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ABSTRACT
We give O(

√
log n)-approximation algorithms for the Min

UnCut, Min 2CNF Deletion, Directed Balanced Sep-
arator, and Directed Sparsest Cut problems. The pre-
viously best known algorithms give an O(log n)-approximation
for Min UnCut [9], Directed Balanced Separator [17],
Directed Sparsest Cut [17], and an O(log n log log n)-
approximation for Min 2CNF Deletion [14].

We also show that the integrality gap of an SDP relaxation
of the Minimum Multicut problem is Ω(log n).
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1. INTRODUCTION
In this paper we present O(

√
log n)-approximation algo-

rithms for several important combinatorial problems: the
Min UnCut, Min 2CNF Deletion, Directed Balanced
Separator and Directed Sparsest Cut problems.

The Min UnCut and Min 2CNF Deletion problems are
representatives of the family of Minimum Constraint Satis-
faction Problems (Min CSP).

Definition 1 (Min CSP(F)). Consider boolean vari-
ables b1, . . . , bn and a set of constraints C from F . The
goal is to find an assignment that minimizes the number of
unsatisfied constraints.

In the Min UnCut problem each constraint is of the form
bi ⊕ bj = 0 or bi ⊕ bj = 1, in the Min 2CNF Deletion
problem each constraint is of the form bi ∨ bj , b̄i ∨ bj or
b̄i ∨ b̄j . The Min UnCut problem also has equivalent graph
theoretic formulations (see Section 2).

The Min 2CNF Deletion problem is of particular inter-
est since it is the hardest Min CSP problem that has non-
trivial approximation guarantees. Khanna, Sudan, Trevisan
and Williamson classified all Min CSP problems [12] and
both Min UnCut and Min 2CNF Deletion are complete
problems for classes of Min CSP problems in their hierarchy.
They showed that either a Min CSP problem is at least as
hard to approximate as the Nearest Codeword problem,
or the problem can be A-reduced to the Min 2CNF Dele-
tion problem. In the former case the problem is hard to

approximate to within a factor of Ω(2log1−ε n) unless every

NP language can be decided in deterministic time npoly(log n)

[1]. In the latter case, our algorithm yields an O(
√

log n)-
approximation.

In particular, if each constraint depends only on two vari-
ables then the problem is reducible to Min 2CNF Dele-
tion. Though Min UnCut is also reducible to Min 2CNF
Deletion, we present a slightly simpler algorithm that deals
with Min UnCut.

Another application of the Min 2CNF Deletion prob-
lem was recently found by Chleb́ık and Chleb́ıková [7]. They
showed that every k-approximation algorithm for Min 2CNF
Deletion polynomially reduces to a (2− 2

k+1
)-approximation

algorithm for the Minimum Vertex Cover problem. Com-
bining our result with this reduction we get an algorithm



for Vertex Cover with the same approximation factor
2−Ω( 1√

log n
) as in the best known approximation algorithm

for Vertex Cover by Karakostas [11].
The previously best known approximation ratio for Min

UnCut is O(log n) [9], and the best previously known ap-
proximation for Min 2CNF Deletion is O(log n log log n)
[14]. Both problems are known to be Max SNP-hard [18].
The best known lower bound for Min 2CNF Deletion is
8
√

5 − 15 ≈ 2.88854 [7]. Moreover, if the Unique Games
Conjecture holds true, then Min 2CNF Deletion cannot
be approximated within any constant factor [13].

We also study the Directed Balanced Separator and
Directed Sparsest Cut problems. Recently Arora, Rao,
and Vazirani [3] presented an O(

√
log n)-pseudo approxima-

tion algorithm for the Balanced Separator problem, and
an O(

√
log n)-approximation for the Sparsest Cut prob-

lem. We extend their results to the directed versions of
these problems.

In this paper, we introduce new methods for solving com-
binatorial problems on directed graphs.

In Sections 2 and 3, we formulate the Min UnCut and
Min 2CNF Deletion problems, present semidefinite relax-
ations for them and sketch the rounding algorithms.

In Section 4, we define a directed semimetric, and show
how to construct a separation algorithm similar to that of
[3] for it. Then we present a recursive algorithm that given
a symmetric unit-`22 representation of a graph G = (V, E)
(see Section 4.1 for the definitions) partitions the vertices V
into sets S and T = −S such that the cost of the directed
cut between S and T (the number of edges going from S
to T ) is at most O(

√
log n) of the volume of G. Applying

this algorithm to the solutions of the SDP relaxations for
the Min UnCut and Min 2CNF Deletion problems we
get O(

√
log n)-approximations.

In Section 5 using this semimetric instead of the `22 dis-
tance in the algorithms by Arora, Rao and Vazirani [3]
we achieve an O(

√
log n)-pseudo approximation for the Di-

rected Balanced Separator problem, and an O(
√

log n)-
approximation for the Directed Sparsest Cut problem.

Finally, in Section 6 we show that the integrality gap of a
rather strong SDP relaxation (with triangle inequalities) for
the Minimum Multicut problem is Ω(log n). Thus methods
developed in this paper cannot be directly applied to this
problem. This is quite interesting since previously the Min
UnCut problem was solved by a reduction to the Minimum
Multicut problem.

Recently, Charikar, Karloff and Rao [5] have extended our
methods for directed semimetrics to design approximation
algorithms for directed vertex ordering problems. They ob-
tain O(

√
log n log log n) approximations for Minimum Lin-

ear Arrangement, Minimum Storage-Time Product,
and Minimum Containing Interval Graph.

Finally, we mention that the recent results of Arora, Lee
and Naor [2] on embedding negative type metrics into `2
do not yield algorithms for the problems we consider in this
paper.

2. APPROXIMATING MIN UNCUT

Definition 2 (Min UnCut Problem).
Consider boolean variables b1, . . . , bn and a set of constraints
of the form bi ⊕ bj = 0 and bi ⊕ bj = 1. The goal is to
minimize the number of unsatisfied constraints.

Remark 2.1. There are two other equivalent forms of the
Min UnCut problem that are commonly used.

The first one is as follows: Given a graph G = (V, E), find
a minimum set of edges M such that G −M ≡ (V, E \M)
is a bipartite graph.

The second definition explains the name of the problem:
Given a graph G = (V, E), find a cut that minimizes the
number of uncut edges i.e. the number of edges within each
part.

We will prove the following result.

Theorem 2.1. There is a randomized polynomial-time al-
gorithm for finding an O(

√
log n) approximation for the Min

UnCut problem.

We will reduce Min UnCut to an alternate problem which
will be convenient for our purposes. We start with a defini-
tion and then explain the reduction.

Definition 3. Consider a directed or undirected graph
G = (V, E) on the set V = {−n, . . . ,−1} ∪ {1, . . . , n}. We
say that a set of vertices M ⊂ V is symmetric if M = −M ,
where −M ≡ {−i : i ∈ M}. The set of edges E is symmetric
if (i, j) ∈ E ↔ (−j,−i) ∈ E. The graph G is symmetric
if the set of its vertices V and the set of its edges E are
symmetric.

Given an instance of Min UnCut, we first add new boolean
variables b−1, . . . , b−n and set b−1 = b̄1, . . . , b−n = b̄n, i.e.
b−i is a shortcut for b̄i. Then we replace all constraints of the
form bi⊕bj = 1 with two equivalent constraints b−i ↔ bj and
b−j ↔ bi; we replace bi⊕bj = 0 with bi ↔ bj and b−j ↔ b−i.
The number of unsatisfied new constraints is exactly twice
the number of unsatisfied old constraints. We now consider
the graph G = (V, E), where V = {−n, . . . ,−1}∪{1, . . . , n}
and (i, j) ∈ E iff there is a constraint bi ↔ bj .

We claim that Min UnCut is equivalent to the problem
of finding a minimum symmetric cut (S, S̄ = −S) in G. The
symmetric cut gives us an assignment of truth values to
variables in the original instance – one part corresponds to
the variables set to true, and the other corresponds to those
set to false. Note that the cut edges in the new problem
correspond to constraints that are unsatisfied in the original
instance.

We now write an SDP (vector program) relaxation for the
new problem:

min
1

4

X
(i,j)∈E

|vi − vj |2

s.t. |vi|2 = 1 ∀i ∈ V

|vi − vj |2 ≤ |vi − vk|2 + |vk − vj |2 ∀i, j, k ∈ V

vi = −v−i ∀i ∈ V

The last constraint will ensure that the cut is symmetric.
The idea of using antipodal vectors in an SDP relaxation
was used before for an SDP relaxation of the Vertex Cover
problem by Karakostas [11].

This SDP is indeed a relaxation. Every assignment of the
boolean variables corresponds to a feasible set of vectors:

vi =

(
v0 , if bi = 1;

−v0 , if bi = 0;



where v0 is a fixed unit vector. The objective function is
equal to the number of unsatisfied constraints.

Define the volume of a set M ⊂ V to be

vol(M) =
X

(i,j)∈E
i,j∈M

|vi − vj |2.

In other words, the volume of a set is equal the contribution
of the set to the SDP value multiplied by four. Similarly the
volume of an edge (i, j) is |vi − vj |2.

Definition 4. A unit-`22 representation of a graph G is
an assignment of vectors vi to each vertex i such that

1. All vectors vi lie on the unit sphere:

∀i ∈ V |vi| = 1.

2. The `22 triangle inequality holds:

∀i, j, k ∈ V |vi − vj |2 ≤ |vi − vk|2 + |vk − vj |2.

Let the set of vertices of the graph G be {−n, . . . ,−1} ∪
{1, . . . , n}, then a unit-`22 representation is symmetric if the
vectors are symmetric w.r.t. the origin:

∀i ∈ V vi = −v−i.

A unit-`22 representation is c-spread ifX
i<j

|vi − vj |2 ≥ 4c(1− c) · (#vertices)2.

Clearly, every feasible set of vectors for the SDP relaxation
is a symmetric unit-`22 representation of the graph G.

We now informally sketch the algorithm for partitioning
the graph. First we solve the SDP relaxation and get a unit-
`22 representation of the graph. Using the ARV separation
algorithm [3] we find symmetric sets S∗ and T ∗ which are
Ω(1/

√
log n)-separated w.r.t the squared Euclidean distance

(`22). Then we take their neighborhoods S1 ⊃ S∗ and T1 ⊃
T ∗ such that the number of outgoing edges from S1 is at
most O(

√
log n) times the volume of G. We apply the same

procedure to the remaining part R1 = V \ (S1 ∪ T1) and
get sets S2 and T2 = −S2 etc. Finally we set S = ∪iSi,
T = ∪iTi and return the cut (S, T ). Since all sets Si and Ti

are symmetric, the cut is also symmetric. The size of the cut
is less than or equal to the sum of the number of outgoing
edges from S1, S2, etc. Which is bounded by

O(
p

log n) · (vol(V ) + vol(R1) + vol(R2) + . . .).

In order this sum to be O(
√

log n vol(G)), it suffices that
the volumes of Ri decrease geometrically. In other words,
the sets Si and Ti should contain a constant fraction of the
volume of Ri−1 at each iteration of the algorithm. To guar-
antee this we assign to each vertex weight proportional to
the volume of the outgoing edges from this vertex. We then
use the weighted version of the separation algorithm to get
symmetric sets S∗ and T ∗ which contain a constant fraction
of the volume.

We will give a detailed explanation and analysis of the
algorithm in Section 4.

3. APPROXIMATING MIN 2CNF DELETION

Definition 5 (Min 2CNF Deletion Problem).
Consider boolean variables b1, . . . , bn and a set of constraints
of the form bi∨bj, b̄i∨bj and b̄i∨ b̄j. The goal is to minimize
the number of unsatisfied constraints.

We will prove the following result.

Theorem 3.1. There is a randomized polynomial-time al-
gorithm for finding an O(

√
log n) approximation for the Min

2CNF Deletion problem.

Similarly to the Min UnCut problem, we introduce new
variables b−1, . . . , b−n; set b−1 = b̄1, . . . , b−n = b̄n. Then we
replace each constraint bi∨bj with two equivalent constraints
b−i → bj and b−j → bi. We now want to minimize the num-
ber of unsatisfied constraints of the new form. We consider
the graph G = (V, E), where V = {−n, . . . ,−1}∪{1, . . . , n}
and (i, j) ∈ E iff there is a constraint bi → bj . It is easy to
see that the graph is symmetric.

We write an SDP relaxation for Min 2CNF Deletion:

min
1

8

X
(i,j)∈E

|vi − vj |2 − |v0 − vi|2 + |v0 − vj |2

s.t |vi|2 = 1 ∀i ∈ V ∪ {0}
|vi − vj |2 ≤ |vi − vk|2 + |vk − vj |2 ∀i, j, k ∈ V ∪ {0}

vi = −v−i ∀i ∈ V

where vi (i ∈ V ) corresponds to the boolean variable bi;
v0 corresponds to true; and −v0 corresponds to false. Note
that this is indeed a valid relaxation. For every constraint
bi → bj , we have the term 1

8
(|vi−vj |2−|v0−vi|2+ |v0−vj |2)

in the objective function. If vi = vj or if vi = −v0, vj = v0

(i.e. the constraint is satisfied), the value of this expression
is 0. On the other hand, the value is 1 if vi = v0, vj = −v0

(i.e. the constraint is not satisfied).
An SDP solution is a symmetric unit-`22 representation.

Using techniques described in Section 4 we partition the set
of vertices into two sets S and T = −S such that the cost
of the directed cut (S,−S) is at most O(

√
log n) of the SDP

value. We set bi to be true, if i ∈ S and false otherwise.
Then each unsatisfied constraint bi → bj corresponds to an
edge from S to −S. Therefore, the number of unsatisfied
constraints is O(

√
log n) of the SDP value.

4. TECHNICAL DETAILS
In this section, we will describe a general framework for

the Min UnCut and Min 2CNF Deletion problems. Then
we prove weighted separation theorems for undirected and
directed cases. Finally we present a partitioning algorithm
for finding a small directed symmetric cut.

4.1 Definitions

Definition 6. Let G = (V, E) be a directed graph; and
S be a subset of its vertices. We denote the set of edges
outgoing from S by δout(S); the set of edges incoming to
S by δin(S). δout

M (S) [δin
M (S)] denotes the number of edges

outgoing from [incoming to] S in the subgraph G[M ] of G
induced by a vertex set M .



Definition 7. Let G = (V, E) be a directed graph. A
directed semimetric1 on G is a function d : V×V → R+∪{0}
such that

1. ∀i ∈ V d(i, i) = 0.

2. The triangle inequality holds:

∀i, j, k ∈ V d(i, j) + d(j, k) ≥ d(i, k).

We say that the directed semimetric is symmetric if

∀i, j ∈ V d(i, j) = d(−j,−i).

We define the distance between sets and points in the natural
way:

• d(S, T ) = mini∈S;j∈T d(i, j);

• d(i, S) = d({i}, S);

• d(S, i) = d(S, {i});

Definition 8. Define the volume of M ⊂ V w.r.t. a
directed semimetric d as follows:

vold(M) =
X

(i,j)∈E
i,j∈M

d(i, j).

Definition 9. Let d be a directed semimetric. Let S and
T be two sets of vertices. S and T are ∆-separated w.r.t. d
if d(S, T ) ≥ ∆.

Definition 10. Let vi be a symmetric unit-`22 represen-
tation of a graph G. And let v0 be a fixed unit vector, such
that all vectors v (including v0) satisfy the `22 triangle in-
equality.

We define two functions

• d1(i, j) = |vi − vj |2;

• d2(i, j) = |vi − vj |2 − |v0 − vi|2 + |v0 − vj |2.

Observation 4.1. d1 and d2 are symmetric semimetrics.

Proof. The triangle inequality for d1 and the fact that
d2 is nonnegative trivially follow from the triangle inequality
constraint from the definition of the unit-`22 representation.
The triangle inequality for d2 is derived as follows:

d2(i, k) + d2(k, j) = |vi − vk|2 − |v0 − vi|2

+ |v0 − vk|2 + |vk − vj |2 − |v0 − vk|2 + |v0 − vj |2

= |vi − vk|2 + |vk − vj |2 − |v0 − vi|2 + |v0 − vj |2

≥ |vi − vj |2 − |v0 − vi|2 + |v0 − vj |2 = d2(i, j)

Remark 4.1. We gave the definitions above for directed
graphs, since, generally speaking, the volume of an edge de-
pends on its orientation. However, when the metric d is
“undirected”, i.e. d(x, y) = d(y, x), these definitions also
apply to undirected graphs. We think of an undirected graph
as a directed graph where each edge is oriented in both direc-
tions. In particular, when we use the metric d1 (to analyze
the Min UnCut problem) the graph G will be undirected.

Note that the SDP value for Min UnCut is equal to the
volume of the graph w.r.t. d1(i, j) multiplied by 4; the SDP
value for Min 2CNF Deletion is equal to the volume of
the graph w.r.t. d2(i, j) multiplied by 8.
1Directed semimetrics are sometimes called quasi-semi-
metrics.

4.2 Separation Algorithm
In this section, we will describe an algorithm which given

a symmetric unit-`22 representation of a graph G finds ∆ =
Ω(1/

√
log n)-separated w.r.t. d1 [d2] sets S and T = −S

such that the set S contains a constant fraction of the total
volume of the graph w.r.t. d1 [d2].

The following result by Arora, Rao, Vazirani [3] plays a
central role in our paper (see also Lee’s analysis of the algo-
rithm in [16]).

Theorem 4.2 (ARV algorithm). For every c > 0,
every c-spread unit-`22 representation with n points contains
∆-separated w.r.t. the `22 distance subsets S, T of size Ω(n),
where ∆ = Ω(1/

√
log n). Furthermore, there is a random-

ized polynomial-time algorithm for finding these subsets S,
T .

Observation 4.3. Every symmetric unit-`22 representa-
tion is 1/3-spread (for n ≥ 9).

Proof.X
i<j

|vi − vj |2

=
X
i>0

X
j>i

�
|vi − vj |2 + |vi − v−j |2

+|v−i − vj |2 + |v−i − v−j |2
�

=
X
i>0

X
j>i

8 = 4(n− 1)n ≥ 4 · 1

3
· 2

3
· 4n2.

Since every symmetric unit-`22 representation is a 1/3-
spread the theorem is also applicable to symmetric unit-
`22 representations. Moreover, we may assume that the al-
gorithm returns sets S and T that are reflections of each
other about the origin: S = −T . Indeed, the first step of
the algorithm partitions V into symmetric sets S′ and T ′:
S′ = −T ′. At the deletion step we have some freedom in
choosing matchings. We should always choose symmetric
matchings, that is if (i, j) belongs to the matching, (−i,−j)
should also belong to the matching.

Corollary 4.4. Any symmetric unit-`22 representation
with 2n points contains ∆-separated w.r.t. the `22 distance
subsets S, and T = −S of size Ω(n), where ∆ = Ω(1/

√
log n).

Furthermore, there is a randomized polynomial-time algo-
rithm for finding these subsets S, T .

Now we are ready to present an algorithm that given a
symmetric unit-`22 representation and weights for each ver-
tex finds Ω(1/

√
log n)-separated w.r.t. `22 sets S and T = −S

with a constant fraction of the total weight (the details are
below). We use the algorithm from Corollary 4.4 as a sub-
routine. The algorithm is based on the approach of Chawla,
Gupta and Räcke [6].

Algorithm 1 (Weighted Separation).
Input: a directed graph G; a symmetric unit-`22 represen-

tation of G; a symmetric subset of vertices M ; weights wi

of all vertices i ∈ M (where wi = w−i);
Output: sets S and −S, such that
i. S and −S are ∆ = Ω(1/

√
log n)-separated w.r.t. the `22

distance;
ii.
P

i∈M\(S∪−S) wi ≤ c1W , where W =
P

i∈M wi and c1

(c1 < 1) is a fixed constant.



1. For all i ∈ M let

mi =

�
wi

�
W

n2

�
.

2. Duplicate each point i ∈ M mi times; assign the same
vector vi to each copy (i, j) of i:

Vdup = {(i, j) : i ∈ M, j = 1, . . . , mi};

∀i′ = (i, j) ∈ Vdup vi′ = vi.

Note that the set Vdup is of polynomial size (at most
2n3 vertices); and it is also a symmetric unit-`22 repre-
sentation.

3. Run the ∆-separation algorithm from Corollary 4.4 on
Vdup. Denote the output sets by Sdup and Tdup.

4. Let S be the set of vertices i such that at least one
duplicate i′ of i belongs to Sdup.

5. Return S and −S.

Analysis. First note that Tdup = −Sdup. Then if i ∈ S
and j ∈ −S, the distance between i and j is the same as the
distance between their duplicates i′ ∈ Sdup and j′ ∈ −Sdup.
The sets Sdup and −Sdup are ∆-separated, so S and −S are
also ∆-separated.

Finally we verify that the weight of the set S is a constant
fraction of the total weight. By Corollary 4.4, Sdup and Tdup

contain some constant fraction c0 of vertices Vdup:

|Sdup| = |Tdup| ≥ c0|Vdup|

The size of Vdup is at least n2 − 2n:

|Vdup| =
X
i∈M

mi =
X
i∈M

�
wi

�
W

n2

�

≥
X
i∈M

�
wi

�
W

n2
− 1

�
≥ n2 − 2n

So the weight of S and −S isX
i∈S

wi ≥
X
i∈S

W

n2
mi ≥

W

n2
|Sdup|

≥ W

n2
c0|Vdup| ≥ c0

(n2 − 2n)W

n2
≥ c0

2
W

Thus, c1 ≤ 1− c0 < 1.
We now use this algorithm to describe separation algo-

rithms for symmetric semimetrics d1(i, j) and d2(i, j).

Lemma 4.5. [Separation Algorithm for d1] There exists
an algorithm which given a symmetric unit-`22 representation
of a symmetric graph G = (V, E), and a symmetric set M ⊂
V , finds ∆ = Ω(1/

√
log n)-separated w.r.t. d1 sets S ⊂ M

and T = −S ⊂ M such that the volume of the remaining
set M \ (S ∪ −S) is less than some constant fraction of the
volume of M .

Proof. We run the weighted separation algorithm with
weights wi (for i ∈ M) equal to the total volume of edges
incident to the vertex i:

wi =
X

j:(i,j)∈E
j∈M

d1(i, j).

The algorithm produces ∆-separated sets S and −S. Note
that

vold1(M) =
1

2
w(M) ≡

X
i∈M

wi

vold1(M \ (S ∪ −S)) ≤ 1

2
w(M \ (S ∪ −S))

Therefore,

vold1(M \ (S ∪ −S)) ≤ 1

2
w(M \ (S ∪ −S))

≤ 1

2
c1w(M) = c1 vold1(M)

Lemma 4.6. [Separation Algorithm for d2] There exists
an algorithm which given a symmetric unit-`22 representation
of a symmetric graph G = (V, E), and a symmetric set M ⊂
V , finds ∆ = Ω(1/

√
log n)-separated w.r.t. d2 sets S ⊂ M

and T = −S ⊂ M such that the volume of the remaining
set M \ (S ∪ −S) is less than some constant fraction of the
volume of M .

Proof. As in the previous lemma we set

wi =
X

j:(i,j)∈E
j∈M

d2(i, j) +
X

j:(j,i)∈E
j∈M

d2(j, i).

(the first term is the volume of all outgoing edges, the second
term is the volume of all incoming edges)

Note that wi = w−i since the set of edges is symmetric: if
(i, j) ∈ E then (−j,−i) ∈ E, and since d2(i, j) = d2(−j,−i).

The weighted separation algorithm returns ∆-separated
w.r.t. `22 sets S and −S. Let

S+ = {i ∈ S : 〈v0, vi〉 ≥ 0}; S− = {i ∈ S : 〈v0, vi〉 ≤ 0}.

Note that S+ and −S+ are ∆-separated w.r.t. `22: If i ∈ S+,
j ∈ −S+, then

d2(i, j) = |vi − vj |2 − |v0 − vi|2 + |v0 − vj |2

= |vi − vj |2 + 2〈v0, vi − vj〉 ≥ |vi − vj |2 ≥ ∆.

Hence S+ and −S+ are ∆-separated w.r.t. d2. Similarly
−S− and S− are ∆-separated. Since S = S+ ∪ S−, one of
the sets S+ or S− contains (1 − c1)/4 fraction of the total
weight. The output S of the algorithm is the largest of the
sets S1 and S2. By the same argument as in the previous
lemma, vold2(M \ (S ∪ −S)) ≤ 1+c1

2
vold2(M).

4.3 Partitioning
Let d be a directed symmetric semimetric d1 or d2. First

we construct an algorithm that takes a symmetric set M
and partition it into three disjoint sets S, R,−S with the
following properties.

Algorithm 2 (Finding (S, R,−S) Partitioning).
Input: a symmetric directed graph G; a symmetric unit-`22

representation of G; M ⊂ V such that M = −M .
Output: disjoint subsets S, R,−S ⊂ M such that
i.

|δout
M (S)|+ |δin

M (−S)| = O
�vold(M)

∆

�
.

Here we consider only edges of the induced subgraph G[M ]
of G by the vertex subset M .



ii. The volume of R is at most a constant fraction of the
volume of M :

vold(R) ≤ c2 vold(M), where c2 < 1 is a constant

1. Run the separation algorithm for the semimetric d.
Denote the result by S∗ and −S∗.

2. Define the set of edges Et (t ∈ (0, ∆)) as follows

Et = {(i, j) ∈ E : d(S∗, i) ≤ t and d(S∗, j) ≥ t} ∪
{(i, j) ∈ E : d(j,−S∗) ≤ t and d(i,−S∗) ≥ t}.

Note that if d is a metric then Et is the set of edges
intersecting with the boundary of the t-neighborhood
of S ∪ −S.

3. Find t0 ∈ (0, ∆/4) which minimize the size of Et.

4. Remove the set of edges Et0 from the graph G[M ]. Let
S be the set of vertices that are reachable from S∗ in
the remaining graph G[M ]− Et0 .

5. Let R = M \ (S ∪ −S).

6. Return S, R and −S.

Analysis. First, note that for all i ∈ S d(S∗, i) ≤ ∆/4.
Since d(i, j) = d(−j,−i), for all i ∈ −S d(i,−S∗) ≤ ∆/4.
The sets S∗ and −S∗ are ∆-separated, so S and −S are ∆/2-
separated (here we use the triangle inequality); and thus S
and −S are disjoint.

By the definition of S δout
M (S) ⊂ Et0 ; δin

M (−S) ⊂ Et0 .
Now, using standard arguments we get

vold(M) =
X

(i,j)∈E
i,j∈M

d(i, j) ≥
X

(i,j)∈E
i,j∈M

d(S∗,j)≥d(S∗,i)

d(S∗, j)− d(S∗, i)

=
X

(i,j)∈E
i,j∈M

d(S∗,j)≥d(S∗,i)

Z d(S∗,j)

d(S∗,i)

dt ≥
Z ∆/2

0

|Et|dt

≥
Z ∆/4

0

|Et|dt

hence |Et0 | ≤ 4
∆

vold(M) and

|δout
M (S)|+ |δin

M (S)| ≤ 4

∆
vold(M) = O

�vold(M)

∆

�
.

The set R is a subset of M \ (S∗ ∪ −S∗), so

vold(R) ≤ vold(M \ (S∗ ∪ −S∗)) ≤ c2 vol(M),

where c2 is the constant guaranteed by Lemma 4.5 and
Lemma 4.6.

Applying this algorithm recursively, we get an algorithm
for finding a symmetric directed cut.

Algorithm 3 (Finding Symmetric Directed Cut).

Input: a directed symmetric graph G; a symmetric unit-`22
representation of G.

Output: a symmetric directed cut (S,−S). The cost of the
cut is at most O(1/∆) · vold(V ).

1. Set i = 0. Set R0 = V.

2. while Ri is not empty

(a) Find (S, R,−S) partitioning of Ri.

(b) Let Si+1 = S. Let Ri+1 = R. Let i = i + 1.

3. Return S = S1 ∪ · · · ∪ Si and −S.

Analysis. Clearly, the algorithm returns a symmetric
cut. The cost of the directed cut (S,−S) is less than or
equal to

|δout(S1)|+ |δin(−S1)|+ |δout
R1 (S2)|+ |δin

R1(−S2)|+ . . .

= O(
p

log n) · (vol(V ) + vol(R1) + . . . )

The key observation is that the volume of Ri decreases ge-
ometrically, so the cost of the cut is O(1/∆) · vold(V ).

This finishes the proofs of Theorems 2.1 and 3.1.

5. APPROXIMATING DIRECTED
BALANCED SEPARATOR AND
DIRECTED SPARSEST CUT

In this section, we present approximation algorithms for
Directed Balanced Separator and Directed Spars-
est Cut. The algorithms are very similar to their undi-
rected counterparts from [3] except that they use the di-
rected semimetric d(i, j) = |vi − vj |2 − |v0 − vi|2 + |v0 − vj |2
instead of the `22 distance used by the authors of [3].

Definition 11. Let G = (V, E) be a directed graph. The
directed edge expansion of a cut (S, S̄) is |δout(S)|/ min(|S|, |S̄|).

The minimum directed sparsest cut (with uniform demands)
is the cut with minimum directed edge expansion. A c-
balanced cut is a cut (S, S̄) s.t. |S| ≥ c|V |, and |S̄| ≥
c|V |. Finally, minimum directed c-balanced separator is the
c-balanced cut with minimum directed edge expansion.

We consider the following SDP relaxation of the Directed
c-Balanced Separator problem:

min
1

8

X
(i,j)∈E

d(i, j)

s.t.

|vi|2 = 1 ∀i ∈ V

|vk − vi|2 ≤ |vj − vi|2 + |vk − vj |2 ∀i, j, k ∈ V ∪ {0}X
i<j

|vi − vj |2 ≥ 4c(1− c)n2

This is an SDP relaxation, since for each cut (S, S̄) the so-
lution {vi}i defined by vi = v0 = e for i ∈ S; and vi = −e
for i /∈ S has the value that does not exceed the edge ex-
pansion of the cut scaled by cn (here, e is an arbitrary unit
vector). The SDP relaxation of the Directed Sparsest
Cut problem is:

min
1

8

X
(i,j)∈E

d(i, j)

s.t.

|vk − vi|2 ≤ |vj − vi|2 + |vk − vj |2 ∀i, j, k ∈ V ∪ {0}X
i<j

|vi − vj |2 = 1



Similarly, the solution defined by vi = v0 for i ∈ S; and
vi = −v0 for i /∈ S (where v0 is a vector of length 2

(n−1)n
)

corresponds to the cut (S, S̄) (with scaling factor n).

Algorithm 4.
Solving the Directed c-Balanced Separator Problem.
Input: a directed graph G;
Output: a c′-balanced cut that approximates minimum di-

rected c-balanced separator within a factor of O(
√

log n) (where
c′ is 2 times smaller than that in the case of undirected cut).

1. Solve the SDP relaxation for Directed c-Balanced
Separator.

2. Apply the ARV separation algorithm (see Theorem
4.2) to find ∆-separated (w.r.t. the `22 distance) sets S
and T s.t. each of them contains at least 2c′ fraction
of vertices.

3. Find radius r s.t. at least half of the vectors corre-
sponding to vertices from S lie inside the ball of ra-
dius r with center at the point v0, and at least half of
the vectors lie outside the ball (we count points on the
boundary of the ball as lying inside as well as outside
the ball).

4. Let S+ = {i ∈ S : |v0 − vi|2 ≤ r2}. Let S− = {i ∈ S :
|v0 − vi|2 ≥ r2}.

5. Let T+ = {i ∈ T : |v0 − vi|2 ≤ r2}. Let T− = {i ∈ T :
|v0 − vi|2 ≥ r2}.

6. If |T+| ≥ |T−| then S∗ = T+; T ∗ = S−; else S∗ = S+;
T ∗ = T−.

7. Find the minimum cut (A, Ā) between S∗ and T ∗.
Output (A, Ā).

Analysis. First of all, notice that the c-spreading con-
straint is one of the constraints in the SDP relaxation of the
Directed c-Balanced Separator problem. Therefore,
we can apply the separation algorithm at the first step.

Now, notice that the sets S∗ and T ∗ are ∆-separated w.r.t.
the distance d: Indeed, let us say i ∈ S∗ = T+, and j ∈
T ∗ = S−. Then d(i, j) = |vi − vj |2 − |vi − v0|2 + |vj −
v0|2 ≥ |vi − vj |2 − r2 + r2 ≥ ∆. The case S∗ = S+, and
T ∗ = T− is similar. Standard arguments (see Algorithm
2) show that the minimum cut between S∗ and T ∗ costs at
most O(

√
log n · SDP ).

Finally, let us show that the cut (A, Ā) is c′-balanced. By
the construction both S+, and T− contain at least |S|/2 ≥
c′n vertices. Since T = T+ ∪ T−, the larger of the sets
T+ and T− also contains at least |S|/2 ≥ c′n vertices.
Therefore, both sets A ⊃ S∗ and Ā ⊃ T ∗ contain at least
|S|/2 ≥ c′n vertices.

Now, let us consider the SDP for the Directed Sparsest
Cut problem. In Appendix A we prove a directed version
of Lemma 14 from [3] (the proof is almost identical to the
proof for the undirected case):

Lemma 5.1. There is a polynomial-time algorithm for the
following task. Given any feasible SDP solution with β =P

(i,j)∈E d(i, j), and a vertex k such that the ball of squared-

radius 1/(8n2) around vk contains at least n/2 vectors (other
than v0), the algorithm finds a cut (S, S̄) with directed ex-
pansion at most O(βn).

The lemma shows how to find an approximation for the
Directed Sparsest Cut if the hypothesis holds true for
some k. Otherwise, we scale all vectors by 2

√
2n. Now,P

k∈V

P
i∈V |vk − vi|2 = 16n2. Therefore, for some vertex

k,
P

i∈V |vk − vi|2 ≥ 16n. This implies that at least 9/10
fraction of vectors lie inside the ball of radius 160 around vk.
And since the hypothesis of lemma holds true for k, at most
half of the vectors lie inside the ball of radius 1. In other
words, a constant fraction of all vertices lie in a spherical
annulus of inner radius 1 and outer radius 160. The authors
of [3] note that their algorithm works for such set of vertices
(with parameter c′ equal to some constant). So we can apply
Algorithm 4 to vertices in the spherical annulus and vector
v0 (note that the algorithm does not require that the vector
v0 is a unit vector). It produces a cut with directed edge
expansion O(

√
log n · n · SDP ).

6. INTEGRALITY GAP FOR MIN
MULTICUT

In this section, we show that the integrality gap of an SDP
relaxation of the Minimum Multicut problem is Ω(log n).
First, we show that the construction by B. Yu, J. Cheriyan,
and P. E. Haxell [19] used in their proof of the integrality
gap for an LP relaxation of this problem also yields the
integrality gap of Ω(log n) for a strong SDP relaxation. For
completeness we give our (somewhat shorter) analysis of this
construction. Then we show how to modify the construction
so that it satisfies additional constraints.

Definition 12. Consider a graph G = (V, E) and m
source–terminal pairs (si, ti) (1 ≤ i ≤ m). A multicut S
is a subset of edges whose deletion separates each source si

from the correspondent terminal ti. The cost of the multi-
cut is the number of edges in S. The Minimum Multicut
problem is to find a multicut of minimal cost.

Consider the following SDP: min 1
2

P
(i,j)∈E

i<j

|vi − vj |2,

subject to: 1) |vi| = 1, for every vertex i; 2) 〈vi, vj〉 = 0,
for every source–terminal pair (i, j); 3) |vi − vj |2 + |vj −
vk|2 ≥ |vi − vk|2 for all vertices i, j and k; 4) the metric
d(i, j) = |vi − vj |2 is embeddable in `1.

This program is an SDP relaxation of the Minimum Mul-
ticut problem: For a multicut S, we assign the same unit
vector to vi and vj if i and j are in the same connected com-
ponent of G − S; and let us assign orthogonal unit vectors
otherwise. Note that we cannot efficiently compute the value
of this SDP relaxation due to the last set of constraints.
Usually, one would use weaker constraints instead to ensure
polynomial time solvability. However, the point is that even
with these very strong constraints, the SDP still has a large
integrality gap.

Theorem 6.1. The integrality gap of this relaxation is
Ω(log(n)).

Proof. Let us take d = 4k, and n = 2d. Consider the
graph G on the vertices of the hypercube {−1/

√
d, 1/

√
d}d ⊂

Rd; the edges of the graph are the edges of the hyper-
cube. We want to separate every pair of orthogonal vec-
tors. Clearly, the vertices of the hypercube form a feasible
solution of the SDP program. The number of edges in the
hypercube is 2d−1d; the squared length of each edge is 4/d.
Thus the value of the SDP is O(2d).



Now let us lower bound the cost of the minimal multicut.
We use the strong version of Larman and Rogers conjecture
[15, Conjecture 2] proved by Frankl and Rödl [8, Theorem
1.11].

Theorem 6.2 (Frankl and Rödl). Given r, d = 4k,
k ≥ r ≥ 2, there exists a positive constant ε = ε(r) so that
in any set of more than (2− ε(r))d (±1)-vectors there are r
pairwise orthogonal vectors.

Let S be a multicut. Denote the connected components of
G−S by C1, . . . , Cl. Since S separates all pairs of orthogonal
vectors, each set Ci does not contain two orthogonal vectors.
Applying Theorem 6.2 (with r = 2) to Ci (scaled by a factor

of
√

d) we get that |Ci| ≤ (2− ε)d.

Definition 13. Let T ⊂ V . Denote the set of edges from
T to V \ T by δ(T ).

Lemma 6.3 (Isoperimetric Inequality [4, 10]). Let
T ⊂ V , then |δ(T )| ≥ |T |(d− log2 |T |).

Applying the isoperimetric inequality to a component Ci,
we get |δ(Ci)| ≥ |Ci|(d−log2((2−ε)d)) = d|Ci|ε′, where ε′ =
1− log2(2− ε) > 0 is a constant. Summing up |δ(Ci)| over

all connected components, we get 2|S| =
Pl

i=1 |δ(Ci)| ≥
ε′d
Pl

i=1 |Ci| = ε′dn. So the cost of the multicut is Ω(d) =
Ω(log n) times more than the value of the SDP. This con-
cludes the proof.

Observation 6.4. We can add an additional constraint
that 〈vi, vj〉 ≥ 0 (for all i, j), which, in particular, ensures
that the diameter of the set {vi} does not exceed the distance
between vertices in a source–terminal pair. The integrality
gap of this SDP is still Ω(log n).

Proof. Consider the same example as in Theorem 6.1.
Vectors ui = vi ⊗ vi form a feasible SDP solution. Indeed,
|ui|2 = |vi|2 · |vi|2 = 1; for every source–terminal pair (i, j)
〈ui, uj〉 = 〈vi, vj〉2 = 0. All points vi ⊗ vi belong to the d2

dimensional hypercube
nP

i,j εijei ⊗ ej : εij = ± 1
d

o
, there-

fore the distance function d(i, j) = |vi − vj |2 is a metric
embeddable in `1. Finally, 〈ui, uj〉 = 〈vi, vj〉2 ≥ 0.

Now let us compute the value of this solution. The cost
of an edge (i, j) is |ui − uj |2 = |vi ⊗ vi − vj ⊗ vj |2 = 2(1 −
〈vi, vj〉2) = 2(1 − ( d−2

d
)2) = O( 1

d
). Hence the value of the

SDP is O(2d), i.e the integrality gap is Ω(log n).
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APPENDIX
A. PROOF OF LEMMA 5.1

Lemma 5.1. There is a polynomial-time algorithm for the
following task. Given any feasible SDP solution with β =P

(i,j)∈E d(i, j), and a vertex k such that the ball of squared-

radius 1/(8n2) around vk contains at least n/2



vectors (other than v0) the algorithm finds a cut (S, S̄) with
directed expansion at most O(βn).

Proof. Let X = {i ∈ V : |vi − vk|2 ≤ 1/(8n2)}. Replac-
ing each summand

P
i<j |vi−vj |2 = 1 with its upper bound

|vi − vj |2 ≤ |vk − vi|2 + |vk − vj |2 we getX
i∈V

|vk − vi|2 ≥ 1/(2n).

The contribution of the vertices from X to the sum is at
most 1/(8n2) · n = 1/(8n). HenceX

i/∈X

|vk − vi|2 ≥ 3/(8n).

Since d(k, i) + d(i, k) = 2|vk − vi|2, either
P

i/∈X d(k, i)
or
P

i/∈X d(i, k) is greater than or equal to 3/(16n). Let
us assume that

P
i/∈X d(k, i) ≥ 3/(16n) (the other case is

similar). Notice that, for every j ∈ X

d(k, j) = |vk − vj |2 − (|vk − v0|2 − |vj − v0|2)
≤ 2|vk − vj |2 ≤ 1/(4n2).

Consider a vertex i /∈ X. Let j be the closest to i vertex in
X then

d(X, i) = d(j, i) ≥ d(k, i)− d(k, j) ≥ d(k, i)− 1/(4n2).

Therefore,X
i/∈X

d(X, i) ≥
X
i/∈x

d(k, i)− n

2
· 1

4n2
≥ 1

16n
.

Now, let Xε be the ε-neighborhood of X w.r.t. the dis-
tance d, and n(ε) = |X̄ε|. We claim that one of the cuts
(Xε, X̄ε) has directed edge expansion O(nβ). Indeed, let α
be the minimum directed edge expansion among the cuts
(Xε, X̄ε). In each of these cuts X̄ε is smaller than Xε (since
|Xε| ≥ |X| ≥ n/2 by the condition). Therefore, (Xε, X̄ε)
cuts at least αn(ε) edges. HenceZ 1

0

αn(ε)dε ≤ β.

But Z 1

0

n(ε)dε =
X
i/∈X

d(X, i) ≥ 1

16n
.

Therefore, α ≤ 16nβ.


