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Motivation

* Practice: Need to solve clustering and combinatorial
optimization problems.

* Theory:

* Many problems are NP-hard. Cannot solve them
exactly.

* Design approximation algorithms for worst case.

Can we get better algorithms for real-world
instances than for worst-case instances?




Motivation

* Answer: Yesl!

When we solve problems that arise in practice,
we often get much better approximation than it is
theoretically possible for worst case instances.

* Want to design algorithms with provable
performance guarantees for solving real-world
instances.



Motivation

*Need a model for real-world instances.
* Many different models have been proposed.

*|t’s unrealistic that one model will capture all
instances that arise in different applications.



This work

* Assumption: instances are stable /perturbation-
resilient

* Consider several problems:
* k-means
* k-median
* Max Cut
* Multiway Cut

*Get exact polynomial-time algorithms



k-means and k-median

Given a set of points X, distance d(-,-) on X, and k

Partition X into k clusters Cy, ..., C;, and find a

“center” ¢; in each C; so as to minimize
k

Z Z d(u,c;) (k-median)

=1 uecC;

Zk: Z d(u, c;)* (k-means)

=1 UEC;




Multiway Cut

Given
*agraph G = (V,E,w)

*a set of terminals t, ..., t}

Find a partition of I/ into sets S, ..., S; that minimizes
the weight of cut edges s.t. t; € ;.



Instance-stability & perturbation-
resilience

» Consider an instance J of an optimization or
clustering problem.

» J"is a y-perturbation of J if it can be obtained
from J by “perturbing the parameters” —
multiplying each parameter by a number from 1 to

Y.
e w(e) <w'(e) <y-w(e)
e d(u,v) <d (u,v) <y-d(u,v)



Instance-stability & perturbation-
resilience

An instance J of an optimization or clustering problem
is perturbation-resilient /instance-stable if the optimal
solution remains the same when we perturb the
instance:

every Y-perturbation 7' has the same optimal
solution as J




Instance-stability & perturbation-
resilience

Every y-perturbation 7' has the same optimal solution
as J

* In practice, we are interested in solving instances
where the optimal solution “stands out” among all
solutions [Bilu, Linial]

* Objective function is an approximation to the “true’
objective function.

* “Practically interesting instance” = it is stable




Results



History

Instance-stability & perturbation-resilience was
infroduced

in discrete optimization: by Bilu and Linial "10
in clustering: by Awasthi, Blum, and Sheffet “12



Results (clustering)

y = 3 ’i‘:e'::’s [Awasthi, Blum, Sheffet
k-mediar,\ 1 2]
k-center,
y = 1+ \/E l’:me:j*sr [Balcan, Liang " 13]

Balcan, Haghtalab
> sym. /asym. [ ; ’
y —_— 2 k-center White *1 6]

y 2 2 k-means, [AMM ‘]7]

k-median




Results (optimization)

Yy = cn Max cut  [Bilu, Linial “10]
[Bilu, Daniely, Linial,
> Max Cu
Yy = C\/ﬁ t Saks "13]
Yy = c/lognloglogn Mexct [MMV "13]
‘y 2 4 Multiway MMV 1 3
’y 2 2 —_— Z/k Multiway AMM 1 7




Results (optimization)

Our algorithms are robust.
* Find the optimal solution, if the instance is stable.

* Find an optimal solution or detects that the instance is
not stable, otherwise.

* Never output an incorrect answer.

Solve weakly stable instances.
Assume that when we perturb the instance
*the optimal solution changes only slightly, or

*there is a core that changes only slightly.



Hardness results for center-based
obejctives

[Balcan, Haghtalab, White “16] No polynomial-time
algorithm for (2 — ¢)-perturbation-resilient instances

of k-center (NP # RP).

[Ben-David, Reyzin "14] No polynomial-time algorithm
for instances of k-means, k-median, k-center
satisfying (2 — €)-center proximity property

(P # NP).



Hardness results for optimization
problems

Set Cover, Vertex Cover, Min 2-Horn Deletion

There is no robust algorithm for O (n'~%)-stable
instances unless P = NP [AMM " 17].

Provide evidence that [MMV 13, AMM "17]

*No robust algorithm for Max Cut when
Yy <O (Jlognloglogn)

* Multiway cut is hard when y < % — 0 (%)



Rlgorithm for Clustering
Problems



Center proximity property

[Awasthi, Blum, Sheffet *12] A clustering (4, ..., C
with centers ¢4, ..., Cj, satisfies the center proximity
property if for every p € (;:

d(p' C]) >y d(p' Ci)



Plan [AMM "17]

i.  Y-perturbation resilience = y-center proximity

ii. 2-center proximity = each cluster is a subtree of
the MST

iii. use single-linkage + DP to find (j, ..., C}



Perturbation resilience = center
proximity

Perturbation resilience: the optimal clustering doesn’t
change when we perturb the distances.

d(u,v)/y <d'(u,v) < d(u,v)

[ABS “12] d'(:,") doesn’t have to be a metric
[AMM *171d'(:,") is a metric

Metric perturbation resilience is a more natural notion.



Perturbation resilience = center
proximity [ABS "12, AMM "17]

Assume center proximity doesn’t hold.

Then d(p, Cj) <vyd(p,c;).



Perturbation resilience = center
proximity [ABS "12, AMM "17]

Assume center proximity doesn’t hold.
* Let d’(p, cj) =d(p,c;) 2y td(p, c)).

* Don’t change other distances.
* Consider the shortest-path closure.
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Perturbation resilience = center
proximity [ABS "12, AMM "17]

Assume center proximity doesn’t hold.
letd'(p,c;) = d(p,c;) =y~ 1d(p, c;).

°* Don't ¢

* Consic This is a y-perturbation.




Perturbation resilience = center
proximity [ABS "12, AMM "17]

Distances inside clusters (; and C; don’t change.
Consider u, v € (;.

d'(u,v) = min ( d(u,v), )

d(u,p) + d’(p, cj) + d(cj, v)



Perturbation resilience = center
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Perturbation resilience = center
proximity [ABS "12, AMM "17]

Since the instance is y-stable, (4, ..., C;, must be the unique
optimal solution for distance d'.

Still, ¢; and ¢; are optimal centers for C; and (;.

d'(p,c;) =d'(p, Cj) = can move p from C; to C;



€ach cluster is a subtree of MST

[ABS “12] 2-center proximity =
every U € (; is closer to ¢; than to any v & (;

Assume the path from u € (; to ¢; in MST, leaves (;.

-



€ach cluster is a subtree of MST

[ABS “12] 2-center proximity =
every U € (; is closer to ¢; than to any v & (;

Assume the path from u € (; to ¢; in MST, leaves (;.




Dunamic programming algorithm

Root MST at some 7. T(u) is the subtree rooted at u.

cost,, (J, ¢): the cost of the partitioning of T(u)
*into J clusters (subtrees)

*so that c is the center of the cluster containing u.

r

T(u)



Dunamic programming algorithm

Fill out the DP table bottom-up.
Example: k-median, u has 2 children u, and u,.
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Fill out the DP table bottom-up.
Example: k-median, u has 2 children u, and u,.




Dunamic programming algorithm

U, Uq, U, lie in the same cluster
costy, (j, ¢) = d(u, ¢) + cost,_(jy,c) + costy, (jz, ¢)
where j; +j, =]+ 1

U, Uq, U, lie in different clusters
cost, (j, ¢) = d(u, c) + costy_(j1,¢1) + costy (jz, C2)
where j; +j, =j—1,¢c4 € T(uq), ¢, € T(u,)

U, U4 lie in the same clusters, U, in a different
cost, (j, ¢) = d(u, c) + cost, (j,c) + costy,, (1, ¢2)
where j; + j, =j, ¢; € T(u,)



Rlgorithms
for
Max Cut and Multiway Cut



Algorithms for Max Cut and Multiway
Cut [MMV "13]

Write an SDP or LP relaxation for the problem.
Show that it is integral if the instance is y-stable.

solve the relaxation
if the SDP /LP solution is integral
return the solution
else
return that the instance is not y-stable

The algorithm is robust: it never returns an incorrect
answer.



Multiway Cut

Write the relaxation for Multiway Cut by
Calinescu, Karloff, and Rabani [CKR "98]

To get an a-approximation, we would design a
rounding scheme with

Pr{(u,v) is cut] < a d(u,v)

Then

[E[weight of cut edges] < « z wypd(u, v)
(u,v)eEE



Multiway Cut: complementary objective

If we want to maximize the weight of uncut edges,
we would we would design a rounding scheme
with

Pr|(u,v)isnotcut] = B (1 — d(u,v))

Then
E[wt. of uncut edges] = 8 z Wy (1 — d(u, v))

(u,v)EE



General approach to solving stable
instances of graph partitioning

Write an LP or SDP relaxation for the problem.

Design a rounding procedure s.t.

Pr[(u,v) is cut] < a d(u,v) minimization
Pr[(u, v) is not cut| > ,8(1 — d(u, v))

or
Pr|(u,v)iscut] = g d(u,v) maximization

Pr[(u, v) is not cut] < a(l —d(u, v))

I Then the relaxation for y-stable instances is integral, when

1l y=2a/p




Solving Max Cut [MMV "13]

Use the Goemans—Williamson SDP relaxation with
£5-triangle inequalities.

Design a rounding procedure with

(04

7 -0 (\/@loglogn),

which is a combination of two algorithms:

* the algorithm for Sparsest Cut with Nonuniform Demands
by Arora, Lee, and Naor "08,

* the algorithm for Min Uncut by Agarwal, Charikar,
Makarychev, M 05



Solving Multiway Cut [AMM "17]

Rounding procedures for Multiway Cut by
* Sharma and Vondrdk "14
* Buchbinder, Schwartz, and Weizman 17

are highly non-trivial.

Show: need a rounding procedure only for LP solutions
that are almost integral.

Design a simple rounding procedure with

a 2
E—Z—E.



Summary

* Algorithms for 2-perturbation-resilient instances of
problems with a natural center based objective:
k-means, k-median, facility location

* Robust algorithms for O (w/logn loglog n)-s’rqble

2
instance of Max Cut and (2 — E)-s’rqble instances of
Multiway Cut.

* Negative results for stable instances of Max Cut,
Multiway Cut, Max k-Cut, Multi Cut, Set Cover,
Vertex Cover, Min 2-Horn Deletion.



