_class 

(parameter = classed_PC_flag). Classification flags for a given segment. 0 = 

noise, 1 = ground, 2 = canopy, 3 = top of canopy. The final ground and canopy 

classification are flags 1-3. The full canopy is the combination of flags 2 and 3.

2.3.3 Georeferenced_segment_number 

(parameter = ph_segment_id). The segment_id associated with every photon in 

each 100-m segment. Each 100-m segment consists of five sequential 20-m 

segments provided from the ATL03 product, which are labeled as segment_id. The 

segment_id is a seven digit number that uniquely identifies each along track 

segment, and is written at the along-track geolocation segment rate (i.e. ~20m along 

track). The four digit RGT number can be combined with the seven digit segment_id 

number to uniquely define any along-track segment number. Values are sequential, 

with 0000001 referring to the first segment after the equatorial crossing of the 

ascending node.

2.3.4 Georeferenced_segment_number_beg

(parameter = segment_id_beg).  The first along-track segment_id in each 100-

m segment. Each 100-m segment consists of five sequential 20-m segments 

provided from the ATL03 product, which are labeled as segment_id. The segment_id 

is a seven digit number that uniquely identifies each along track segment, and is 

written at the along-track geolocation segment rate (i.e. ~20m along track). The four 

digit RGT number can be combined with the seven digit segment_id number to 

uniquely define any along-track segment number. Values are sequential, with 

0000001 referring to the first segment after the equatorial crossing of the ascending 

node.

2.3.5 Georeferenced_segment_number_end

(parameter = segment_id_end).  The last along-track segment_id in each 100-m 

segment. Each 100-m segment consists of five sequential 20-m segments provided 

from the ATL03 product, which are labeled as segment_id. The segment_id is a seven 
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digit number that uniquely identifies each along track segment, and is written at the 

along-track geolocation segment rate (i.e. ~20m along track). The four digit RGT 

number can be combined with the seven digit segment_id number to uniquely 

define any along-track segment number. Values are sequential, with 0000001 

referring to the first segment after the equatorial crossing of the ascending node.

2.3.6 DRAGANN_flag

(parameter = d_flag). Flag indicating the labeling of DRAGANN noise filtering 

for a given photon. 0 = noise, 1=signal.

2.3.7 Segment_number_of_photons 

(parameter = n_photons). Number of classed photons within 100 m segment.

2.4 Subgroup: Reference data

The reference data subgroup contains parameters and information that are 

useful for determining the terrain and canopy heights that are reported on the 

product. In addition to position and timing information, these parameters include 

the reference DEM height, reference landcover type, and flags indicating water or 

snow.

Table 2.4.  Summary Table for reference parameters for the ATL08 product

Group Data 
Type

Description Source

segment_id_beg Integer First along-track segment_id 
number in 100-m segment

ATL03

segment_id_end Integer Last along-track segment_id 
number in 100-m segment

ATL03

latitude Float Center latitude of signal 
photons within each segment

ATL03

longitude Float Center longitude of signal 
photons within each segment

ATL03

delta_time Float Mid-segment GPS time in 
seconds past an epoch. The 
epoch is provided in the 
metadata at the file level

ATL03
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delta_time_beg Float Delta time of the first photon 
in the segment

ATL03

delta_time_end Float Delta time of the last photon 
in the segment

ATL03

night_flag Integer Flag indicating whether the 
measurements were 
acquired during night time 
conditions

computed

n_photons Float Number of classed photons 
per 100 m segment

computed

dem_h Float4 Reference DEM elevation external
dem_flag Source of reference DEM external
h_dif_ref Float4 Difference between 

h_te_median and dem_h
computed

terrain_flg Integer Terrain flag quality check to 
indicate a deviation from the 
reference DTM

computed

segment_landcover Integer4 Reference landcover for 
segment derived from best 
global landcover product 
available

external

segment_watermask Integer4 Water mask indicating inland 
water produced from best 
sources available

external

segment_snowmask Integer4 Daily snow cover mask 
derived from best sources

external

urban_flag Integer Flag indicating segment is 
located in an urban area

external

surf_type Integer1 Flags describing surface 
types: 0=not type, 1=is type. 
Order of array is land, ocean, 
sea ice, land ice, inland 
water. 

ATL03

2.4.1 Georeferenced_segment_number_beg

(parameter = segment_id_beg).  The first along-track segment_id in each 100-

m segment. Each 100-m segment consists of five sequential 20-m segments 

provided from the ATL03 product, which are labeled as segment_id. The segment_id 

is a seven digit number that uniquely identifies each along track segment, and is 

written at the along-track geolocation segment rate (i.e. ~20m along track). The four 
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digit RGT number can be combined with the seven digit segment_id number to 

uniquely define any along-track segment number. Values are sequential, with 

0000001 referring to the first segment after the equatorial crossing of the ascending 

node.

2.4.2 Georeferenced_segment_number_end

(parameter = segment_id_end).  The last along-track segment_id in each 100-m 

segment. Each 100-m segment consists of five sequential 20-m segments provided 

from the ATL03 product, which are labeled as segment_id. The segment_id is a seven 

digit number that uniquely identifies each along track segment, and is written at the 

along-track geolocation segment rate (i.e. ~20m along track). The four digit RGT 

number can be combined with the seven digit segment_id number to uniquely 

define any along-track segment number. Values are sequential, with 0000001 

referring to the first segment after the equatorial crossing of the ascending node.

2.4.3 Segment_latitude 

(parameter = latitude).  Center latitude of signal photons within each 

segment

2.4.4 Segment_longitude 

 (parameter = longitude).  Center longitude of signal photons within each 

segment

2.4.5 Delta time 

(parameter = delta_time).  Mean GPS time for the segment in seconds past an 

epoch. The epoch is listed in the metadata at the file level.

2.4.6 Delta_time_beg

(parameter = delta_time_beg).  Delta time for the first photon in the segment 

in seconds past an epoch. The epoch is listed in the metadata at the file level.

2.4.7 Delta_time_end
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(parameter = delta_time_end).  Delta time for the last photon in the segment 

in seconds past an epoch. The epoch is listed in the metadata at the file level.

2.4.8 Night_Flag

(parameter = night_flag).  Flag indicating the data were acquired in night 

conditions:  0 = day, 1 = night. Night flag is set when solar elevation is below 0.0 

degrees.

2.4.9 Segment_number_of_photons 

(parameter = n_photons).  Number of classed photons within 100 m segment.

2.4.10 Segment_reference_DTM 

(parameter = dem_h).  Reference terrain height value for segment 

determined by the “best” DEM available based on data location. All heights in 

ICESat-2 are referenced to the WGS 84 ellipsoid unless clearly noted otherwise.  

DEM is taken from a variety of ancillary data sources:  GIMP, GMTED, MSS. The DEM 

source flag indicates which source was used.

2.4.11 Segment_reference_DEM_source

(parameter = dem_flag).  Indicates source of the reference DEM height. 

Values: 0=None, 1=GIMP, 2=GMTED, 3=MSS.

2.4.12 Segment_terrain_difference 

(parameter = h_dif_ref).  Difference between h_te_median and dem_h. Since 

the mean terrain height is more sensitive to outliers, the median terrain height will 

be evaluated against the reference DEM. This parameter will be used as an internal 

data quality check with the notion being that if the difference exceeds a threshold 

(TBD) a terrain quality flag (terrain_flg) will be triggered. 

2.4.13 Segment_terrain flag 
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(parameter = terrain_flg). Terrain flag to indicate confidence in the derived 

terrain height estimate. If h_dif_ref exceeds a threshold (TBD) the terrain_flg 

parameter will be set to 1. Otherwise, it is 0.

2.4.14 Segment_landcover 

(parameter = segment_landcover). Segment landcover will be based on best 

available global landcover product used for reference. One potential source is the 

0.5 km global mosaics of the standard MODIS land cover product (Channan et al, 

2015; Friedl et al, 2010; available online at 

http://glcf.umd.edu/data/lc/index.shtml). Here, 17 classes are defined ranging from 

evergreen (needle and broadleaf forest), deciduous (needle and broadleaf forest), 

shrublands, woodlands, savanna and grasslands, agriculture, to urban. The most 

current year processed for this product is based on MODIS measurements from 

2012. 

2.4.15 Segment_watermask 

(parameter = segment_watermask). Water mask (i.e., flag) indicating inland 

water as referenced from the Global Raster Water Mask at 250 m spatial resolution 

(Carroll et al, 2009; available online at http://glcf.umd.edu/data/watermask/). 0 = 

no water; 1 = water.

2.4.16 Segment_snowcover

(parameter = segment_snowcover). Daily snowcover mask (i.e. flag) 

indicating a likely presence of snow within each segment produced from best 

available source used for reference (e.g. MODIS or Landsat). The snow mask will be 

the same snow mask as used for ATL09 Atmospheric Products.  0 = no snow; 1 = 

snow

2.4.17 Urban_flag

(parameter = urban_flag). The urban flag indicates that a segment is likely 

located over an urban area. In these areas, buildings may be misclassified as canopy, 
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and thus the canopy products may be incorrect. The urban flag is sourced from the 

“urban and built up” classification on the MODIS land cover product (Channan et al, 

2015; Friedl et al, 2010; available online at 

http://glcf.umd.edu/data/lc/index.shtml). 0 = not urban; 1 = urban.

2.4.18 Surface_type 

(parameter = surf_type). The surface type for a given segment is determined at 

the major frame rate (every 200 shots, or ~140 meters along-track) and is a two-

dimensional array surf_type(n, nsurf), where n is the major frame number, and 

nsurf is the number of possible surface types such that surf_type(n,isurf) is set to 0 

or 1 indicating if surface type isurf is present (1) or not (0), where isurf = 1 to 5 

(land, ocean, sea ice, land ice, and inland water) respectively. 

2.5 Subgroup: Beam data

The subgroup for beam data contains basic information on the geometry and 

pointing accuracy for each beam.

Table 2.5.  Summary table for beam parameters for the ATL08 product

Group Data 
Type

Units Description Source

segment_id_beg Integer First along-track 
segment_id number in 
100-m segment

ATL03

segment_id_end Integer Last along-track 
segment_id number in 
100-m segment

ATL03

atlas_pa Float Off nadir pointing angle 
of the spacecraft

ATL03

beam_number Integer Laser beam number. 1, 
3, 5 are strong beams. 2, 
4, 6 are weak beams.

ATL03

rgt Integer The reference ground 
track (RGT) is the track 
on the earth at which 
the vector bisecting 

ATL03
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laser beams 3 and 4 is 
pointed during repeat 
operations

sigma_h Float Total vertical 
uncertainty due to PPD 
and POD

ATL03

sigma_along Float Total along-track 
uncertainty due to PPD 
and POD knowledge

ATL03

sigma_across Float Total cross-track 
uncertainty due to PPD 
and POD knowledge

ATL03

sigma_topo Float Uncertainty of the 
geolocation knowledge 
due to local topography 
(Equation 1.3)

computed

sigma_atlas_land Float Total uncertainty that 
includes sigma_h plus 
the geolocation 
uncertainty due to local 
slope  Equation 1.2

computed

cloud_flag_asr Integer Cloud confidence flag 
from ATL09 indicating 
clear skies

ATL09

msw_flag Integer Multiple scattering 
warning product 
produced on ATL09

ATL09

asr Float Apparent surface 
reflectance

ATL09

snr Float Background signal to 
noise level

Computed

solar_azimuth Float The azimuth (in 
degrees) of the sun 
position vector from the 
reference photon 
bounce point position in 
the local ENU frame. The 
angle is measured from 
North and is positive 
towards East.

ATL03g

solar_elevation Float The elevation of the sun 
position vector from the 
reference photon 
bounce point position in 
the local ENU frame. The 
angle is measured from 
the East-North plane 
and is positive Up.

ATL03g
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n_seg_ph Integer Number of photons 
within each land 
segment

computed

2.5.1 Georeferenced_segment_number_beg

(parameter = segment_id_beg).  The first along-track segment_id in each 100-

m segment. Each 100-m segment consists of five sequential 20-m segments 

provided from the ATL03 product, which are labeled as segment_id. The segment_id 

is a seven digit number that uniquely identifies each along track segment, and is 

written at the along-track geolocation segment rate (i.e. ~20m along track). The four 

digit RGT number can be combined with the seven digit segment_id number to 

uniquely define any along-track segment number. Values are sequential, with 

0000001 referring to the first segment after the equatorial crossing of the ascending 

node.

2.5.2 Georeferenced_segment_number_end

(parameter = segment_id_end).  The last along-track segment_id in each 100-m 

segment. Each 100-m segment consists of five sequential 20-m segments provided 

from the ATL03 product, which are labeled as segment_id. The segment_id is a seven 

digit number that uniquely identifies each along track segment, and is written at the 

along-track geolocation segment rate (i.e. ~20m along track). The four digit RGT 

number can be combined with the seven digit segment_id number to uniquely 

define any along-track segment number. Values are sequential, with 0000001 

referring to the first segment after the equatorial crossing of the ascending node.

2.5.3 ATLAS Pointing Angle 

(parameter = atlas_pa). Off nadir pointing angle (in radians) of the satellite to 

increase spatial sampling in the non-polar regions.

2.5.4 Beam_number
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(parameter = beam_number). The sequential laser pulses emitted from the 

ATLAS instrument that illuminate spots on the earth’s surface are called laser 

beams. ATLAS generates six laser beams. The laser beam numbering convention 

follows the ATLAS instrument convention with strong beams numbered 1, 3, and 5 

and weak beams numbered 2, 4, and 6.

2.5.5 Reference ground track 

(parameter = rgt).  The reference ground track (RGT) is the track on the 

earth at which the vector bisecting laser beams 3 and 4 (or GT2L and GT2R) is 

pointed during repeat operations. Each RGT spans the part of an orbit between two 

ascending equator crossings and are numbered sequentially.  The ICESat-2 mission 

has 1387 RGTs, numbered from 0001xx to 1387xx. The last two digits refer to the 

cycle number.

2.5.6 Sigma_h 

(parameter = sigma_h). Total vertical uncertainty due to PPD (Precise 

Pointing Determination), POD (Precise Orbit Determination), and geolocation 

errors. Specifically, this parameter includes radial orbit error,  , tropospheric errors,  

, forward scattering errors, , instrument timing errors, , and off-nadir pointing 

geolocation errors . The component parameters are pulled from ATL03 and ATL09. 

Sigma_h is the root sum of squares of these terms as detailed in Equation 1.1.

2.5.7 Sigma_along 

(parameter = sigma_along). Total along-track uncertainty due to PPD and 

POD knowledge. This parameter is pulled from ATL03.

2.5.8 Sigma_across 

(parameter = sigma_across). Total cross-track uncertainty due to PPD and 

POD knowledge. This parameter is pulled from ATL03.

2.5.9 Sigma_topo 
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(parameter = sigma_topo). Uncertainty in the geolocation due to local surface 

slope as described in Equation 1.3.  The local slope is multiplied by the 6.5 m 

geolocation uncertainty factor that will be used to determine the geolocation 

uncertainty. The geolocation error will be computed from a 100 m sample due to the 

local slope calculation at that scale.

2.5.10 Sigma_ATLAS_LAND 

(parameter = sigma_atlas_land). Total vertical geolocation error due to 

ranging, and local surface slope. The parameter is computed for ATL08 as described 

in Equation 1.2. The geolocation error will be computed from a 100 m sample due to 

the local slope calculation at that scale.

2.5.11 Cloud flag 

(parameter = cloud_flag_asr). Cloud confidence flag from ATL09. Flag indicates 

potential clear skies from ATL09. Cloud Product Flags: 

0 = High confidence clear skies

1 = Medium confidence clear skies

2 = Low confidence clear skies

3 = Low confidence cloudy skies

4 = Medium confidence cloudy skies

5 = High confidence cloudy skies

2.5.12 MSW

(parameter = msw_flag). Multiple scattering warning computed in the ATL09 

atmospheric processing and delivered on the ATL09 data product.

2.5.13 Computed_Apparent_Surface_Reflectance 

(parameter = asr). Apparent surface reflectance computed in the ATL09 

atmospheric processing and delivered on the ATL09 data product.

2.5.14 Signal_to_Noise_Ratio 
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(parameter = snr). The Signal to Noise Ratio of geolocated photons as 

determined by the ratio of the superset of ATL03 signal and DRAGANN found signal 

photons used for processing the ATL08 segments to the background photons (i.e., 

noise) within the same ATL08 segments.

2.5.15 Solar Azimuth

(parameter = solar_azimuth). The azimuth (in degrees) of the sun position 

vector from the reference photon bounce point position in the local ENU frame. The 

angle is measured from North and is positive towards East.

2.5.16 Solar Elevation

(parameter = solar_elevation). The elevation of the sun position vector from 

the reference photon bounce point position in the local ENU frame. The angle is 

measured from the East-North plane and is positive up.

2.5.17 Number of segment photons

(parameter = n_seg_ph). Number of photons in each land segment.

3
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ALGORITHM METHODOLOGY

For the ecosystem community, identification of the ground and canopy 

surface is by far the most critical task, as meeting the science objective of 

determining global canopy heights hinges upon the ability to detect both the canopy 

surface and the underlying topography. Since a space-based photon counting laser 

mapping system is a relatively new instrument technology for mapping the Earth’s 

surface, the software to accurately identify and extract both the canopy surface and 

ground surface is described here. The methodology adopted for ATL08 establishes a 

framework to potentially accept multiple approaches for capturing both the upper 

and lower surface of signal photons. One method used is an iterative filtering of 

photons in the along-track direction. This method has been found to preserve the 

topography and capture canopy photons, while rejecting noise photons. An 

advantage of this methodology is that it is self-parameterizing, robust, and works in 

all ecosystems if sufficient photons from both the canopy and ground are available. 

For processing purposes, along-track data signal photons are parsed into L-km 

segment of the orbit which is recommended to be 10 km in length.

3.1 Noise Filtering

Solar background noise is a significant challenge in the analysis of photon 

counting laser data. Range measurement data created from photon counting lidar 

detectors typically contain far higher noise levels than the more common photon 

integrating detectors available commercially in the presence of passive, solar 

background photons. Given the higher detection sensitivity for photon counting 

devices, a background photon has a greater probability of triggering a detection 

event over traditional integral measurements and may sometimes dominate the 

dataset.  Solar background noise is a function of the surface reflectance, topography, 

solar elevation, and atmospheric conditions. Prior to running the surface finding 

algorithms used for ATL08 data products, the superset of output from the GSFC 

medium-high confidence classed photons (ATL03 signal_conf_ph: flags 3-4) and the 
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output from DRAGANN will be considered as the input data set. ATL03 input data 

requirements include the latitude, longitude, height, segment delta time, segment ID, 

and a preliminary signal classification for each photon. The motivation behind 

combining the results from two different noise filtering methods is to ensure that all 

of the potential signal photons for land surfaces will be provided as input to the 

surface finding software. The description of the methodology for the ATL03 

classification is described separately in the ATL03 ATBD. The methodology behind 

DRAGANN is described in the following section.

Figure 3.1. Combination of noise filtering algorithms to create a superset of input data for 

surface finding algorithms.

3.1.1 DRAGANN

The Differential, Regressive, and Gaussian Adaptive Nearest Neighbor 

(DRAGANN) filtering technique was developed to identify and remove noise 

photons from the photon counting data point cloud. DRAGANN utilizes the basic 

premise that signal photons will be closer in space than random noise photons. The 

first step of the filtering is to implement an adaptive nearest neighbor search. By 

using an adaptive method, different thresholds can be applied to account for 

variable amounts of background noise and changing surface reflectance along the 

data profile. This search finds an effective radius by computing the probability of 

finding P number of points within a search area. For MABEL and mATLAS, P=20 
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points within the search area was empirically derived but found to be an effective 

and efficient number of neighbors. 

There may be cases, however, where the value of P needs to be changed. For 

example, during night acquisitions it is anticipated that the background noise rate 

will be considerably low. Since DRAGANN is searching for two distributions in 

neighborhood searching space, the software could incorrectly identify signal 

photons as noise photons. The parameter P, however, can be determined 

dynamically from estimations of the signal and noise rates from the photon cloud. In 

cases of low background noise (night), P would likely be changed to a value lower 

than 20.  Similarly, in cases of high amounts of solar background, P may need to be 

increased to better capture the signal and avoid classifying small, dense clusters of 

noise as signal. In this case, however, it is likely that noise photons near signal 

photons will also be misclassified as signal. The method for dynamically 

determining a P value is explained further in section 4.2.1.

After P is defined, a histogram of the number of neighbors within a search 

radius for each point is generated. The distribution of neighbor radius occurrences 

is analyzed to determine the noise threshold.

Eqn. 3.1

where Ntotal is the total number of photons in the point cloud, V is the volume of the 

nearest neighborhood search, and Vtotal is the bounding volume of the enclosed point 

cloud. For a 2-dimensional data set, V becomes 

Eqn. 3.2

where r is the radius. A good practice is to first normalize the data set along each 

dimension before running the DRAGANN filter. Normalization prevents the 

algorithm from favoring one dimension over the others in the radius search (e.g., 

when the latitude and longitude are in degrees and height is in meters).
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Figure 3.2. Histogram of the number of photons within a search radius. This histogram is 

used to determine the threshold for the DRAGANN approach.

Once the radius has been computed, DRAGANN counts the number of points 

within the radius for each point and histograms that set of values. The distribution 

of the number of points, Figure 3.2, reveals two distinct peaks; a noise peak and a 

signal peak. The motivation of DRAGANN is to isolate the signal photons by 

determining a threshold based on the number of photons within the search radius. 

The noise peak is characterized as having a large number of occurrences of photons 

with just a few neighboring photons within the search radius. The signal photons 

comprise the broad second peak. The first step in determining the threshold 

between the noise and signal is to implement Gaussian fitting to the number of 

photons distribution (i.e., the distribution shown in Figure 3.2). The Gaussian 

function has the form

Eqn. 3.3
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where a is the amplitude of the peak, b is the center of the peak, and c is the 

standard deviation of the curve. A first derivative sign crossing method is one option 

to identify peaks within the distribution. As previously described, the noise peak is 

the leftmost peak in the distribution because noise is characterized as having fewer 

neighboring points. A Gaussian curve is fit to the noise peak which is subsequently 

removed from the distribution via subtraction. Next, up to ten Gaussian curves are 

fit to the histogram using an iterative process of fitting and subtracting the max-

amplitude peak component from the histogram until all peaks have been extracted. 

Then, the potential Gaussians pass through a rejection process to eliminate those 

with poor statistical fits or other apparent errors (Goshtasby and O’Neill, 1994; 

Chauve et al. 2008). A Gaussian with an amplitude less than 1/5 of the previous 

Gaussian and within two standard deviations of the previous Gaussian should be 

rejected. Once the errant Gaussians are rejected, the noise and signal are separated 

based on the remaining two Gaussian components within the histogram using the 

logic that the leftmost Gaussian is noise (low neighbor counts) and the other is 

signal (high neighbor counts).

The intersection of these two Gaussians (noise and signal) determines a data 

threshold value. The threshold value is the parameter used to distinguish between 

noise points and signal points when the point cloud is re-evaluated for surface 

finding. In the event that only one curve passes the rejection process, the threshold 

is set at 4 above the center of the noise peak. 

An example of the noise filtered product from DRAGANN is shown in Figure 

3.3. The signal photons identified in this process will be combined with the coarse 

signal finding output available on the ATL03 data product. 
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Figure 3.3. Output from DRAGANN filtering.  Signal photons are shown as blue.

Figure 3.3 provides an example of along-track (profiling) height data 

collected in September 2012 from the MABEL (ICESat-2 simulator) over vegetation 

in North Carolina. The photons have been filtered such that the signal photons 

returned from vegetation and the ground surface are remaining.  Noise photons that 

are adjacent to the signal photons are also retained in the input dataset; however, 

these should be classified as noise photons during the surface finding process. It is 

possible that some additional outlying noise may be retained during the DRAGANN 

process when noise photons are densely grouped, and these photons should be 

filtered out before the surface finding process. Estimates of the ground surface and 

canopy height can then be derived from the signal photons. 

3.2 Surface Finding

Once the signal photons have been determined, the objective is to find the 

ground and canopy photons from within the point cloud. With the expectation that 

one algorithm may not work everywhere for all biomes, we are employing a 

framework that will allow us to combine the solutions of multiple algorithms into 

one final composite solution for the ground surface. The composite ground surface 

solution will then be utilized to classify the individual photons as ground, canopy, 
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top of canopy, or noise. Currently, the framework described here utilizes one 

algorithm for finding the ground surface and canopy surface. Additional methods, 

however, could be integrated into the framework at a later time. Figure 3.4 below 

describes the framework.

Figure 3.4. Flowchart of overall surface finding method.

3.2.1 De-trending the Signal Photons
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An important step in the success of the surface finding algorithm is to remove 

the effect of topography on the input data, thus improving the performance of the 

algorithm. This is done by de-trending the input signal photons by subtracting a 

heavily smoothed “surface” that is derived from the input data. Essentially, this is a 

low pass filter of the original data and most of the analysis to detect the canopy and 

ground will subsequently be implemented on the high pass data. The amount of 

smoothing that is implemented in order to derive this first surface is dependent 

upon the relief. For segments where the relief is high, the smoothing window size is 

decreased so topography isn’t over-filtered.

Figure 3.5.  Plot of Signal Photons (black) from 2014 MABEL flight over Alaska and de-

trended photons (red).

3.2.2 Canopy Determination

A key factor in the success of the surface finding algorithm is for the software 

to automatically account for the presence of canopy along a given L-km segment. 

Due to the large volume of data, this process has to occur in an automated fashion, 

allowing the correct methodology for extracting the surface to be applied to the 

data. In the absence of canopy, the iterative filtering approach to finding ground 
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works extremely well, but if canopy does exist, we need to accommodate for that 

fact when we are trying to recover the ground surface.

Currently, the Landsat Tree Cover Continuous Fields dataset from the 2000 

epoch is used to set a canopy flag within the ATL08 algorithm. Each of these Landsat 

Tree Cover tiles contain 30 m pixels indicating the percentage canopy cover for 

vegetation over 5 m high in that pixel area. The 2000 epoch is used over the newer 

2005 epoch due to “striping” in the 2005 tiles, caused by the failure of the scan line 

corrector (SLC) in 2003. The striping artifacts result in inconsistent pixel values 

across a landscape which in turn can result in a tenfold difference in the average 

canopy cover percentage calculated between the epochs for a flight segment. There 

is currently available a 2015 Tree Cover Beta Release that utilizes Landsat 8 data. 

This new release of the 2015 Tree Cover product will replace the 2000 epoch for 

setting the canopy flag in the ATL08 algorithm. The Tree Cover data are available via 

ftp at http://glcf.umd.edu/data/landsatTreecover/.

 For each L-km segment of ATLAS data, a comparison is made between the 

midpoint location of the segment and the midpoint locations of the WRS Landsat 

tiles to find the closest tile that encompasses the L-km segment. Using the closest 

found tile, each signal photon’s X-Y location is used to identify the corresponding 

Landsat pixel. Multiple instances of the same pixels found for the L-km segment are 

discarded, and the percentage canopy values of the unique pixels determined to be 

under the L-km segment are averaged to produce an average canopy cover 

percentage for that segment. If the average canopy cover percentage for a segment 

is over 5% (threshold subject to change under further testing), then the ATL08 

algorithm will assume the presence of canopy and identify both ground and 

vegetation photons in that segment’s output. Else, the ATL08 algorithm uses a 

simplified calculation to identify only ground photons in that segment.

The canopy flag determines if the algorithm will calculate only ground 

photons (canopy flag = 0) or both ground and vegetation photons (canopy flag = 1) 

for each L-km segment.
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For ATL08 product regions over Antarctica (regions 7, 8, 9, 10) and 

Greenland (region 11), the algorithm will assume only ground photons (canopy flag 

= 0) (see Figure 2.2).

3.2.3 Variable Window Determination

The method for generating a best estimated terrain surface will vary 

depending upon whether canopy is present. L-km segments without canopy are 

much easier to analyze because the ground photons are usually continuous. L-km 

segments with canopy, however, require more scrutiny as the number of signal 

photons from ground are fewer due to occlusion by the vegetation. 

There are some common elements for finding the terrain surface for both 

cases (canopy/no canopy) and with both methods.  In both cases, we will use a 

variable windowing span to compute statistics as well as filter and smooth the data. 

For clarification, the window size is variable for each L-km segment, but it is 

constant within the L-km segment. For the surface finding algorithm, we will employ 

a Savitzky-Golay smoothing/median filtering method. Using this filter, we compute a 

variable smoothing parameter (or window size). It is important to bound the filter 

appropriately as the output from the median filter can lose fidelity if the scan is 

over-filtered.

We have developed an empirically-determined shape function, bound between 

[5 51], that sets the window size (Sspan) based on the number of photons within 

each L-km segment.

Eqn. 3.4

Eqn. 3.5

where a is the shape parameter and length is the total number of photons in the L-

km segment. The shape parameter, a, was determined using data collected by 

MABEL and is shown in Figure 3.6. It is possible that the model of the shape 
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function, or the filtering bounds, will need to be adjusted once ICESat-2/ATLAS is on 

orbit and collecting data.

Figure 3.6. Shape Parameter for variable window size.

3.2.4 Compute descriptive statistics

To help characterize the input data and initialize some of the parameters used 

in the algorithm, we employ a moving window to compute descriptive statistics on 

the de-trended data. The moving window’s width is the smoothing span function 

computed in Equation 5 and the window slides ¼ of its size to allow of overlap 

between windows. By moving the window with a large overlap helps to ensure that 

the approximate ground location is returned. The statistics computed for each 

window step include:

 Mean height

 Min height

 Max height

 Standard deviation of heights

Dependent upon the amount of vegetation within each window, the 

estimated ground height is estimated using different statistics. A standard deviation 
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of the photon elevations computed within each moving window are used to classify 

the vertical spread of photons as belonging to one of four classes with increasing 

amounts of variation: open, canopy level 1, canopy level 2, canopy level 3. The 

canopy indices are defined in Table 3.1.

Table 3.1. Standard deviation ranges utilized to qualify the spread of photons within 

moving window.

Name Definition Lower Limit Upper Limit

Open Areas with little or 
no spread in signal 
photons determined 
due to low standard 
deviation

N/A Photons falling 
within 1st quartile of 
Standard deviation

Canopy Level 1 Areas with small 
spread in signal 
photons 

1st quartile Median

Canopy Level 2 Areas with a 
medium amount of 
spread

Median 3rd quartile

Canopy Level 3 Areas with high 
amount of spread in 
signal photons

3rd quartile N/A
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Figure 3.7. Illustration of the standard deviations calculated for each moving window to 

identify the amount of spread of signal photons within a given window.

3.2.5 Ground Finding Filter (Iterative median filtering)

A combination of an iterative median filtering and smoothing filter approach 

will be employed to derive the output solution of both the ground and canopy 

surfaces. The input to this process is the set of de-trended photons. Finding the 

ground in the presence of canopy often poses a challenge because often there are 

fewer ground photons underneath the canopy. The algorithm adopted here uses an 

iterative median filtering approach to retain/eliminate photons for ground finding 

in the presence of canopy. When canopy exists, a smoothed line will lay somewhere 

between the canopy top and the ground. This fact is used to iteratively label points 

above the smoothed line as canopy. The process is repeated four times to eliminate 

canopy points that fall above the estimated surface as well as noise points that fall 

below the ground surface. An example of iterative median filtering is shown in 

Figure 3.8. The final median filtered line is the preliminary surface estimate.  A 

limitation of this approach, however, is in cases of dense vegetation and few 

photons reaching the ground surface. In these instances, the output of the median 

filter may lie within the canopy. 
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Figure 3.8. Three iterations of the ground finding concept for L-km segments with 

canopy.

3.3 Top of Canopy Finding Filter

Finding the top of the canopy surface uses the same methodology as finding 

the ground surface, except now the de-trended data are “flipped” over.  The “flip” 

occurs by multiplying the photons heights by -1 and adding the mean of all the 

heights back to the data. The same procedure used to find the ground surface can be 

used to find the indices of the top of canopy points.

3.4 Classifying the Photons
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Once a composite ground surface is determined, photons falling within the 

point spread function of the surface are labeled as ground photons. Based on the 

expected performance of ATLAS, the point spread function should be approximately 

35 cm rms.  Signal photons that are not labeled as ground and are below the ground 

surface (buffered with the point spread function) are considered noise, but keep the 

signal label. 

The top of canopy photons that are identified can be used to generate an 

upper canopy surface through a spline function or other surface fitting methods. All 

signal photons that are not labeled ground and lie above the ground surface 

(buffered with the point spread function) and below the upper canopy surface are 

considered to be canopy photons (and thus labeled accordingly). Signal photons that 

lie above the top of canopy surface are considered noise, but keep the signal label.

FLAGS,    0 = noise

               1 = ground

2 = canopy

              3 = TOC (top of canopy)

The final ground and canopy classifications are flags 1 – 3. The full canopy is 

the combination of flags 2 and 3.

3.5 Refining the Photon Labels

During the first iteration of the algorithm, it is possible that some photons 

are mislabeled; most likely this would be noise photons mislabeled as canopy. To 

reject these mislabeled photons, we apply three criteria:

a) If top of canopy photons are 2 standard deviations above a 

smoothed median top of canopy surface

b) If there are less than 3 canopy indices within a 15m radius 
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c) If, for 500 signal photon segments, the number of canopy photons 

is < 5% of the total (when SNR > 1), or < 10% of the total (when 

SNR <= 1). This minimum number of canopy indices criterion 

implies a minimum amount of canopy cover within a region.

There are also instances where the ground points will be redefined. This 

reassigning of ground points is based on how the final ground surface is determined. 

Following the “iterate” steps in the flowchart shown in Figure 3.4, if there are no 

canopy indices identified for the L-km segment, the final ground surface is 

interpolated from the identified ground photons and then will undergo a final round 

of median filtering and smoothing. 

If canopy photons are identified, the final ground surface is interpolated 

based upon the level/amount of canopy at that location along the segment. The final 

ground surface is a composite of various intermediate ground surfaces, defined 

thusly:

ASmooth heavily smoothed surface used to de-trend the signal data

Interp_Aground interpolated ground surface based upon the identified ground 

photons

AgroundSmoot

h

median filtered and smoothed version of Interp_Aground
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Figure 3.9. Example of the intermediate ground and top of canopy surfaces calculated 

from MABEL flight data over Alaska during July 2014. 

During the first round of ground surface refinement, where there are canopy 

photons identified in the segment, the ground surface at that location is defined by 

the smoothed ground surface (AgroundSmooth) value. Else, if there is a location 

along-track where the standard deviation of the ground-only photons is greater 

than the 75% quartile for all signal photon standard deviations (i.e., canopy level 3), 

then the ground surface at that location is a weighted average between the 

interpolated ground surface (Interp_Aground*1/3) and the smoothed interpolated 

ground surface (AgroundSmooth*2/3). For all remaining locations long the 

segment, the ground surface is the average of the interpolated ground surface 

(Interp_Aground) and the heavily smoothed surface (Asmooth).

The second round of ground surface refinement is simpler than the first. 

Where there are canopy photons identified in the segment, the ground surface at 

that location is defined by the smoothed ground surface (AgroundSmooth) value 

again. For all other locations, the ground surface is defined by the interpolated 

ground surface (Interp_Aground). This composite ground surface is run through the 

median and smoothing filters again.
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The pseudocode for this surface refining process can be found in section 

4.10.

Examples of the ground and canopy photons for several MABEL lines are 

shown in Figures 3.10 – 3.12.

Figure 3.10. Example of classified photons from MABEL data collected in Alaska 2014. 

Red photons are photons classified as terrain. Green photons are classified as top of 

canopy.  Canopy photons (shown as blue) are considered as photons lying between the 

terrain surface and top of canopy.
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Figure 3.11. Example of classified photons from MABEL data collected in Alaska 2014. 

Red photons are photons classified as terrain. Green photons are classified as top of 

canopy.  Canopy photons (shown as blue) are considered as photons lying between the 

terrain surface and top of canopy.

Figure 3.12. Example of classified photons from MABEL data collected in Alaska 2014. 

Red photons are photons classified as terrain. Green photons are classified as top of 
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canopy.  Canopy photons (shown as blue) are considered as photons lying between the 

terrain surface and top of canopy.

3.6 Canopy Height Determination

Once a final ground surface is determined, canopy heights for individual 

photons are computed by removing the ground surface height for that photon’s 

latitude/longitude. These relative canopy height values will be used to compute the 

canopy statistics on the ATL08 data product.

3.7 Link Scale for Data products

The link scale for each segment within which values for vegetation 

parameters will be derived will be defined over a fixed distance of 100 m. A fixed 

segment length ensures that canopy and terrain metrics are consistent between 

segments, in addition to increased ease of use of the final products. A size of 100 m 

was selected as it should provide approximately 140 photons (a statistically 

sufficient number) from which to make the calculations for terrain and canopy 

height.
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4. ALGORITHM IMPLEMENTATION

Prior to running the surface finding algorithms used for ATL08 data products, the 

superset of output from the GSFC medium-high confidence classed photons (ATL03 

signal_conf_ph: flags 3-4) and the output from DRAGANN will be considered as the 

input data set. ATL03 input data requirements include the latitude, longitude, height, and 

classification for each photon. The motivation behind combining the results from two 

different noise filtering methods is to ensure that all of the potential signal photons for 

land surfaces will be provided as input to the surface finding software.

Table 4.1. Input parameters to ATL08 classification algorithm.

Name Data Type Long Name Units Description Source

delta_time DOUBLE GPS elapsed 
time

seconds Elapsed GPS seconds since 
start of the granule for a 
given photon. Use the 
metadata attribute 
granule_start_seconds to 
compute full gps time.

ATL03

lat_ph FLOAT latitude of 
photon

degrees Latitude of each received 
photon. Computed from the 
ECEF Cartesian coordinates 
of the bounce point.

ATL03

lon_ph FLOAT longitude of 
photon

degrees Longitude of each received 
photon. Computed from the 
ECEF Cartesian coordinates 
of the bounce point.

ATL03

h_ph FLOAT height of 
photon

meters Height of each received 
photon, relative to the 
WGS-84 ellipsoid.

ATL03

sigma_h FLOAT height 
uncertainty

m Estimated height uncertainty 
(1-sigma) for the reference 
photon.

ATL03

signal_conf_p
h

UINT_1_L
E

photon signal 
confidence

counts Confidence level associated 
with each photon event 
selected as signal (0-noise. 
1- added to allow for buffer 
but algorithm classifies as 
background, 2-low, 3-med, 
4-high).

ATL03

segment_id UNIT_32 along-track unitless A seven-digit number ATL03
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segment ID 
number

uniquely identifying each 
along-track segment. These 
are sequential, starting with 
one for the first segment 
after an ascending equatorial 
crossing node.

Landsat tree 
cover

UINT_8 Landsat Tree 
Cover 
Continuous 
Fields

percentage Percentage of woody 
vegetation greater than 5 
meters in height across a 30 
meter pixel

Global 
Land 
Cover 
Facility 
(Sexton
, 2013)

Table 4.2. Additional external parameters referenced in ATL08 product.

Name Data Type Long Name Units Description Source

atlas_pa Off nadir pointing angle of 
the spacecraft

ground_track Ground track, as numbered 
from left to right: 1 = 1L, 2 
= 1R, 3 = 2L, 4 = 2R, 5 = 
3L, 6 = 3R

dem_h Reference DEM height

ref_azimuth FLOAT azimuth radians Azimuth of the unit pointing 
vector for the reference 
photon in the local ENU 
frame in radians. The angle 
is measured from north and 
positive towards east.

ATL03

ref_elev FLOAT elevation radians Elevation of the unit 
pointing vector for the 
reference photon in the local 
ENU frame in radians. The 
angle is measured from east-
north plane and positive 
towards up.

ATL03

rgt INTEGER_
2

reference 
ground track

unitless The reference ground track 
(RGT) is the track on the 
Earth at which a specified 
unit vector within the 
observatory is pointed. 
Under nominal operating 
conditions, there will be no 
data collected along the 
RGT, as the RGT is spanned 
by GT2L and GT2R. During 
slews or off-pointing, it is 

ATL03
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possible that ground tracks 
may intersect the RGT. The 
ICESat-2 mission has 1,387 
RGTs.

sigma_along DOUBLE along-track 
geolocation 
uncertainty 

meters Estimated Cartesian along-
track uncertainty (1-sigma) 
for the reference photon.

ATL03

sigma_across DOUBLE across-track 
geolocation 
uncertainty

meters Estimated Cartesian across-
track uncertainty (1-sigma) 
for the reference photon.

ATL03

surf_type INTEGER_
1

surface type unitless Flags describing which 
surface types this interval is 
associated with. 0=not type, 
1=is type. Order of array is 
land, ocean, sea ice, land 
ice, inland water. 

ATL03
, 
Section 
4

cloud_flag_asr Integer(3) Cloud 
probability 
from ASR

unitless Cloud confidence flag, from 
0 to 5, indicating low, med, 
or high confidence of clear 
or cloudy sky

ATL09

msw_flag Byte(3) Multiple 
scattering 
warning flag

unitless Flag with values from 0 to 5 
indicating presence of 
multiple scattering, which 
may be due to blowing snow 
or cloud/aerosol layers.

ATL09

asr Float(3) Apparent 
surface 
reflectance

unitless Surface reflectance as 
modified by atmospheric 
transmission

ATL09

4.1 Preparing data for input to ATL08 algorithm

1. Break up data into L-km segments.  Segments equivalent of 10 km in along-

track distance of an orbit would be appropriate.

2. Add a buffer of 200 m (or 10 segment_id's) to both ends of each L-km 

segment. The total processing segment length is (L-km + 2*buffer), but will 

be referred to as L-km segments for simplicity.

3. The input data for ATL08 algorithm is X, Y, Z, T (where T is time).

4. Determine a relative along-track distance, ATD, of each geolocated photon 

from the beginning of each L-km segment.
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5. Normalize the lat/lon/height data from 0 – 1 for each L-km segment based on 

the min/max of each field.  So, normlat = (lat-minlat)/(maxlat – minlat).

6. Build a kd-tree based on normalized Z and ATD.

4.1.1 Option for cloud flag based filtering

It is possible for the presence of clouds to affect the number of surface photon 

returns, or to cause false positive classifications of ground or canopy photons on low 

cloud returns. Either of these cases would lower the quality of the ATL08 product. 

Currently, ATL08 provides a cloud flag on its 100 m product and encourages the 

user to make note of the presence of clouds when using ATL08 output. However, if 

the presence of clouds is shown to significantly affect the ATL08 products once on-

orbit data come in, an option to filter the ATL03 data before processing through the 

ATL08 algorithm is described here. By default, this option should not be set; it is 

explained here in case on-orbit data show the need for it.

1. The ATL09 cloud parameters of interest are solar_elevation, cloud_flag_asr, 

cloud_flag_atm, layer_con, and msw_flag. Interpolate these values to the 

ATL03 photon resolution.

2. Find the photons where solar_elevation > 0 to determine which photons are 

in daytime scenes.

3. For daytime scenes, the sky is considered clear if cloud_flag_asr < 3.

4. For nighttime scenes, the sky is considered clear if:

( (cloud_flag_atm == 0) OR ( cloud_flag_atm > 0 AND layer_con <= 10 ) )

AND

( (msw_flag < 3) AND (msw_flag > -1) )

5. The ATL03 photons which pass these clear sky criteria are then processed 

through the ATL08 algorithm.

4.2 Noise filtering via DRAGANN

DRAGANN will use ATL03 photons with all signal classification flags (0-4). These 

will include both signal and noise photons. See Appendix A for more details.
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1. Determine the search radius starting with Equation 3.1. P=20, and Vtotal =1. 

Ntotal is the number of photons within the data L-km segment.  Solve for V.

2. Now that you know V, determine the radius using Equation 3.2.

3. Compute the number of neighbors for each photon using this search radius.

4. Generate a histogram of the neighbor count distribution. As illustrated in 

Figure 3.2, the noise peak is the first peak (usually with the highest 

amplitude).

5. Compute the amplitude, a, of the first peak, which is located at position b.

6. Determine the width, c, of the first peak.

7. Use the amplitude and width to fit a Gaussian to the first peak of the 

histogram, as described in Equation 3.3. This fit is called Gaussian 1.

8. Remove Gaussian 1 from number count distribution.

9. Fit up to 10 Gaussians to the remaining distribution. 

a. Reject Gaussians that are too near (< 2 standard deviations) and 

amplitude too low (<1/5 previous amplitude) from the previous 

signal Gaussian. 

10. Sort the Gaussians from largest to smallest area, estimated by a*c.

a. Check in sorted order if one of the Gaussians are in the first 10% of 

the histogram. If so, it becomes the first Gaussian.

b. Reject any Gaussians with imaginary components.

c. Reject any Gaussians that are fully contained within another.

d. Reject Gaussians whose centers are within 3 standard deviations of 

another, unless only two Gaussians remain

11. The last remaining Gaussian should represent the bulk of the signal photons 

within the distribution. This fit is referred to as Gaussian 2.

12. The intersection of Gaussian1 and Gaussian 2 is the threshold value.  

a. If the right edge of Gaussian 1 reaches near zero, defined as 

max(a)/100, for 5 consecutive bins, set that 5th bin location as the 

threshold instead of the intersection point.

b. If there is only one Gaussian, it is assumed to be the noise Gaussian, 

and the threshold is set to b + c.
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13. Label all photons having a neighbor count above the threshold as signal.

14. Label all photons having a neighbor count below the threshold as noise.

15. Reject noise photons.

16. Retain signal photons for feeding into next step of processing.

17. Use Logical OR to combine DRAGANN signal photons with ATL03 medium-

high confidence signal photons (flags 3-4) as ATL08 signal photons.

18. Calculate a signal to noise ratio (SNR) for the L-km segment by dividing the 

number of ATL08 signal photons by the number of noise (i.e., all – signal) 

photons.

4.2.1 Alternative way of classifying signal with DRAGANN

If the default value of P=20 is found to not be sufficient, an alternative way of 

calculating P is described in this subsection. This assumes L-km to be 10 km (with 

additional L-km buffering).

1. Define a DRAGANN processing window of 170 segments (~3.4 km), 

and a buffer of 10 segments (~200 m). 

2. The buffer is applied to both sides of each DRAGANN processing 

window to create buffered DRAGANN processing windows 

(referenced as “buffered window” for the rest of this section) that will 

overlap the DRAGANN processing windows next to them.

3. For each buffered window within the L-km segment, calculate a 

histogram of points with 1 m elevation bins.

4. For each buffered window histogram, calculate the median counts.

5. Bins with counts below the buffered window median count value are 

estimated to be noise. Calculate the mean count of noise bins.

6. Bins with counts above the buffered window median count value are 

estimated to be signal. Calculate the mean count of signal bins.

7. Determine the time elapsed over the buffered window.

8. Calculate estimated noise and signal rates for each buffered window 

by multiplying each window’s mean counts of noise bins and signal 
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bins, determined from steps 5 and 6 above, by 1/(elapsed time) to 

return the rates in terms of points/meter[elevation]/second[across].

9. Calculate a noise ratio for each window by dividing the noise rate by 

the signal rate.

10. If, for all the buffered windows in the L-km segment, the noise rate is 

less than 20 and the noise ratio is less than 0.15; OR any noise rate is 

0; OR any signal rate is greater than 1000:  re-calculate steps 3-9 

using the entire L-km segment. Continue with the following steps 

using results from the one L-km window (instead of multiple 

buffered windows).

11. Now, determine the DRAGANN parameter, P, for each buffered 

window based on the following conditionals:

a. If the signal rate is NaN (i.e., an invalid value), set the 

signal index array to empty and move on to the next 

buffered window.

b. If noise rate < 20 || noise ratio < 0.15:

    P = signal rate

    If signal rate is < 5, P = 5; if signal rate > 20, P = 20

c. Else P = 20.

12. Run DRAGANN on the buffered window points using the calculated P.

13. If DRAGANN fails to find a signal (i.e., only one Gaussian found), run 

DRAGANN again with P = 10.

14. If DRAGANN still fails to find a signal, try to determine P a second time 

using the following conditionals:

a. If (noise rate >= 20) …

&& (signal rate > 100) …

&& (signal rate < 250),

    P = (signal rate)/2

b. Else if signal rate >= 250,

    if noise rate >= 250,

        P = (noise rate)*1.1
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    else,

        P = 250

c. Else, P = mean(noise rate, signal rate)

15. Run DRAGANN on the buffered window points using the newly 

calculated P.

a. If still no signal points are found, set a dragannError flag.

16. If signal points were found by DRAGANN, for each buffered window 

calculate a signal check by dividing the number of signal points found 

via DRAGANN by the number of total points in the buffered window.

17. If dragannError has been set, or there are suspect signal 
statistics, the following snippet of pseudocode will check those 
conditionals and try to iteratively find a better P value to run 
DRAGANN with:

try_count = 0

While dragannError …
|| (  (noise rate >= 30) …
        && (signal check > noise ratio) …
        && (noise ratio >= 0.15) ) …
|| (signal check < 0.001):
    
    if P < 3,
        break
    else,
        P = P*0.75
    end

    if  try_count < 2
            Clear out signal index results from previous DRAGANN run
            Re-run DRAGANN with new P value
            Recalculate the signal check
    end

    if no signal index results are returned
            P = P*0.75
    end

    try_count = try_count + 1
    
end
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18. If no signal photons are found by DRAGANN because only one 

Gaussian was found, set the threshold as b+c (i.e., one standard 

deviation away from the Gaussian peak location) for a final 

DRAGANN run. Otherwise, set the signal index array to empty and 

move on to the next buffered window.

19. Assign the signal values found from DRAGANN for each buffered 

window to the original DRAGANN processing window range of points.

20. Combine signal points from each DRAGANN processing window back 

into one L-km array of signal points for further processing.

4.2.2 Iterative DRAGANN processing

It is possible in processing segments with high noise rates that DRAGANN will 

incorrectly identify clusters of noise as signal. One way to reduce these false positive 

noise clusters is to run the alternative DRAGANN process (Sec 4.2.1) again with the 

input being the signal output photons from the first run through alternative 

DRAGANN. Note that this methodology is still being tested, so by default this option 

should not be set.

1. If SNR < 1 (TBD) from alternative DRAGANN run, run alternative DRAGANN 

process again using the output signal photons from first DRAGANN run as the 

input to the second DRAGANN run.

2. Recalculate SNR based on output of second DRAGANN run. 

4.3 Is Canopy Present

1. If L-km segment is within an ATL08 region encompassing Antarctica (regions 

7, 8, 9, 10) or Greenland (region 11), assume no canopy is present:  canopy 

flag = 0.  Else:

2. Determine the center Latitude/Longitude position for the L-km segment.
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3. Determine the corresponding tile from the Landsat continuous cover 

product.

4. For each unique XY position in the ATLAS segment, extract the canopy cover 

value from the Landsat CC product

5. Compute the average canopy cover value for the L-km segment (based on the 

Landsat values).

6. If canopy cover > 5%, set canopy flag = 1 (assumes canopy is present)

7. If canopy cover <= 5%, set canopy flag = 0  (assumes no canopy is present)

4.4 Compute Filtering Window

1. Next step is to run a surface filter with a variable window size (variable in 

that it will change from L-km segment to L-km segment). The window-size is 

denoted as Window.

2. , where length is the number of photons in the segment.

3. , where a is the shape parameter for the window span.

4.5 De-trend Data

1. The input data are the signal photons identified by DRAGANN and the ATL03 

classification (signal_conf_ph) values of 3-4.

2. Generate a rough surface by connecting all unique (time) photons to each 

other. Let’s call this surface interp_A.

3. Run a median filter through interp_A  using the window size set by the 

software. Output = Asmooth.

4. Define a reference DEM limit (ref_dem_limit) as 120 m (TBD).

5. Remove any Asmooth values further than the ref_dem_limit threshold from 

the reference DEM, and interpolate the Asmooth surface based on the 

remaining Asmooth values.
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6. Compute the approximate relief of the L-km segment using the 95th - 5th 

percentile heights of the signal photons. We are going to filter Asmooth again 

and the smoothing is a function of the relief.

7. Define the SmoothSize using the conditional statements below. The 

SmoothSize will be used to detrend the data as well as to create an 

interpolated ground surface later.

SmoothSize = 2 * Window

 If relief>=900, SmoothSize= round(SmoothSize/4)

 If relief>=400 && <=900, SmoothSize=round(SmoothSize/3)

 If relief>=200 && <=400, SmoothSize=round(SmoothSize/2)

8. Greatly smooth Asmooth by first running Asmooth 10 times through a 

median filter then a smoothing filter with a moving average method on the 

result. Both the median filter and the smoothing filter use a window size of 

SmoothSize.

4.6 Filter outlier noise from signal

1. If there are any signal data that are 150 meters above Asmooth, remove them 

from the signal data set.

2. If the standard deviation of the detrended signal is greater than 10 meters, 

remove any signal value from the signal data set that is 2 times the standard 

deviation of the detrended signal below Asmooth.

3. Calculate a new Asmooth surface by interpolating a surface from the 

remaining signal photons and median filtering using the Window size, then 

median filter and smooth 10 times again using the SmoothSize.

4. Detrend the signal photons by subtracting the signal height values from the 

Asmooth surface height values. Use the detrended heights for surface finding.
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4.7 Finding the initial ground estimate

1. At this point, the initial signal photons have been noise filtered and de-

trended and should have the following format: X, Y, detrended Z, T (T=time). 

From this, the input data into the ground finding will be the ATD (along track 

distance) metric (such as time) and the detrended Z height values.

2. Define a medianSpan as Window*2/3.

3. Identifying the ground surface is an iterative process. Start by assuming that 

all the input signal height photons are the ground.  The first goal is the cut 

out the lower height excess photons in order to find a lower bound for 

potential ground photons. This process is done 5 times and an offset of 4 

meters is subtracted from the resulting lower bound. The smoothing filter 

uses a moving average again:

for j=1:5

cutOff = median filter (ground, medianSpan)

cutOff = smooth filter (cutOff, Window)

ground = ground( (cutOff – ground) > -1 )

end

lowerbound = median filter (ground, medianSpan*3)

middlebound = smooth filter (lowerbound, Window)

lowerbound = smooth filter (lowerbound, Window) – 4

end;

4. Create an interpolated surface along the lower bound points and only keep 

input photons above that line as potential ground points:

top = input( input > interp(lowerbound) )

5. The next goal is to cut out excess higher elevation photons in order to find an 

upper bound to the ground photons. This process is done 3 times and an 

offset of 1 meter is added to the resulting upper bound:

for j = 1:3
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cutOff = median filter (top, medianSpan)

cutOff = smooth filter (cutOff, Window)

top  = top( (cutOff – top) > -1 )

end

upperbound = median filter (top, medianSpan)

upperbound = smooth filter (upperbound, Window) + 1

6. Create an interpolated surface along the upper bound points and extract the 

points between the upper and lower bounds as potential ground points:

ground = input( ( input > interp(lowerbound) ) & …

( input < interp(upperbound) ) )

7. Refine the extracted ground points to cut out more canopy:

For j = 1:2

cutOff = median filter (ground, medianSpan)

cutOff = smooth filter (cutOff, Window)

ground = ground( (cutOff – ground) > -1 )

end

8. Run the ground output once more through a median filter using window side 

medianSpan and a smoothing filter using window size Window, but this time 

with the Savitzky-Golay method.

9. Finally, linearly interpolate a surface from the ground points.

10. The first estimate of canopy points are those indices of points that are 

between 2 and 150 meters above the estimated ground surface. Save these 

indices for the next section on finding the top of canopy.

11. The output from the final iteration of ground points is temp_interpA – an 

interpolated ground estimate.

12. Find ground indices that lie within +/- 0.5 m of temp_interpA. 

13. Apply the ground indices to the original heights (i.e., not the de-trended data) 

to label ground photons.
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14. Interpolate a ground surface based on the ground photons.  Output is 

interp_Aground.

4.8 Find the top of the canopy (if canopy_flag = 1) 

1. The input are the ATD metric (i.e., time), and the de-trended Z values indexed 

by the canopy indices extracted from step 4.7(10).

2. Flip this data over so that we can find a canopy “surface” by multiplying the 

de-trended canopy heights by -1.0 and adding the mean(heights).

3. Finding the top of canopy is also an iterative process. Follow the same steps 

described in 4.7(2) – 4.7(9), but use the canopy indexed and flipped Z values 

in place of the ground input.

4. Final retained photons are considered top of canopy photons. Use the indices 

of these photons to define top of canopy photons in the original (not de-

trended) Z values.

5. Build a kd-tree on canopy indices. 

6. If there are less than three canopy indices within a 15m radius, reassign 

these photons to noise photons.

4.9 Compute statistics on de-trended data

1. The input data have been noise filtered and de-trended and should have the 

following input format: X, Y, detrended Z, T.

2. The input data will contain signal photons as well as a few noise photons 

near the surface.

3. Compute statistics of heights in the along-track direction using a sliding 

window. Using the window size (window), compute height statistics for all 

photons that fall within each window. These include max height, median 

height, mean height, min height, and standard deviation of all photon heights. 

Additionally, in each window compute the median height and standard 
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deviation of just the initially classified top of canopy photons, and the 

standard deviation of just the initially classified ground photon heights.  

Currently only the median top of canopy, and all STD variables are being 

utilized, but it’s possible that other statistics may be incorporated as 

changes/improvements are made to the code.

4. Slide the window ¼ of the window span and recompute statistics along the 

entire L-km segment. This results in one value for each statistic for each 

window.

5. Determine canopy index categories for each window based upon the total 

distribution of STD values for all signal photons along the L-km segment 

based on STD quartiles.

6. Open canopy have STD values falling within the 1st quartile.

7. Canopy Level 1 has STD values falling from 1st quartile to median STD value.

8. Canopy Level 2 has STD values falling from median STD value to 3rd quartile.

9. Canopy Level 3 has STD values falling from 3rd quartile to max STD.

10. Interpolate the window STD values (both for all photons and ground-only 

photons) back to the native along-track resolution and calculate the 

interpolated all-photon STD quartiles to create an interpolated canopy level 

index. This will be used later for interpolating a ground surface.

4.10 Refine Ground Estimates

1. Smooth the interpolated ground surface 10 times:

For j= 1:10

AgroundSmooth = median filter (interp_Aground, SmoothSize*5)

AgroundSmooth = smooth filter (AgroundSmooth, SmoothSize)

             End
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2. This output (AgroundSmooth) from the filtering/smoothing function is an 

intermediate ground solution and it will be used to estimate the final 

solution.

3. If there are no canopy indices identified along the entire segment (OR 

canopy_flag = 0) AND relief >400 m

FINALGROUND = median filter (Asmooth, SmoothSize)

FINALGROUND = smooth filter (FINALGROUND, SmoothSize)

Else

FINALGROUND = AgroundSmooth

end

4. If there are canopy indices identified along the segment:

If there is a canopy photon identified at a location along-track above the 

ground surface, then at that location along-track

FINALGROUND = AgroundSmooth

 else if there is a location along-track where the interpolated ground STD has 

an interpolated canopy level>=3 

FINALGROUND = Interp_Aground*1/3 + AgroundSmooth*2/3

else

FINALGROUND = Interp_Aground*1/2 + Asmooth*1/2

end

5. Smooth the resulting interpolated ground surface (FINALGROUND) once 

using a median filter with window size of SmoothSize, then a smoothing filter 

twice with window size of SmoothSize. Select ground photons that lie within 

the point spread function (PSF) of FINALGROUND.

6. PSF is determined by sigma_atlas_land (Eq. 1.2) calculated at the photon 

resolution and thresholded between 0.5 to 1 m.

a. Estimate the terrain slope by taking the gradient of FINALGROUND.

b. Interpolate the sigma_h values to the photon resolution.

c. Calculate sigma_topo (Eq. 1.3) at the photon resolution.
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d. Calculate sigma_atlas_land at the photon resolution using the sigma_h 

and sigma_topo values at the photon resolution.

e. Set PSF equal to sigma_atlas_land.

i. Any PSF < 0.5 m is set to 0.5 m as the minimum PSF.

ii. Any PSF > 1 m is set to 1 m as the maximum PSF. Set 

psf_flag to true.

4.11 Canopy Photon Filtering

1. The first canopy filter will remove photons classified as top of canopy that 

are significantly above a smoothed median top of canopy surface. To 

calculate the smoothed median top of canopy surface:

a. Interpolate the median and standard deviation canopy window 

statistics, calculated from 4.9 (3), to the top of canopy photon 

resolution. Output variables:  interpMedianC, interpStdC.

b. Calculate a canopy window size using Eq. 3.4, where length = number 

of top of canopy photons. Output variable:  winC.

c. Create the median filtered and smoothed top of canopy surface, 

smoothedC:

smoothedC = median filter ( interpMedianC, winC )

if SNR > 1, canopySmoothSpan = winC*2; 

else, canopySmoothSpan = smoothSpan;

smoothedC = smooth filter ( smoothedC, canopySmoothSpan )

d. Add the detrended heights back into the smoothedC surface:

smoothedC = smoothedC + Asmooth

2. Set canopy height thresholds based on the interpolated top of canopy STD:
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If SNR > 1, canopySTDthresh = 3; else, canopySTDthresh = 2;

canopy_height_thresh = canopySTDthresh*interpStdC

high_cStd = canopy_height_thresh > 10

low_cStd = canopy_height_thresh < 3

canopy_height_thresh(high_cStd) = 

canopy_height_thresh(high_cStd)/2

canopy_height_thresh(low_cStd) = 3

3. Relabel as noise any top of canopy photons that are higher than smoothedC + 

canopy_height_thresh.

4. Next, interpolate a canopy spline using the remaining top of canopy photons 

(here we are trying to create an upper bound on canopy points). The 

interpolation method used is the shape-preserving piecewise cubic 

interpolation. This output is named interp_Acanopy.

5. Photons falling below interp_Acanopy and above FINALGROUND+PSF are 

labeled as canopy points.

6. For 500 signal photon segments, if number of all canopy photons (i.e., canopy 

and top of canopy) is:

< 5% of the total (when SNR > 1), OR

 < 10% of the total (when SNR <= 1),

relabel the canopy photons as noise.

7. Interpolate a new canopy spline using the filtered top of canopy photons.  

This output is again named interp_Acanopy.

8. Again, label photons that lie between interp_Acanopy and 

FINALGROUND+PSF as canopy photons.

9. Since the canopy points have been relabeled, we need to do a final 

refinement of the ground surface:

If canopy is present at any location along-track
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FINALGROUND = AgroundSmooth (at that location)

Else if canopy is not present at a location along-track

FINALGROUND = interp_Aground

Smooth the resulting interpolated ground surface (FINALGROUND) 

once using a median filter with window size of SmoothSize, then a 

smoothing filter twice with window size of SmoothSize.

10. Relabel ground photons based on this new (and last) FINALGROUND solution 

+/- a recalculated PSF.  Points falling below the buffer are labeled as noise.  

11. Using Interp_Acanopy and this last FINALGROUND solution + PSF buffer, 

label all photons that lie between the two as canopy photons.

12. Repeat the canopy cover filtering:  For 500 signal photon segments, if 

number of all canopy photons (i.e., canopy and top of canopy) is:

< 5% of the total (when SNR > 1), OR

 < 10% of the total (when SNR <= 1),

relabel the canopy photons as noise. This is the last canopy labeling step.

4.12 Compute individual Canopy Heights

1. At this point, each photon will have its final label assigned in 

classed_pc_flag:  0 = noise, 1 = ground, 2 = canopy, 3 = top of canopy.

2. For each individual photon labeled as canopy or top of canopy, subtract the Z 

height value from the interpolated terrain surface, FINALGROUND, at that 

particular position in the along-track direction.

3. The relative height for each individual canopy or top of canopy photon will 

be used to calculate canopy products described in Section 4.15. Additional 

canopy products will be calculated using the absolute heights, as described in 

Section 4.15.1.
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4.13 Final photon classification QA check

1. Find any ground, canopy, or top of canopy photons that have elevations 

further than the ref_dem_limit from the reference DEM elevation value. 

Convert these to the noise classification.

2. Find any relative heights of canopy or top of canopy photons that are greater 

than 150 m above the interpolated ground surface, FINALGROUND. Convert 

these to the noise classification.

3. Find any FINALGROUND elevations that are further than the ref_dem_limit 

from the reference DEM elevation value. Convert those FINALGROUND 

elevations to an invalid value, and convert any classified photons at the same 

indices to noise.

4. If more than 50% of photons are removed in a segment, set ph_removal_flag 

to true.

4.14 Compute segment parameters for the Land Products

1. For each 100 m segment, determine the classed photons (photons classified 

as ground, canopy, or top of canopy) and extract the ground photons.

2. If the number of ground photons > 5% of the total number of classed photons 

within the segment (this control value of 5% can be modified once on orbit):

a. Compute statistics on the ground photons: mean, median, min, max, 

standard deviation, mode, and skew. These heights will be reported 

on the product as h_te_mean, h_te_median, h_te_min, h_te_max, 

h_te_mode, and h_te_skew respectively described in Table 2.1.

b. Compute the standard deviation of the ground photons about the 

interpolated terrain surface, FINALGROUND. This value is reported as 

h_te_std in Table 2.1.

c. Compute the residuals of the ground photon Z heights about the 

interpolated terrain surface, FINALGROUND. The product is the root 
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sum of squares of the ground photon residuals combined with the 

sigma_ATLAS_LAND_h term in Table 2.5 normalized by the number 

of ground photons in the segment as described in Equation 1.4. This 

parameter reported as h_te_uncertainty in Table 2.1. 

d. Compute a linear fit on the ground photons and report the slope.  This 

parameter is terrain_slope in Table 2.1.

i. If there are fewer than two ground photons in the segment, or 

if the number of ground photons in the segment <= 5% of total 

number of classified photons in the segment, and there are at 

least two classified (ground or canopy) photons, compute 

terrain_slope via a linear fit of the interpolated ground surface, 

FINALGROUND, instead of the ground photons.

e. Calculate a best fit terrain elevation at the mid-point location of the 

100 m segment:

i. Calculate each terrain photon’s distance along-track into the 

100 m segment using the corresponding ATL03 20 m products 

segment_length and dist_ph_along, and determine the mid-

segment distance (expected to be 50 m ± 0.5 m).

1. Use the mid-segment distance to interpolate a mid-

segment time (delta_time in Table 2.4). Use the mid-

segment time to interpolate other mid-segment 

parameters:  interpolated terrain surface, 

FINALGROUND, as h_te_interp (Table 2.1); latitude 

and longitude (Table 2.4).

ii. For the linear fit, use terrain_slope to apply a slope 

correction to each terrain photon, and use a linear weighting 

on each photon based on its distance to the mid-segment 

location:  1 / sqrt( (photon distance along – mid-segment 

distance)^2 ).

iii. Calculate a 3rd and 4th order polynomial fit to the terrain 

photons in the segment.
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iv. Determine which of the three fits is best by calculating 

the mean and standard deviation of the fit errors. If one of the 

fits has both the smallest mean and standard deviations, use 

that fit. Else, use the fit with the smallest standard deviation. If 

more than one fit has the same smallest mean and/or standard 

deviation, use the fit with the higher polynomial.

v.Using the best fit, interpolate a mid-segment elevation. This 

parameter is h_te_best_fit in Table 2.1.

1. If h_te_best_fit is farther than 3 m from h_te_interp (best 

fit diff threshold), check if:  there are terrain photons on 

both sides of the mid-segment location; or the mid-

segment elevation of the linear fit is greater than the 

best fit diff threshold; or the number of ground photons 

in the segment <= 5% of total number of classified 

photons per segment. If any of those cases are present, 

use h_te_interp as the corrected h_te_best_fit. Otherwise 

use the linear fit as the corrected h_te_best_fit.

f. Compute the difference of the median ground height from the 

reference DTM height. This parameter is h_dif_ref in Table 2.4.

3. If the number of ground photons in the segment <= 5% of total number of 

classified photons per segment, 

a. Report an invalid value for all computed terrain products: h_te_mean, 

h_te_median, h_te_min, h_te_max, h_te_mode, h_te_skew, 

h_te_roughness, h_te_uncertainty, and h_te_slope respectively as 

described in Table 2.1.

b. Report the interpolated terrain surface, FinalGround, as h_te_interp 

as described in Table 2.1, and report h_te_best_fit as the h_te_interp 

value.
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4.15 Compute segment parameters for the Canopy Products

1. For each 100 m segment, determine the classed photons (photons classified 

as ground, canopy, or top of canopy) and extract all canopy photons (i.e., 

canopy and top of canopy; henceforth referred to as “canopy” unless 

otherwise noted).

2. Only compute canopy height products if the number of canopy photons is > 

5% of the total number of classed photons within the segment (this control 

value of 5% can be modified once on orbit), and the number of ground 

photons is > 5%, or else report an invalid value for each canopy height 

variable.

3. Again, the relative heights (height above the interpolated ground surface, 

FINALGROUND) have been computed already.  All parameters derived in the 

section are based on relative heights.  

4. Sort the heights and compute a cumulative distribution of the heights. Select 

the height associated with the 95% maximum height. This value is h_canopy 

listed in Table 2.2.

5. Compute statistics on the relative canopy heights.  Min, Mean, Median, Max 

and standard deviation.  These values are reported on the product as 

h_min_canopy, h_mean_canopy, h_median_canopy, h_max_canopy, and 

canopy_openness respectively in Table 2.2.

6. Compute the difference between h_canopy and h_median_canopy. This 

parameter is h_dif_canopy reported in Table 2.2 and represents an amount 

of canopy depth.

7. Again, using the cumulative distribution of relative canopy heights, select the 

heights associated with the canopy_h_metrics percentile distributions (25, 

50, 60, 70, 75, 80, 85, 90, 95, 99), and report as listed in Table 2.2.

8. Using the h_canopy height value computed in step 4, compute height bins as 

h_canopy/4. Next compute the number of heights (or photons) that fall 

within each height bin. Divide these number of photons by the total number 

of canopy photons for the segment. These percentages are the density values 

and reported as canopy_d_quartile, as described in Table 2.2.
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9. Compute the standard deviation of all photons that were labeled as Top of 

Canopy (flag 3) in the photon labeling portion. This value is reported on the 

data product as toc_roughness listed in Table 2.2.

10. The quadratic mean height, h_canopy_quad is computed by 

     

where Nca is the number of canopy photons in the segment and hi are the 

individual canopy heights.

11. The canopy_closure parameter in Table 2.2 is computed by 

4.15.1 Canopy Products calculated with absolute heights

1. The absolute canopy height products are calculated if the number of canopy 

photons is > 5% of the total number of classed photons within the segment. 

No number of ground photons threshold is applied for these.

2. The centroid_height parameter in Table 2.2 is represented by all the classed 

photons for the segment (canopy & ground).  To determine the centroid 

height, compute a cumulative distribution of all absolute classified heights 

and select the median height.

3. Compute statistics on the absolute canopy heights: Min, Mean, Median, and 

Max. These values are reported on the product as h_min_canopy_abs, 

h_mean_canopy_abs, h_median_canopy_abs, and h_max_canopy_abs, 

respectively, as described in Table 2.2.

4. Again, using the cumulative distribution of absolute canopy heights, select 

the heights associated with the canopy_h_metrics percentile distributions 

(25, 50, 60, 70, 75, 80, 85, 90, 95, 99), and report as listed in Table 2.2.

4.16 Record final product without buffer
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1. Now that all products have be determined via processing of the L-km 

segment with the buffer included, remove the products that lie within the 

buffer zone on each end of the L-km segment.

2. Record the final L-km products and move on to process the next L-km 

segment.

5
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DATA PRODUCT VALIDATION STRATEGY

Although there are no Level-1 requirements related to the accuracy and 

precision of the ATL08 data products, we are presenting a methodology for 

validating terrain height, canopy height, and canopy cover once ATL08 data 

products are created.  Parameters for the terrain and canopy will be provided at a 

fixed size of 100 m along the ground track referred to as a segment. Validation of the 

data parameters should occur at the 100 m segment scale and residuals of 

uncertainties are quantified (i.e. averaged) at the 5-km scale. This 5-km length scale 

will allow for quantification of errors and uncertainties at a local scale which should 

reflect uncertainties as a function of surface type and topography.

5.1 Validation Data
Swath mapping airborne lidar is the preferred source of validation data for the 

ICESat-2 mission due to the fact that it is widely available and the errors associated 

with most small-footprint, discrete return data sets are well understood and 

quantified. Profiling airborne lidar systems (such as MABEL) are more challenging 

to use for validation due to the low probability of exact overlap of flightlines 

between two profiling systems (e.g. ICESat-2 and MABEL).  In order for the ICESat-2 

validation exercise to be statistically relevant, the airborne data should meet the 

requirements listed in Table 5.1.  Validation data sets should preferably have a 

minimum average point density of 5 pts/m2. In some instances, however, validation 

data sets with a lower point density that still meet the requirements in Table 5.1 

may be utilized for validation to provide sufficient spatial coverage.

Table 5.1. Airborne Lidar Data Vertical Height (Z accuracy) Requirements for validation 

data

ICESat-2 ATL08 Parameter Airborne lidar (rms)

Terrain height <0.3 m over open ground (vertical)

<0.5 m (horizontal)
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Canopy height <2 m temperate forest, < 3 m tropical 
forest

Canopy cover n/a

Terrain and canopy heights will be validated by computing the residuals between 

the ATL08 terrain and canopy height value, respectively, for a given 100 m segment 

and the terrain height (or canopy height) of the validation data for that same 

representative distance.  Canopy cover on the ATL08 data product shall be validated 

by computing the relative canopy cover (cc = canopy returns/total returns) for the 

same representative distance in the airborne lidar data.

It is recommended that the validation process include the use of ancillary data sets 

(i.e. Landsat-derived annual forest change maps) to ensure that the validation 

results are not errantly biased due to non-equivalent content between the data sets.

Using a synergistic approach, we present two options for acquiring the required 

validation airborne lidar data sets.

Option 1: 

We will identify and utilize freely available, open source airborne lidar data as the 

validation data. Potential repositories of this data include OpenTopo (a NSF 

repository or airborne lidar data), NEON (a NSF repository of ecological monitoring 

in the United States), and NASA GSFC (repository of G-LiHT data).  In addition to 

small-footprint lidar data sets, NASA Mission data (i.e. ICESat and GEDI) can also be 

used in a validation effort for large scale calculations. 

Option 2: 

Option 2 will include Option 1 as well as the acquisition of additional airborne lidar 

data that will benefit multiple NASA efforts.
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GEDI: With the launch of the Global Ecosystems Dynamic 

Investigation (GEDI) mission in 2018, there are tremendous 

synergistic activities for data validation between both the ICESat-2 

and GEDI missions. Since the GEDI mission, housed on the 

International Space Station, has a maximum latitude of 51.6 degrees, 

much of the Boreal zone will not be mapped by GEDI. The density of 

GEDI data will increase as latitude increases north to 51.6 degrees. 

Since the data density for GEDI would be at its highest near 51.6 

degrees, we would propose to acquire airborne lidar data in a “GEDI 

overlap zone” that would ample opportunity to have sufficient 

coverage of benefit to both ICESat-2 and GEDI for calibration and 

validation.

We recommend the acquisition of new airborne lidar collections that will meet our 

requirements to best validate ICESat-2 as well as be beneficial for the GEDI mission. 

In particular, we would like to obtain data over the following two areas:

1) Boreal forest (as this forest type will NOT be mapped with GEDI) 

2) GEDI high density zone (between 50 to 51.6 degrees N). Airborne lidar 

data in the GEDI/ICESat-2 overlap zone will ensure cross-calibration 

between these two critical datasets which will allow for the creation of a 

global, seamless terrain, canopy height, and canopy cover product for the 

ecosystem community. 

In both cases, we would fly data with the following scenario:

Small-footprint, full-waveform, dual wavelength (green and NIR), high point density 

(>20 pts/m2) and, over low and high relief locations. In addition, the newly acquired 

lidar data must meet the error accuracies listed in Table 5.1.

Potential candidate acquisition areas include: Southern Canadian Rocky Mountains 

(near Banff), Pacific Northwest mountains (Olympic National Park, Mt. Baker-

Snoqualmie National Forest), and Sweden/Norway. It is recommended that the 
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airborne lidar acquisitions occur during the summer months to avoid snow cover in 

either 2016 or 2017 prior to launch of ICESat-2.

5.2 Internal QC Monitoring

In addition to the data product validation, internal monitoring of data 

parameters and variables is required to ensure that the final ATL08 data quality 

output is trustworthy. Table 5.2 lists a few of the computed parameters that should 

provide insight into the performance of the surface finding algorithm within the 

ATL08 processing chain.

Table 5.2. ATL08 Parameter Monitoring

Group Description Source Monitor Validate in 
Field

h_te_median Median terrain 
height for segment

computed Yes against 
airborne lidar 
data. The 
airborne lidar 
data should 
have an 
absolute 
accuracy of <30 
cm rms.

n_photons Number of classed 
photons in a 100 
m segment

computed Yes. Build an internal 
counter for the number 
of segments in a row 
where there aren’t 
enough photons 
(currently a minimum of 
50 photons per 100 m 
segment is used)

h_te_interp Interpolated 
terrain surface 
height, 
FINALGROUND

computed Difference h_te_interp 
and h_te_median and 
determine if the value is 
> a specified threshold. 2 
m is suggested as the 
threshold value. This is 
an internal check to 
evaluate whether the 
median elevation for a 
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segment is roughly the 
same as the interpolated 
surface height. 

h_dif_ref Difference 
between 
h_te_median and 
ref_dem

computed This value will be 
computed and flagged if 
the difference is > 25 m. 
The reference DEM is the 
onboard DEM.

h_canopy 95% height of 
individual canopy 
heights  for 
segment

computed Yes, > a specified 
threshold (e.g. 60 m)

Yes against 
airborne lidar 
data. The 
canopy heights 
derived from 
airborne lidar 
data should 
have a relative 
accuracy <2 m 
in temperate 
forest, <3 m in 
tropical forest 

h_dif_canopy Difference 
between h_canopy 
and 
h_median_canopy

computed Yes, this is more of an 
internal check to make 
sure the calculations on 
canopy height are not 
suspect

psf_flag Flag is set if 
computed PSF 
exceeds 1m

computed Yes, this is more of an 
internal check to make 
sure the calculations are 
not suspect

ph_removal_flag Flag is set if more 
than 50% of 
photons in a 
segment is 
removed during 
final QA check

computed
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In addition to the monitoring parameters listed in Table 5.2, a plot such as what is 

shown in Figure 5.1 would be helpful for internal monitoring and quality 

assessment of the ATL08 data product. Figure 5.1 illustrates in graphical form what 

the input point cloud look like in the along-track direction, the classifications of each 

photon, and the estimated ground surface (FINALGROUND).

Figure 5.1 Example of L-km segment classifications and interpolated ground surface.
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Parameters to be in the QA/QC group on the HDF5 data file based on Table 5.2 of the 
ATL08 ATBD.  Statistics will be computed on a per-orbit basis and be reported on 
the data product.

1. Percentage of segments with > 50 photons
2. Max, median, and mean of the number of contiguous segments with < 50 

photons.
3. Percentage of segments with difference in h_te_interp – h_te_median is 

greater than a specified threshold (2 m TBD). 50 segments in a row with this 
threshold exceed would send an alert to QAQC team. 

4. Max, median, and mean of h_diff_ref, difference between h_te_median and 
dem_h, over all segments. 

5. Percentage of segments where h_diff_ref > 25 m. If percentage is greater than 
75%, send an alert to the QAQC team.

6. Percentage of segments where the h_canopy is < 60m
7. Max, median, and mean of h_diff
8. Number and percentage of Landsat continuous tree cover pixels per 

processing (L-km) segment with values > 100.  
9. Percentage of segments where psf_flag is set. If percentage is greater than 

75%, send an alert to the QAQC team.
10. Alert if more than 50% of the photons in a segment is being removed during 

final photon QA check (ph_removal_flag is set).
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DRAGANN Gaussian Deconstruction 
John Robbins 
20151021 (updates 20170808)

Introduction

This document provides a verbal description of how the DRAGANN (Differential, 
Regressive, and Gaussian Adaptive Nearest Neighbor) filtering system deconstructs 
a histogram into Gaussian components, which can also be called iteratively fitting a 
sum of Gaussian Curves. The purpose is to provide enough detail for ASAS to create 
operational ICESat-2 code required for the production of the ATL08, Land and 
Vegetation product. This document covers the following Matlab functions within 
DRAGANN:

 mainGaussian_dragann
 findpeaks_dragann
 peakWidth_dragann
 checkFit_dragann

Components of the k-d tree nearest-neighbor search processing and histogram 
creation were covered in the document, DRAGANN k-d Tree Investigations, and have 
been determined to function consistently with UTexas DRAGANN Matlab software.

Histogram Creation

Steps to produce a histogram of nearest-neighbor counts from a normalized photon 
cloud segment have been completed and confirmed. Figure A.1 provides an example 
of such a histogram. The development, below, is specific to the two-dimensional 
case and is provided as a review.

The histogram represents the frequency (count) of the number of nearby photons 
within a specified radius, as ascertained for each point within the photon cloud. The 
radius, R, is established by first normalizing the photon cloud in time (x-axis) and in 
height (y-axis), i.e., both sets of coordinates (time & height) run from 0 to 1; then an 
average radius for finding 20 points is determined based on forming the ratio of 20 
to the total number of the photons in the cloud (Ntotal): 20/Ntotal.
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Figure A.1. Histogram for Mabel data, channel 43 from SE-AK flight on July 30, 2014 
at 20:16.

Given that the total area of the normalized photon cloud is, by definition, 1, then this 
ratio gives the average area, A, in which to find 20 points. A corresponding radius is 
found by the square root of A/π. A single equation describing the radius, as a 
function of the total number of photons in the cloud (remembering that this is done 
in the cloud normalized, two-dimensional space), is given by

(A.1)

For the example in Figure A.1, R was found to be 0.00447122. The number of 
photons falling into this radius, at each point in the photon cloud, is given along the 
x-axis; a count of their number (or frequency) is given along the y-axis.

Gaussian Peak Removal

At this point, the function, mainGaussian_dragann, is called, which passes the 
histogram and the number of peaks to detect (typically set to 10).

This function essentially estimates (i.e., fits) a sequence of Gaussian curves, from 
larger to smaller. It determines a Gaussian fit for the highest histogram peak, then 
removes it before determining the fit for the next highest peak, etc. In concept, the 
process is an iterative sequential-removal of the ten largest Gaussian components 
within the histogram.
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In the process of sequential least-squares, parameters are re-estimated when input 
data is incrementally increased and/or improved. The present problem operates in 
a slightly reverse way: the data set is fixed (i.e., the histogram), but components 
within the histogram (independent Gaussian curve fits) are removed sequentially 
from the histogram. The paper by Goshtasby & O’Neill (1994) outlines the concepts.

Recall that a Gaussian curve is typically written as

(A.2)

where a = the height of the peak; b = position of the peak; and c = width of the bell 
curve.

The function, mainGaussian_dragann, computes the [a, b, c] values for the ten 
highest peaks found in the histogram. At initialization, these [a, b, c] values are set to 
zero. The process begins by locating histogram peaks via the function, 
findpeaks_dragann.

Peak Finding

As input arguments, the findpeaks_dragann function receives the histogram and a 
minimum peak size for consideration (typically set to zero, which means all peaks 
will be found). An array of index numbers (i.e., the “number of neighboring points”, 
values along x-axis of Figure A.1) for all peaks is returned and placed into the 
variable peaks.

The methodology for locating each peak goes like this: The function first computes 
the derivatives of the histogram. In Matlab there is an intrinsic function, called diff, 
which creates an array of the derivatives. Diff essentially computes the differences 
along sequential, neighboring values. “Y = diff(X) calculates differences between 
adjacent elements of X.” [from Matlab Reference Guide] Once the derivatives are 
computed, then findpeaks_dragann enters a loop that looks for changes in the sign 
of the derivative (positive to negative). It skips any derivatives that equal zero.

For the kth derivative, the “next” derivative is set to k+1. A test is made whereby if 
the k+1 derivative equals zero and k+1 is less than the total number of histogram 
values, then increment “next” to k+2 (i.e., find the next negative derivative). The test 
is iterated until the start of the “down side” of the peak is found (i.e., these iterations 
handle cases when the peak has a flat top to it).

When a sign change (positive to negative) is found, the function then computes an 
approximate index location (variable maximum) of the peak via

(A.3)

These values of maximum are retained in the peaks array (which can be grown in 
Matlab) and returned to the function mainGaussian_dragann.
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Next, back within mainGaussian_dragann, there are two tests to determine whether 
the first or last elements of the histogram are peaks. This is done since the 
findpeaks_dragann function will not detect peaks at the first or last elements, based 
solely on derivatives. The tests are:

If ( histogram(1) > histogram(2) && max(histogram)/histogram(1) < 20 ) then 
insert a value of 1 to the very first element of the peaks array (again, Matlab can 
easily “grow” arrays). Here, max(histogram) is the highest peak value across the 
whole histogram.

For the case of the last histogram value (say there are N-bins), we have

If ( histogram(N) > histogram(N-1) && max(histogram)/histogram(N) < 4 ) then 
insert a value of N to the very last element of the peaks array.

One more test is made to determine whether there any peaks were actually found 
for the whole histogram. If none were found, then the function, 
mainGaussian_dragann, merely exits.

Identifying and Processing upon the Ten Highest Peaks

The function, mainGaussian_dragann, now begins a loop to analyze the ten highest 
peaks. It begins the nth loop (where n goes from 1 to 10) by searching for the largest 
peak among all remaining peaks. The index number, as well as the magnitude of the 
peak, are retained in a variable, called maximum, with dimension 2.

In each pass in the loop, the [a,b,c] values (see eq. 2) are retained as output of the 
function. The values of a and b are set equal to the index number and peak 
magnitude saved in maximum(1) and maximum(2), respectively. The c-value is 
determined by calling the function, peakWidth_dragann.

Determination of Gaussian Curve Width

The function, peakWidth_dragann, receives the whole histogram and the index 
number (maximum(1)) of the peak for which the value c is needed, as arguments. 
For a specific peak, the function essentially searches for the point on the histogram 
that is about ½ the size of the peak and that is furthest away from the peak being 
investigated (left and right of the peak). If the two sides (left and right) are 
equidistant from the peak, then the side with the smallest value is chosen (> ½ 
peak).

Upon entry, it first initializes c to zero. Then it initializes the index values left, xL and 
right, xR as index-1 and index+1, respectively (these will be used in a loop, 
described below). It next checks whether the nth peak is the first or last value in the 
histogram and treats it as a special case.

At initialization, first and last histogram values are treated as follows:
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If first bin of histogram (peak = 1), set left = 1 and xL = 1.

If last bin of histogram, set right = m and xR = m, where m is the final index of the 
histogram.

Next, a search is made to the left of the peak for a nearby value that is smaller than 
the peak value, but larger than half of the peak value. A while-loop does this, with 
the following conditions: (a) left > 0, (b) histogram value at left is ≥ half of histo 
value at peak and (c) histo value at left is ≤ histo value at peak. When these 
conditions are all true, then xL is set to left and left is decremented by 1, so that the 
test can be made again. When the conditions are no longer met (i.e., we’ve moved to 
a bin in the histogram where the value drops below half of the peak value), then the 
program breaks out of the while loop.

This is followed by a similar search made upon values to the right of the peak. When 
these two while-loops are complete, we then have the index numbers from the 
histogram representing bins that are above half the peak value. This is shown in 
Figure A.2.

Figure A.2. Schematic representation of a histogram showing xL and xR parameters 
determined by the function peakWidth_dragann.

A test is made to determine which of these is furthest from the middle of the peak. In 
Figure A.2, xL is furthest away and the variable x is set to equal xL. The histogram 
“height” at x, which we call Vx, is used (as well as x) in an inversion of Equation A.2 to 
solve for c:

(A.4)



21

The function, peakWidth_dragann, now returns the value of c and control returns to 
the function, mainGaussian_dragann.

The mainGaussian_dragann function then picks-up with a test on whether the 
returned value of c is zero. If so, then use a value of 4, which is based on an a priori 
understanding that c usually falls between 4 and 6. If the value of c is not zero, then 
add 0.5 to c.

At this point, we have the [a,b,c] values of the Gaussian for the nth peak. Based on 
these values, the Gaussian curve is computed (via Equation A.2) and it is removed 
(subtracted) from the current histogram (and put into a new variable called 
newWave).

Numeric Optimization Steps

The first of the optimization steps utilizes a Full Width Half Max (FWHM) approach, 
computed via

 (A.5)

A left range, Lr, is computed by Lr=round(b-FWHM/2). This tested to make sure it 
doesn’t go off the left edge of the histogram. If so, then it is set to 1.

Similarly, a right range, Rr, is computed by Rr=round(b+FWHM/2). This is also tested 
to be sure that it doesn’t go off the right edge of the histogram. If so, then it is set to 
the index value for the right-most edge of the histogram.

Using these new range values, create a temporary segment (between Lr and Rr) of 
the newWave histogram, this is called errorWave. Also, set three delta parameters 
for further optimization:

DeltaC = 0.05; DeltaB = 0.02; DeltaA = 1

The temporary segment, errorWave is passed to the function checkFit_dragann, 
along with a set of zero values having the same number of elements as errorWave, 
the result, at this point, is saved into a variable called oldError. The function, 
checkFit_dragann, computes the sum of the squares of the difference between two 
histogram segments (in this case, errorWave and zeros with the same number of 
elements as errorWave). Hence, the result, oldError, is the sum of the squares of the 
values of errorWave. This function is applied in optimization loops, to refine the 
values of b and c, described below.

Optimization of the b-parameter. The do-loop operates at a maximum of 1000 times. 
It’s purpose is to refine the value of b, in 0.02 increments. It increments the value of 
b by DeltaB, to the right, and computes a new Gaussian curve based on b+∆b, which 
is then removed from the histogram with the result going into the variable 
newWave. As before, checkFit_dragann is called by passing the range-limited part of 
newWave (errorWave) and returning a new estimate of the error (newError) which 
is then checked against oldError to determine which is smaller. If newError is ≥ 
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oldError, then the value of b that produced oldError is retained, and the testing loop 
is exited.

Optimization of the c-parameter. Now the value of c is optimized, first to the left, 
then to the right. It is performed independently of, but similarly, to the b-parameter, 
using do-loops with a maximum of 1000 passes. These loops increment (to right) or 
decrement (to left) by a value of 0.05 (DeltaC) and use checkFit_dragann to, again, 
check the quality of the fit. The loops (right and left) kick-out when the fit is found to 
be smallest.

The final, optimized Gaussian curve is now removed (subtracted) from the 
histogram. After removal, a statement “corrects” any histogram values that may 
drop below zero, by setting them to zero. This could happen due to any mis-fit of the 
Gaussian.

The nth loop is concluded by examining the peaks remaining in the histogram 
without the peak just processed by sending the nth-residual histogram back into the 
function findpeaks_dragann. If the return of peak index numbers from 
findpeaks_dragann reveals more than 1 peak remaining, then the index numbers for 
peaks that meet these three criteria are retained in an array variable called these:

1. The peak must be located above b(n)-2*c(n), and
2. The peak must be located below b(n)+2*c(n), and
3. The height of the peak must be < a(n)/5.

The peaks meeting all three of these criteria are to be eliminated from further 
consideration. What this accomplishes is eliminate the nearby peaks that have a size 
lower than the peak just previously analyzed; thus, after their elimination, only 
leaving peaks that are further away from the peak just processed and are 
presumably “real” peaks. The nth iteration ends here, and processing begins with the 
revised histogram (after having removed the peak just analyzed).

Gaussian Rejection

The function mainGaussian_dragann returns the [a,b,c] parameters for the ten 
highest peaks from the original histogram. The remaining code in dragann examines 
each of the ten Gaussian peaks and eliminates the ones that fail to meet a variety of 
conditions. This section details how this is accomplished.

First, an approximate area, area1=a*c, is computed for each found peak and b, for all 
ten peaks, being the index of the peaks, are converted to an actual value via 
b+min(numptsinrad)-1 (call this allb).

Next, a rejection is made for all peaks that have any component of [a,b,c] that are 
imaginary (Matlab isreal function is used to confirm that all three components are 
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real, in which case it passes). The product a*c then passes through a descending 
sort. So now, the [a,allb,c]-values are sorted from largest “area” to smallest, these 
are placed in arrays [a1, b1, c1].

Next, a test is made to ensure that at least one of the peaks is within the first 10% of 
the whole histogram. It is done inside a loop that works from peak 1 to the number 
of peaks left at this point. This loop first tests whether the first (sorted) peak is 
within the first 10% of the histogram; if so, then it simply kicks out of the loop. If 
not, then it places the loop’s current peak into a holder (ihold) variable, increments 
the loop to the next peak and runs the same test on the second peak, etc. Here’s a 
Matlab code snippet:

inds = 1:length(a1);
for i = 1:length(b1)
    if b1(i) <= min(numptsinrad) + 1/10*max(numptsinrad)
        if i==1
            break;
        end
        ihold = inds(i);
        for j = i:-1:2
            inds(j) = inds(j-1);
        end
        inds(1) = ihold;
        break
    end
end

The j-loop expression gives the init_val:step_val:final_val. The semi-colon at the end 
of statements causes Matlab to execute the expression without printout to the user’s 
screen. When this loop is complete, then the indexes (inds) are re-ordered and 
placed back into the [a1,b1,c1] and area1 arrays.

Next, are tests to reject any Gaussian peak that is entirely encompassed by another 
peak. A Matlab code snippet helps to describe the processing.

% reject any gaussian if it is fully contained within another
isR = true(1,length(a1));
for i = 1:length(a1)
    ai = a1(i);
    bi = b1(i);
    ci = c1(i);
    aset = (1-(c1/ci).^2);
    bset = ((c1/ci).^2*2*bi - 2*b1);
    cset = -(2*c1.^2.*log(a1/ai)-b1.^2+(c1/ci).^2*bi^2);
    realset = (bset.^2 - 4*aset.*cset >= 0) | (a1 > ai);
    isR = isR & realset;
end
a2 = a1(isR);
b2 = b1(isR);
c2 = c1(isR);

The logical array isR is initialized to all be true. The i-do-loop will run through all 
peaks. The computations are done in array form with the variables aset,bset,cset all 
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being arrays of length(a1).  At the bottom of the loop, isR remains “true” when 
either of the conditions in the expression for realset is met (the single “|” is a logical 
“or”). Also, the nomenclature, “.*” and “.^”,  denote element-by-element array 
operations (not matrix operations). Upon exiting the i-loop, the array variables 
a2,b2,c2 are set to the a1,b1,c1 that remain as “true.” [At this point, in our test case 
from channel 43 of East-AK Mable flight on 20140730 @ 20:16, six peaks are still 
retained: 18, 433, 252, 33, 44.4 and 54.]

Next, reject Gaussian peaks whose centers lay within 3σ of another peak, unless only 
two peaks remain. The code snippet looks like this:

isR = true(1, length(a2));
for i = 1:length(a2)
    ai = a2(i);
    bi = b2(i);
    ci = c2(i);
    realset = (b2 > bi+3*ci | b2 < bi-3*ci | b2 == bi);
    realset = realset | a2 > ai;
    isR = isR & realset;
end
if length(a2) == 2
    isR = true(1, 2);
end
a3 = a2(isR);
b3 = b2(isR);
c3 = c2(isR);

Once again, the isR array is initially set to “true.” Now, the array, realset, is tested 
twice. In the first line, one of three conditions must be true. In the second line, if 
realset is true or a2 > ai, then it remains true. At this point, we’ve pared down, from 
ten Gaussian peaks, to two Gaussian peaks; one represents the noise part of the 
histogram; the other represents the signal part.

If there are less than two peaks left, a thresholding/histogram error message is 
printed out.

If there are two peaks left, then set the array [a,b,c] to those two peaks. [At this 
point, in our test case from channel 43 of East-AK Mable flight on 20140730 @ 
20:16, the two peaks are: 18 and 433.]

Gaussian Thresholding

With the two Gaussian peaks identified as noise and signal, all that is left is to 
compute the threshold value between the Gaussians. This is done through a single 
loop, and two if-statements.

First, a counter is initialized to zero (zerCount=0). Then a variable called setPoint is 
established as the maximum of a divided by 100 (setPoint = max(a)/100). Based on 
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our example in Figure A.1, the max(a) is going to be about 15,000, thus setPoint 
comes out to be 150.15.

Next, a do-loop executes with an index (idx) running from b(1)+2-min(numptsrad) 
to b(2)-min(numptsrad)+1. In our example, these values go from 20 to 434, and the 
heights of the histogram between these indices will be evaluated. Inside the loop, if 
the histogram height of index, idx is ≤ setPoint, then another if-statement is 
executed that looks at the idx-1 and idx+1 values; if either of these is ≤ setPoint, then 
increment zerCount by 1. When zerCount > 4, set variable 
cutoff=idx+min(numptsinrad)-1, and then exit the loop.

After finding four values that are below 0.01*max(a), the algorithm concludes that 
the histogram has “leveled-off” sufficiently enough after encountering the first noise 
peak. This value of cutoff is retained unless a better threshold is found, as described 
in the next three paragraphs, below.

An array of xvals is established running from min(numptsinrad) to 
max(numptsinrad). In our example, xvals has indices between 0 and 653. For each 
of these xvals, Gaussian curves (allGauss) are computed for the two Gaussian peaks 
[a,b,c] determined at the end of the previous section. This computation is performed 
via a function called gaussmaker which receives, as input, the xvals array and the 
[a,b,c] parameters for the two Gaussian curves. An array of heights of the Gaussian 
curves is returned by the function, computed with Equation A.2. In Matlab, the 
allGauss array has dimension 2x654. An array, noiseGauss is set to be equal to the 1st 
column of allGauss.

An if-statement checks whether the b array has more than 1 element (i.e., consisting 
of two peaks), if so, then nextGauss is set to the 2nd column of allGauss, and a 
difference, noiseGauss-nextGauss, is computed. The following step is restricted to be 
between the two main peaks. Now the point (i.e., index) is found of the minimum of 
the absolute value of the difference; this index is put into variable, signchanges. This 
point is where the sign changes from positive to negative as one moves left-to-right, 
up the Gaussian curve differences (noise minus next will be positive under the peak 
of the noise curve, and negative under the next (signal) curve). Figure A.3 (top) 
shows the two Gaussian curves. The bottom plot shows their differences. The index 
of the threshold is now saved into variable, threshNN, concluding the if-statement 
for b having more than 1 element.
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Figure A.3. Top: two remaining Gaussian curves representing the noise (blue) and 
signal (red) portions of the histogram in F1gure A.1. Bottom: difference noise – 
signal of the two Gaussian curves. The threshold is defined as the point where the 
sign of the differences change.

An else clause (b !> 1), merely sets threshNN to b+c, i.e., 1-standard deviation away 
from mean of the (presumably) noise peak.

Next, an if-statement checks whether the variable cutoff exists (which it would if the 
histogram remained near to zero for more than four bins in a row). When this is the 
case, then threshNN is set to the index saved in the variable, cutoff.
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The final step is mask the signal part of the histogram where all indices above the 
threshNN index are set to logical 1 (true). This is applied to the numptsinrad array, 
which represents the photon cloud. After application, dragann returns the cloud 
with points in the cloud identified as “signal” points.

The Matlab code has a few debug statements that follow, along with about 40 lines 
for plotting.
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