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Abstract. In this paper, we improve a result by Arora, Khot, Kolla,
Steurer, Tulsiani, and Vishnoi on solving the Unique Games problem on
expanders. Given a (1−ε)-satisfiable instance of Unique Games with the
constraint graph G, our algorithm finds an assignment satisfying at least
a 1 − Cε/hG fraction of all constraints if ε < cλG where hG is the edge
expansion of G, λG is the second smallest eigenvalue of the Laplacian of
G, and C and c are some absolute constants.

1 Introduction

In this paper, we study Unique Games on expander graphs.

Definition 1 (Unique Games Problem) Given a constraint graph G =
(V,E) and a set of permutations πuv on the set [k] = {1, . . . , k} (for all
edges (u, v)), the goal is to assign a label (or state) xu from [k] to each
vertex u so as to satisfy the maximum number of constraints of the form
πuv(xu) = xv. The value of a solution is the fraction of satisfied con-
straints.

The famous Unique Games Conjecture (UGC) of Khot [8] states that
for every positive ε and δ, there exists k such that it is NP-hard to distin-
guish between the case where a 1−ε fraction of all constraints is satisfiable
and the case where at most a δ fraction of all constraints is satisfiable.
This conjecture has attracted a lot of attention since it implies strong in-
approximability results for such fundamental problems as MAX CUT [9],
Vertex Cover [10], Maximum Acyclic Subgraph [6], k-CSP [7] [11], which
are not known to follow from more standard complexity assumptions.
Several approximation algorithms for Unique Games were developed in
a series of papers by Khot [8], Trevisan [12], Gupta and Talwar [5],
Charikar, Makarychev and Makarychev [3], and Chlamtac, Makarychev
and Makarychev [4]. These papers, however, did not disprove the Unique
Games Conjecture.

In order to better understand Unique Games, we need to identify
which instances of Unique Games are easy, and which instances are poten-
tially hard (the quantitative measure of hardness of a family of instances



is the “approximation guarantee” of the “optimal” algorithm for this
family). That motivates the study of specific families of Unique Games.
Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi [1] disproved the UGC
for Unique Games on spectral expanders. Specifically, they showed how
given a (1 − ε) satisfiable instance of Unique Games (i.e. an instance in
which the optimal solution satisfies at least a (1 − ε) fraction of con-
straints), one can obtain a solution of value

1− C ε

λG
log

(
λG
ε

)
in polynomial time, here C is an absolute constant and λG is the second
smallest eigenvalue of the Laplacian of G (see Section 2 for definitions).

In this paper, we improve their result and show that, if the ratio ε/λG
is less than some universal positive constant c, one can obtain a solution
of value

1− C ′ ε
hG

in polynomial time, here hG is the edge expansion of G. In general, λG
can be significantly smaller than hG, then our result gives much better
approximation guarantee. For example, if Cheeger’s inequality (see below)
is tight for a graph G, then λG ≈ h2G/8; and
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Say, if ε ≈ λG, the algorithm of Arora, Khot, Kolla, Steurer, Tulsiani, and
Vishnoi satisfies only a small constant fraction of all constraints, while
our algorithm satisfies almost all constraints. However, even if λG ≈ hG,
our bound is asymptotically stronger, since

1− C ′ ε
hG
≥ 1− C ′ ε

λG
> 1− C ′ ε

λG
log

(
λG
ε

)
(i.e., our bound does not have a log(λG/ε) factor).

1.1 Overview

In this section, we give an informal overview of the algorithm. The al-
gorithm uses the standard SDP relaxation for Unique Games (see Sec-
tion 2.2). The SDP solution gives a vector ui for every vertex u and label i.
For simplicity, let us consider so-called uniform case when all vectors ui



have the same length. Then by scaling all vectors, we can assume that
they are unit vectors, and thus vectors u1, . . . , uk (corresponding to one
vertex) form an orthonormal frame.

For every two vertices u and v, we say that labels i and j are matched
if ‖ui − vj‖2 < r, where r < 1 is a small threshold value. Note that for
every two labels j1 and j2,

‖ui − vj1‖2 + ‖ui − vj2‖2 ≥ ‖vj1 − vj2‖2 = 2 > 2r.

Therefore, each label i is matched with at most one label j for fixed
vertices u and v. We denote this j by σuv(i) (if it exists).

Now we use a simple prorogation algorithm. We choose a random
vector u and assign it a random label i. Then we label each vertex v with
the label σuv(i), if it is defined; and with an arbitrary label, otherwise. Let
X be the set of vertices v s.t. σuv(i) is defined. We prove (see Lemma 9)
that for every edge (v, w) with v, w ∈ X, our assignment satisfies the
constraint between v and w w.h.p. if the contribution of the edge (v, w)
to the SDP objective is small. Intuitively, that happens because both
vectors vσuv(i) and wσuw(i) are close to ui, and therefore they are close to
each other. On the other hand, the SDP contribution of the edge (v, w)
equals

1

k

k∑
j=1

‖vj − wπvw(j)‖2.

Thus if the SDP contribution is small then the vector vj should be close
to wπvw(j) for most labels j. Since each vσuv(i) is close only to wσuw(i), we
have σuw(i) = πvw(σuv(i)) w.h.p., that is, the constraint between v and
w is satisfied.

The crucial step now is to prove that the set X contains almost all
vertices, and so we can ignore edges with one or two endpoints outside of
X. First, we prove that the set X is not very small in Lemma 5 (using a
“global correlation” result of Arora, Khot, Kolla, Steurer, Tulsiani, and
Vishnoi). Using a standard region growing argument we then show that
the cut between X and V \X is very small (if we choose the threshold r
randomly; see Lemma 7). Since the graph G is an expander, that implies
that either X or V \ X is very small. But we know that X is not very
small. We conclude that in fact V \X is very small (Lemma 8).

To deal with the general case — when vectors ui have different lengths
— we use the vector normalization machinery developed by Chlamtac,
Makarychev and Makarychev [4].



In Section 2, we give basic definitions and describe the semideifnite
relaxation for Unique Games. In Section 3, we present the algorithm and
its analysis.

2 Preliminaries

2.1 Expanders: Second Eigenvalue and Edge Expansion

We assume that the underlying constraint graph G = (V,E) is a d-regular
expander. The two key parameters of the expander G are the edge ex-
pansion hG and the second eigenvalue of the Laplacian λG. The edge
expansion gives a lower bound on the size of every cut: for every subset
of vertices X ⊂ V , the size of the cut between X and |V \X| is at least

hG ×
min(|X|, |V \X|)

|V |
|E|.

It is formally defined as follows:

hG = min
X⊂V

(
|δ(X,V \X)|

|E|

/
min(|X|, |V \X|)

|V |

)
,

here δ(X,V \ X) denotes the cut — the set of edges going from X to
V \X. One can think of the second eigenvalue of the Laplacian matrix

LG(u, v) =


1, if u = v

−1/d, if (u, v) ∈ E
0, otherwise.

as of continuous relaxation of the edge expansion. Note that the smallest
eigenvalue of LG is 0; and the corresponding eigenvector is a vector of all
1’s, denoted by 1. Thus

λG = min
x⊥1

〈x, LGx〉
‖x‖2

.

Cheeger’s inequality,

h2G/8 ≤ λG ≤ hG,

shows that hG and λG are closely related; however λG can be much smaller
than hG (the lower bound in the inequality is tight).



2.2 Semidefinite Relaxation for Unique Games

We use the standard SDP relaxation for the Unique Games problem.

minimize
1

2|E|
∑

(u,v)∈E

k∑
i=1

‖ui − vπuv(i)‖
2

subject to

∀u ∈ V ∀i, j ∈ [k], i 6= j 〈ui, uj〉 = 0 (1)

∀u ∈ V
k∑
i=1

‖ui‖2 = 1 (2)

∀u, v, w ∈ V ∀i, j, l ∈ [k] ‖ui − wl‖2 ≤ ‖ui − vj‖2 + ‖vj − wl‖2 (3)

∀u, v ∈ V ∀i, j ∈ [k] ‖ui − vj‖2 ≤ ‖ui‖2 + ‖vj‖2 (4)

∀u, v ∈ V ∀i, j ∈ [k] ‖ui‖2 ≤ ‖ui − vj‖2 + ‖vj‖2 (5)

For every vertex u and label i we introduce a vector ui. In the intended
integral solution ui = 1, if u is labeled with i; and ui = 0, otherwise. All
SDP constraints are satisfied in the integral solution; thus this is a valid
relaxation. The objective function of the SDP measures what fraction of
all Unique Games constraints is not satisfied.

3 Algorithm

We define the earthmover distance between two sets of orthogonal vectors
{u1, . . . , uk} and {v1, . . . , vk} as follows:

∆({u}i , {v}i) ≡ min
σ(i)∈Sk

k∑
i=1

‖ui − vσ(i)‖2,

here Sk is the symmetric group, the group of all permutations on the set
[k] = {1, . . . , k}. Given an SDP solution {ui}u,i we define the earthmover
distance between vertices in a natural way:

∆(u, v) = ∆({u1, . . . , uk} , {v1, . . . , vk}).

Arora et al. [1] proved that if an instance of Unique Games on an
expander is almost satisfiable, then the average earthmover distance be-
tween two vertices (defined by the SDP solution) is small. We will need
the following corollary from their results:



For every R ∈ (0, 1), there exists a positive c, such that for every
(1 − ε) satisfiable instance of Unique Games on an expander graph G,
if ε/λG < c, then the expected earthmover distance between two random
vertices is less than R i.e.

Eu,v∈V [∆(u, v)] ≤ R.

In fact, Arora et al. [1] showed that c ≥ Ω(R/ log(1/R)), but we will
not use this bound. Moreover, in the rest of the paper, we fix the value
of R < 1/4. We pick cR, so that if ε/λG < cR, then

Eu,v∈V [∆(u, v)] ≤ R/4. (6)

Our algorithm transforms vectors {ui}u,i in the SDP solution to vec-
tors {ũi}u,i using a vector normalization technique introduced by Chlam-
tac, Makarychev and Makarychev [4]:

Lemma 1 [4] For every SDP solution {ui}u,i, there exists a set of vectors
{ũi}u,i satisfying the following properties:

1. Triangle inequalities in `22: for all vertices u, v, w in V and all labels
i, p, q in [k],

‖ũi − ṽp‖22 + ‖ṽp − w̃q‖22 ≥ ‖ũi − w̃q‖22.

2. For all vertices u, v in V and all labels i, j in [k],

〈ũi, ṽj〉 =
〈ui, vj〉

max(‖ui‖2, ‖vj‖2)
.

3. For all non-zero vectors ui, ‖ũi‖22 = 1.

4. For all u in V and i 6= j in [k], the vectors ũi and ũj are orthogonal.

5. For all u and v in V and i and j in [k],

‖ṽj − ũi‖22 ≤
2 ‖vj − ui‖2

max(‖ui‖2, ‖vj‖2)
.

The set of vectors {ũi}u,i can be obtained in polynomial time.

Now we are ready to describe the rounding algorithm. The algorithm
given an SDP solution, outputs an assignment of labels to the vertices.



Approximation Algorithm

Input: an SDP solution {ui}u,i of cost ε.

Initialization

1. Pick a random vertex u (uniformly distributed) in V . We call this
vertex the initial vertex.

2. Pick a random label i ∈ [k] for u; choose label i with probability ‖ui‖2.
Note that ‖u1‖2 + · · ·+ ‖uk‖2 = 1. We call i the initial label.

3. Pick a random number t uniformly distributed in the segment [0, ‖ui‖2].
4. Pick a random r in [R, 2R].

Normalization

5. Obtain vectors {ũi}u,i as in Lemma 1.

Propagation

6. For every vertex v,

– Find all labels p ∈ [k] such that ‖vp‖2 ≥ t and ‖ṽp − ũi‖2 ≤ r.
Denote the set of p’s by Sv:

Sv =
{
p : ‖vp‖2 ≥ t and ‖ṽp − ũi‖2 ≤ r

}
.

– If Sv contains exactly one element p, then assign the label p to v.

– Otherwise, assign an arbitrary (say, random) label to v.

Denote by σvw the partial mapping from [k] to [k] that maps p to q if
‖ṽp−w̃q‖2 ≤ 4R. Note that σvw is well defined i.e. p cannot be mapped to
different labels q and q′: if ‖ṽp − w̃q‖2 ≤ 4R and ‖ṽp − w̃q′‖2 ≤ 4R, then,
by the `22 triangle inequality (see Lemma 1, item 1), ‖w̃q − w̃q′‖2 ≤ 8R,
but w̃q and w̃q′ are orthogonal unit vectors, so

‖w̃q − w̃q′‖2 = 2 > 8R.

Clearly, σvw defines a partial matching between labels of v and labels of
w: if σvw(p) = q, then σwv(q) = p.

Lemma 2 If p ∈ Sv and q ∈ Sw with non-zero probability, then q =
σvw(p).

Proof. If p ∈ Sv and q ∈ Sw then for some vertex u and label i, ‖ṽp −
ũi‖2 ≤ 2R and ‖w̃q − ũi‖2 ≤ 2R, thus by the triangle inequality ‖ṽp −
w̃q‖2 ≤ 4R and by the definition of σvw, q = σvw(p).



Corollary 3 Suppose, that p ∈ Sv, then the set Sw either equals {σvw(p)}
or is empty (if σvw(p) is not defined, then Sw is empty). Particularly, if
u and i are the initial vertex and label, then the set Sw either equals
{σuw(i)} or is empty. Thus, every set Sw contains at most one element.

Lemma 4 For every choice of the initial vertex u, for every v ∈ V and
p ∈ [k] the probability that p ∈ Sv is at most ‖vp‖2.

Proof. If p ∈ Sv, then i = σvu(p) is the initial label of u and t ≤ ‖vp‖2.
The probability that both these events happen is

Pr (i ∈ Su)× Pr
(
t ≤ ‖vp‖2

)
= ‖ui‖2 ×min(‖vp‖2/‖ui‖2, 1) ≤ ‖vp‖2

(recall that t is a random real number on the segment [0, ‖ui‖2]).

Denote the set of those vertices v for which Sv contains exactly one
element by X. First, we show that on average X contains a constant
fraction of all vertices (later we will prove a much stronger bound on the
size of X).

Lemma 5 If ε/λG ≤ cR, then the expected size of X is at least |V |/4.

Proof. Consider an arbitrary vertex v. Estimate the probability that p ∈
Sv given that u is the initial vertex. Suppose that there exists q such that
‖vp − uq‖2 ≤ ‖vp‖2 ·R/2, then

‖ũq − ṽp‖2 ≤
2‖uq − vp‖2

max(‖uq‖2, ‖vp‖2)
≤ R.

Thus, q = σvu(p) and ‖ũq − ṽp‖2 ≤ r with probability 1. Hence, if q is
chosen as the initial label and ‖vp‖2 ≥ t, then vp ∈ Sv. The probability
of this event is ‖uq‖2 ×min(‖vp‖2/‖uq‖2, 1). Notice that

‖uq‖2×min(‖vp‖2/‖uq‖2, 1) = min(‖vp‖2, ‖uq‖2) ≥ ‖vp‖2−‖uq−vp‖2 ≥
‖vp‖2

2
.

Now, consider all p’s for which there exists q such that ‖vp − uq‖2 ≤
‖vp‖2 · R/2. The probability that one of them belongs to Sv, and thus
v ∈ X, is at least

1

2

∑
p:minq(‖uq−vp‖2)≤‖vp‖2·R/2

‖vp‖2 =
1

2

k∑
p=1

‖vp‖2 −
1

2

∑
p:minq(‖uq−vp‖2)>‖vp‖2·R/2

‖vp‖2

≥ 1

2
− 1

2
×

k∑
p=1

2

R
min
q

(‖uq − vp‖2)

≥ 1

2
−
∆({u}q , {v}p)

R
.



Since the average value of ∆({u}q , {v}p) over all pairs (u, v) is at most
R/4 (see (6)), the expected size of X (for a random initial vertex u) is at
least |V |/4.

Corollary 6 If ε/λG ≤ cR, then

Pr (|X| > |V |/8) >
1

8
.

Lemma 7 The expected size of the cut between X and V \X is at most
6ε/R|E|.

Proof. We show that the size of the cut between X and V \X is at most
6ε/R|E| in the expectation for any choice of the initial vertex u. Fix an
edge (v, w) and estimate the probability that v ∈ X and w ∈ V \ X.
If v ∈ X and w ∈ V \ X, then Sv contains a unique label p, but Sw is
empty (see Corollary 3) and, particularly, πvw(p) /∈ Sw. This happens in
two cases:

– There exists p such that i = σvu(p) is the initial label of u and
‖wπvw(p)‖2 < t ≤ ‖vp‖2. The probability of this event is at most

k∑
p=1

‖uσvu(p)‖
2 ×

∣∣∣∣∣‖vp‖2 − ‖wπvw(p)‖2

‖uσvu(p)‖2

∣∣∣∣∣ ≤
k∑
p=1

‖vp − wπvw(p)‖2.

– There exists p such that i = σvu(p) is the initial label of u, t ≤ ‖vp‖2
and ‖ũi − ṽp‖2 < r ≤ ‖ũi − w̃πvw(p)‖2. The probability of this event is
at most

k∑
p=1

‖uσvu(p)‖
2 × ‖vp‖2

‖uσvu(p)‖2
×

∣∣∣∣∣‖ũσvu(p) − w̃πvw(p)‖2 − ‖ũσvu(p) − ṽp‖2

R

∣∣∣∣∣
≤

k∑
p=1

‖vp‖2 ×
‖ṽp − w̃πvw(p)‖2

R
≤

k∑
p=1

‖vp‖2 ×
2‖vp − wπvw(p)‖2

R ·max(‖vp‖2, ‖wπvw(p)‖2)

≤ 2

R

k∑
p=1

‖vp − wπvw(p)‖2.

Note that the probability of the first event is zero, if ‖wπvw(p)‖2 ≥ ‖vp‖2;
and the probability of the second event is zero, if ‖ũσvu(p) − ṽp‖2 ≥
‖ũσvu(p) − w̃πvw(p)‖2.



Since the SDP value equals

1

2|E|
∑

(v,w)∈E

k∑
p=1

‖vp − wπvw(p)‖2 ≤ ε.

The expected fraction of cut edges is at most 6ε/R.

Lemma 8 If ε ≤ min(cRλG, hGR/1000), then with probability at least
1/16 the size of X is at least(

1− 100ε

hGR

)
|V |.

Proof. The expected size of the cut δ(X,V \X) between X and V \X is
less than 6ε/R|E|. Hence, since the graph G is an expander, one of the
sets X or V \X must be small:

E [min(|X|, |V \X|)] ≤ 1

hG
× E [|δ(X,V \X)|]

|E|
× |V | ≤ 6ε

hGR
|V |.

By Markov’s Inequality,

Pr

(
min(|X|, |V \X|) ≤ 100ε

hGR
|V |
)
≥ 1− 1

16
.

Observe, that 100ε/(hGR)|V | < |V |/8. However, by Corollary 6, the size
of X is greater than |V |/8 with probability greater than 1/8. Thus

Pr

(
|V \X| ≤ 100ε

hGR
|V |
)
≥ 1

16
.

Lemma 9 The probability that for an arbitrary edge (v, w), the constraint
between v and w is not satisfied, but v and w are in X is at most 4εvw,
where

εvw =
1

2

k∑
i=1

‖vi − wπvw(i)‖2.

Proof. We show that for every choice of the initial vertex u the desired
probability is at most 4εvw. Recall, that if p ∈ Sv and q ∈ Sw, then
q = σvw(p). The constraint between v and w is not satisfied if q 6= πvw(p).
Hence, the probability that the constraint is not satisfied is at most,∑

p:πvw(p)6=σvw(p)

Pr (p ∈ Sv) .



If πvw(p) 6= σvw(p), then

‖ṽp − w̃πvw(p)‖2 ≥ ‖w̃πvw(p) − w̃σvw(p)‖2 − ‖ṽp − w̃σvw(p)‖2 ≥ 2− 4R ≥ 1.

Hence, by Lemma 1 (5),

‖vp − wπvw(p)‖2 ≥ ‖vp‖2/2.

Therefore, by Lemma 4,

∑
p:πvw(p)6=σvw(p)

Pr (p ∈ Sv) ≤
∑

p:πvw(p)6=σvw(p)

‖vp‖2 ≤ 2
k∑
p=1

‖vp−wπvw(p)‖2 = 4εvw.

Theorem 10 There exists a polynomial time approximation algorithm
that given a (1−ε) satisfiable instance of Unique Games on a d-expander
graph G with ε/λG ≤ c, the algorithm finds a solution of value

1− C ε

hG
,

where c and C are some positive absolute constants.

Proof. We describe a randomized polynomial time algorithm. Our algo-
rithm may return a solution to the SDP or output a special value fail. We
show that the algorithm outputs a solution with a constant probability
(that is, the probability of failure is bounded away from 1); and condi-
tional on the event that the algorithm outputs a solution its expected
value is

1− C ε

hG
. (7)

Then we argue that the algorithm can be easily derandomized — simply
by enumerating all possible values of the random variables used in the al-
gorithm and picking the best solution. Hence, the deterministic algorithm
finds a solution of value at least (7).

The randomized algorithm first solves the SDP and then runs the
rounding procedure described above. If the size of the set X is more than(

1− 100ε

hGR

)
|V |,

the algorithm outputs the obtained solution; otherwise, it outputs fail.
Let us analyze the algorithm. By Lemma 8, it succeeds with proba-

bility at least 1/16. The fraction of edges having at least one endpoint



in V \X is at most 100ε/(hGR) (since the graph is d-regular). We con-
servatively assume that the constraints corresponding to these edges are
violated. The expected number of violated constraints between vertices
in X, by Lemma 9 is at most

4
∑

(u,v)∈E εuv

Pr (|X| ≥ 100ε/(hGR))
≤ 64×

1

2

∑
(u,v)∈E

‖ui − vπvw(i)‖2
 ≤ 64ε|E|.

The total fraction of violated constraints is at most 100ε/(hGR) + 64ε.

References

1. S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani, and N. Vishnoi. Unique
games on expanding constraint graphs are easy. In Proceedings of the 40th
ACM Symposium on Theory of Computing, pp. 21–28, 2008.

2. P. Austrin and E. Mossel. Approximation resistant predicates from pairwise
independence. In Proceedings of the 2008 IEEE 23rd Annual Conference on
Computational Complexity. IEEE Computer Society, 249–258.

3. M. Charikar, K. Makarychev, and Y. Makarychev. Near-Optimal Algorithms
for Unique Games. In Proceedings of the 38th ACM Symposium on Theory
of Computing, pp. 205–214, 2006.

4. E. Chlamtac, K. Makarychev, and Y. Makarychev. How to Play Unique Games
Using Embeddings. In Proceedings of the 47th IEEE Symposium on Founda-
tions of Computer Science, pp. 687–696, 2006.

5. A. Gupta and K. Talwar. Approximating Unique Games. In Proceedings of
the 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 99–106, 2006.

6. V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the Random
Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph. In Pro-
ceedings of the 49th IEEE Symposium on Foundations of Computer Science,
pp. 573–582, 2008.

7. V. Guruswami and P. Raghavendra. Constraint satisfaction over a non-
boolean domain: Approximation algorithms and unique-games hardness. In
Proceedings of APPROX-RANDOM, 77–90, 2008.

8. S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of
the 34th ACM Symposium on Theory of Computing, pp. 767–775, 2002.

9. S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximabil-
ity results for MAX-CUT and other two-variable CSPs? SIAM Journal of
Computing 37(1), pp. 319–357, 2007.

10. S. Khot and O. Regev. Vertex cover might be hard to approximate to within
2−ε.. In Proceedings of the 18th IEEE Annual Conference on Computational
Complexity, 2003.

11. A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables,
and PCPs. In Proceedings of the 38th annual ACM symposium on Theory of
computing, pp. 11–20, 2006.

12. L. Trevisan. Approximation Algorithms for Unique Games. In Proceedings of
the 46th IEEE Symposium on Foundations of Computer Science, pp. 197–205,
2005.


