
Algorithms for instance-stable 
and perturbation-resilient 
problems

Haris Angelidakis, TTIC

Konstantin Makarychev, Northwestern

Yury Makarychev, TTIC
Aravindan Vijayaraghavan, Northwestern

QTW on Beyond Worst-Case Analysis

Northwestern, May 24, 2017



Motivation

•Practice: Need to solve clustering and combinatorial 
optimization problems.

• Theory:

•Many problems are NP-hard. Cannot solve them 
exactly.

•Design approximation algorithms for worst case.

Can we get better algorithms for real-world 
instances than for worst-case instances?



Motivation

•Answer: Yes!

When we solve problems that arise in practice, 
we often get much better approximation than it is 
theoretically possible for worst case instances.

•Want to design algorithms with provable
performance guarantees for solving real-world
instances.



Motivation

•Need a model for real-world instances.

•Many different models have been proposed.

• It’s unrealistic that one model will capture all 
instances that arise in different applications.



This work

•Assumption: instances are stable/perturbation-
resilient

•Consider several problems: 

•𝑘-means

•𝑘-median

•Max Cut

•Multiway Cut

•Get exact polynomial-time algorithms



𝑘-means and 𝑘-median

Given a set of points 𝑋, distance 𝑑(⋅,⋅) on 𝑋, and 𝑘

Partition 𝑋 into 𝑘 clusters 𝐶1, … , 𝐶𝑘 and find a 
“center” 𝑐𝑖 in each 𝐶𝑖 so as to minimize
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Multiway Cut

Given

•a graph 𝐺 = (𝑉, 𝐸, 𝑤)

•a set of terminals 𝑡1, … , 𝑡𝑘

Find a partition of 𝑉 into sets 𝑆1, … , 𝑆𝑘 that minimizes 
the weight of cut edges s.t. 𝑡𝑖 ∈ 𝑆𝑖 .
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𝑡3
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Instance-stability & perturbation-
resilience

➢ Consider an instance ℐ of an optimization or 
clustering problem.

➢ ℐ′ is a 𝛾-perturbation of ℐ if it can be obtained 
from ℐ by “perturbing the parameters” —
multiplying  each parameter by a number from 1 to 
𝛾. 

• 𝑤 𝑒 ≤ 𝑤′ 𝑒 ≤ 𝛾 ⋅ 𝑤 𝑒

• 𝑑(𝑢, 𝑣) ≤ 𝑑′ 𝑢, 𝑣 ≤ 𝛾 ⋅ 𝑑(𝑢, 𝑣)



Instance-stability & perturbation-
resilience

An instance ℐ of an optimization or clustering problem 
is perturbation-resilient/instance-stable if the optimal 
solution remains the same when we perturb the 
instance:

every γ-perturbation ℐ′ has the same optimal 
solution as ℐ



Instance-stability & perturbation-
resilience

Every γ-perturbation ℐ′ has the same optimal solution 
as ℐ

• In practice, we are interested in solving instances 
where the optimal solution “stands out” among all 
solutions [Bilu, Linial]

• Objective function is an approximation to the “true” 
objective function. 

• “Practically interesting instance” ⇒ it is stable



Results



History

Instance-stability & perturbation-resilience was 
introduced

in discrete optimization: by Bilu and Linial `10

in clustering: by Awasthi, Blum, and Sheffet `12



Results (clustering)

𝛾 ≥ 3 𝒌-center, 

𝒌-means, 

𝒌-median

[Awasthi, Blum, Sheffet

`12]

𝛾 ≥ 1 + 2
𝒌-center, 

𝒌-means, 

𝒌-median
[Balcan, Liang `13]

𝛾 ≥ 2 sym. /asym. 

𝒌-center

[Balcan, Haghtalab, 

White `16]

𝛾 ≥ 2 𝒌-means, 

𝒌-median [AMM `17]



Results (optimization)

𝛾 ≥ 𝑐𝑛 Max Cut [Bilu, Linial `10]

𝛾 ≥ 𝑐 𝑛 Max Cut
[Bilu, Daniely, Linial,  

Saks `13]

𝛾 ≥ 𝑐 log 𝑛 log log 𝑛 Max Cut [MMV `13]

𝛾 ≥ 4 Multiway [MMV `13]

𝛾 ≥ 2 − 2/𝑘 Multiway [AMM `17]



Results (optimization)

Our algorithms are robust.

• Find the optimal solution, if the instance is stable.

• Find an optimal solution or detects that the instance is 
not stable, otherwise.

•Never output an incorrect answer.

Solve weakly stable instances.

Assume that when we perturb the instance 

• the optimal solution changes only slightly, or 

• there is a core that changes only slightly.



[Balcan, Haghtalab, White `16] No polynomial-time 
algorithm for (2 − 𝜀)-perturbation-resilient instances 
of 𝑘-center (𝑁𝑃 ≠ 𝑅𝑃).

[Ben-David, Reyzin `14] No polynomial-time algorithm 
for instances of 𝑘-means, 𝑘-median, 𝑘-center 
satisfying (2 − 𝜀)-center proximity property
(𝑃 ≠ 𝑁𝑃).

Hardness results for center-based 
obejctives



Hardness results for optimization 
problems

Set Cover, Vertex Cover, Min 2-Horn Deletion

There is no robust algorithm for 𝑂(𝑛1−𝜀)-stable 
instances unless P = NP [AMM `17].

Provide evidence that [MMV `13, AMM `17]

•No robust algorithm for Max Cut when 

𝛾 < 𝑂 log 𝑛 log log 𝑛

•Multiway cut is hard when 𝛾 <
4

3
− 𝑂

1

𝑘
.



Algorithm for Clustering 
Problems



Center proximity property

[Awasthi, Blum, Sheffet `12] A clustering 𝐶1, …, 𝐶𝑘
with centers 𝑐1, …, 𝑐𝑘 satisfies the center proximity 
property if for every 𝑝 ∈ 𝐶𝑖 :

𝑑 𝑝, 𝑐𝑗 > 𝛾 𝑑 𝑝, 𝑐𝑖

𝑐𝑖

𝐶𝑗𝐶𝑖

𝑐𝑗
𝑝



i. 𝛾-perturbation resilience ⇒ 𝛾-center proximity

ii. 2-center proximity ⇒ each cluster is a subtree of 
the MST

iii. use single-linkage + DP to find 𝐶1, … , 𝐶𝑘

Plan [AMM `17] 



Perturbation resilience: the optimal clustering doesn’t 
change when we perturb the distances.

𝑑 𝑢, 𝑣 /𝛾 ≤ 𝑑′ 𝑢, 𝑣 ≤ 𝑑(𝑢, 𝑣)

[ABS `12] 𝑑′(⋅,⋅) doesn’t have to be a metric

[AMM `17] 𝑑′(⋅,⋅) is a metric

Metric perturbation resilience is a more natural notion.

Perturbation resilience ⇒ center 
proximity



Assume center proximity doesn’t hold.

Then 𝑑 𝑝, 𝑐𝑗 ≤ 𝛾 𝑑 𝑝, 𝑐𝑖 .

Perturbation resilience ⇒ center 
proximity [ABS `12, AMM `17]
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Assume center proximity doesn’t hold.

• Let 𝑑′ 𝑝, 𝑐𝑗 = 𝑑 𝑝, 𝑐𝑖 ≥ 𝛾−1𝑑(𝑝, 𝑐𝑗). 

•Don’t change other distances.

•Consider the shortest-path closure.

Perturbation resilience ⇒ center 
proximity [ABS `12, AMM `17]
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Assume center proximity doesn’t hold.

• Let 𝑑′ 𝑝, 𝑐𝑗 = 𝑑 𝑝, 𝑐𝑖 ≥ 𝛾−1𝑑(𝑝, 𝑐𝑗). 

•Don’t change other distances.

•Consider the shortest-path closure.

Perturbation resilience ⇒ center 
proximity [ABS `12, AMM `17]
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Assume center proximity doesn’t hold.

• Let 𝑑′ 𝑝, 𝑐𝑗 = 𝑑 𝑝, 𝑐𝑖 ≥ 𝛾−1𝑑(𝑝, 𝑐𝑗). 

•Don’t change other distances.

•Consider the shortest-path closure.

Perturbation resilience ⇒ center 
proximity [ABS `12, AMM `17]
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This is a 𝛾-perturbation.



Distances inside clusters 𝑪𝒊 and 𝑪𝒋 don’t change.

Consider 𝑢, 𝑣 ∈ 𝐶𝑖 .

𝑑′ 𝑢, 𝑣 = min
𝑑 𝑢, 𝑣 ,

𝑑 𝑢, 𝑝 + 𝑑′ 𝑝, 𝑐𝑗 + 𝑑 𝑐𝑗 , 𝑣

Perturbation resilience ⇒ center 
proximity [ABS `12, AMM `17]
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Distances inside clusters 𝑪𝒊 and 𝑪𝒋 don’t change.

Consider 𝑢, 𝑣 ∈ 𝐶𝑖 .

𝑑′ 𝑢, 𝑣 = min
𝑑 𝑢, 𝑣 ,

𝑑 𝑢, 𝑝 + 𝑑′ 𝑝, 𝑐𝑗 + 𝑑 𝑐𝑗 , 𝑣

Perturbation resilience ⇒ center 
proximity [ABS `12, AMM `17]
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Since the instance is 𝛾-stable, 𝐶1, … , 𝐶𝑘 must be the unique 
optimal solution for distance 𝑑′.

Still, 𝑐𝑖 and 𝑐𝑗 are optimal centers for 𝐶𝑖 and 𝐶𝑗 .

𝑑′ 𝑝, 𝑐𝑖 = 𝑑′ 𝑝, 𝑐𝑗 ⇒ can move 𝑝 from 𝐶𝑖 to 𝐶𝑗

Perturbation resilience ⇒ center 
proximity [ABS `12, AMM `17]
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[ABS `12] 2-center proximity ⇒

every 𝑢 ∈ 𝐶𝑖 is closer to 𝑐𝑖 than to any 𝑣 ∉ 𝐶𝑖

Assume the path from  𝑢 ∈ 𝐶𝑖 to 𝑐𝑖 in MST, leaves 𝐶𝑖 .

Each cluster is a subtree of MST

𝑢
𝑐𝑖

𝑣



[ABS `12] 2-center proximity ⇒

every 𝑢 ∈ 𝐶𝑖 is closer to 𝑐𝑖 than to any 𝑣 ∉ 𝐶𝑖

Assume the path from  𝑢 ∈ 𝐶𝑖 to 𝑐𝑖 in MST, leaves 𝐶𝑖 .

Each cluster is a subtree of MST

𝑢
𝑐𝑖

𝑣



Root MST at some 𝑟. 𝑇 𝑢 is the subtree rooted at 𝑢.

cost𝑢(𝑗, 𝑐): the cost of the partitioning of 𝑇 𝑢

• into 𝑗 clusters (subtrees) 

• so that 𝑐 is the center of the cluster containing 𝑢.

Dynamic programming algorithm

𝑢

𝑟

𝑇(𝑢)

𝑐



Fill out the DP table bottom-up. 

Example: 𝑘-median, 𝑢 has 2 children 𝑢1 and 𝑢2.

Dynamic programming algorithm

𝑢

𝑇(𝑢)

𝑢2𝑢1



Fill out the DP table bottom-up. 

Example: 𝑘-median, 𝑢 has 2 children 𝑢1 and 𝑢2.

Dynamic programming algorithm

𝑢

𝑇(𝑢)



Fill out the DP table bottom-up. 

Example: 𝑘-median, 𝑢 has 2 children 𝑢1 and 𝑢2.

Dynamic programming algorithm

𝑢

𝑇(𝑢)



Fill out the DP table bottom-up. 

Example: 𝑘-median, 𝑢 has 2 children 𝑢1 and 𝑢2.

Dynamic programming algorithm

𝑢

𝑇(𝑢)



𝑢, 𝑢1, 𝑢2 lie in the same cluster

cost𝑢 𝑗, 𝑐 = 𝑑 𝑢, 𝑐 + cost𝑢1 𝑗1, 𝑐 + cost𝑢2 𝑗2, 𝑐

where 𝑗1 + 𝑗2 = 𝑗 + 1

𝑢, 𝑢1, 𝑢2 lie in different clusters

cost𝑢 𝑗, 𝑐 = 𝑑 𝑢, 𝑐 + cost𝑢1 𝑗1, 𝑐1 + cost𝑢2 𝑗2, 𝑐2

where 𝑗1 + 𝑗2 = 𝑗 − 1, 𝑐1 ∈ 𝑇 𝑢1 , 𝑐2 ∈ 𝑇 𝑢2

𝑢, 𝑢1 lie in the same clusters, 𝑢2 in a different

cost𝑢 𝑗, 𝑐 = 𝑑 𝑢, 𝑐 + cost𝑢1 𝑗1, 𝑐 + cost𝑢2 𝑗1, 𝑐2

where 𝑗1 + 𝑗2 = 𝑗, 𝑐2 ∈ 𝑇 𝑢2

Dynamic programming algorithm



Algorithms 
for

Max Cut and Multiway Cut



Algorithms for Max Cut and Multiway 
Cut [MMV `13]

Write an SDP or LP relaxation for the problem. 

Show that it is integral if the instance is 𝛾-stable.

solve the relaxation

if the SDP/LP solution is integral

return the solution

else

return that the instance is not 𝛾-stable

The algorithm is robust: it never returns an incorrect 
answer.



Multiway Cut

Write the relaxation for Multiway Cut by 

Călinescu, Karloff, and Rabani [CKR `98]

To get an 𝛼-approximation, we would design a 
rounding scheme with

Pr 𝑢, 𝑣 is cut ≤ 𝛼 𝑑 𝑢, 𝑣

Then 

𝔼 weight of cut edges ≤ 𝛼෍
𝑢,𝑣 ∈𝐸

𝑤𝑢𝑣𝑑(𝑢, 𝑣)



Multiway Cut: complementary objective

If we want to maximize the weight of uncut edges, 
we would we would design a rounding scheme 
with

Pr 𝑢, 𝑣 is not cut ≥ 𝛽 (1 − 𝑑 𝑢, 𝑣 )

Then 

𝔼 wt. of uncut edges ≥ 𝛽 ෍
𝑢,𝑣 ∈𝐸

𝑤𝑢𝑣(1 − 𝑑 𝑢, 𝑣 )



Write an LP or SDP relaxation for the problem.

Design a rounding procedure s.t.

Pr 𝑢, 𝑣 is cut ≤ 𝛼 𝑑 𝑢, 𝑣

Pr 𝑢, 𝑣 is not cut ≥ 𝛽 1 − 𝑑 𝑢, 𝑣
or

Pr 𝑢, 𝑣 is cut ≥ 𝛽 𝑑 𝑢, 𝑣

Pr 𝑢, 𝑣 is not cut ≤ 𝛼 1 − 𝑑 𝑢, 𝑣

Then the relaxation for 𝛾-stable instances is integral, when 
𝛾 ≥ 𝛼/𝛽

General approach to solving stable 
instances of graph partitioning

minimization

maximization

!



Solving Max Cut [MMV `13]

Use the Goemans–Williamson SDP relaxation with 
ℓ2
2-triangle inequalities.

Design a rounding procedure with 

𝛼

𝛽
= 𝑂 log𝑛 log log 𝑛 ,

which is a combination of two algorithms:

• the algorithm for Sparsest Cut with Nonuniform Demands 
by Arora, Lee, and Naor `08, 

• the algorithm for Min Uncut by Agarwal, Charikar, 
Makarychev, M `05



Solving Multiway Cut [AMM `17]

Rounding procedures for Multiway Cut by

•Sharma and Vondrák `14

•Buchbinder, Schwartz, and Weizman `17

are highly non-trivial.

Show: need a rounding procedure only for LP solutions 
that are almost integral.

Design a simple rounding procedure with
𝛼

𝛽
= 2 −

2

𝑘
.



Summary

•Algorithms for 2-perturbation-resilient instances of 
problems with a natural center based objective:
𝑘-means, 𝑘-median, facility location

•Robust algorithms for 𝑂 log 𝑛 log log 𝑛 -stable 

instance of Max Cut and 2 −
2

𝑘
-stable instances of 

Multiway Cut.

•Negative results for stable instances of Max Cut, 
Multiway Cut, Max 𝑘-Cut, Multi Cut, Set Cover, 
Vertex Cover, Min 2-Horn Deletion.


