
Finding almost-perfect graph bisections
Venkatesan Guruswami1 YuryMakarychev2 Prasad Raghavendra3

David Steurer4 Yuan Zhou5

1Computer Science Department, Carnegie Mellon University, Pittsburgh, PA. Some of this work
was done during a visit to Microsoft Research New England.

2Toyota Technological Institute at Chicago, Chicago, IL.
3College of Computing, Georgia Institute of Technology, Atlanta, GA.

4Microsoft Research New England, Cambridge, MA.
5Computer Science Department, Carnegie Mellon University, Pittsburgh, PA. Some of this work

was done when the author was a student intern at TTI-C.
guruswami@cmu.edu yury@ttic.edu raghavendra@cc.gatech.edu dsteurer@cs.princeton.edu

yuanzhou@cs.cmu.edu

Abstract: We give a polynomial time algorithm that given a graph which admits a bisection cutting
a fraction (1 − ε) of edges, finds a bisection cutting a (1 − g(ε)) fraction of edges where g(ε) → 0 as
ε→ 0. One can take g(ε) = O(3

√
ε log(1/ε)). Previously known algorithms for Max Bisection could only

guarantee finding a bisection that cuts a fraction of edges bounded away from 1 (in fact less than 3/4) in
such graphs. The known Unique-Games hardness results for Max Cut imply that one cannot achieve
g(ε) 6 C

√
ε for some absolute constant C.

Likewise, for the Min Bisection problem, if the graph has a bisection cutting at most ε-fraction of the
edges, our methods enable finding a bisection cutting at most O(3

√
ε log(1/ε))-fraction of the edges.

The algorithms can also find cuts that are nearly-balanced (say with imbalance of at most 0.01) with
value at least 1 − O(

√
ε) (for Max Bisection) and at most O(

√
ε) (for Min Bisection). These guarantees

are optimal up to constant factors in the O(
√
ε) term under the Unique Games and related conjectures.

Our general approach is simple to describe: First, we show how to solve the problems if the graph is an
expander or if the graph consists of many disjoint components, each of small measure. Then, we show
that every graph can be decomposed into disjoint components that are either expanders or have small
measure, and how the cuts on different pieces may be merged appropriately.

Keywords: Graph bisection; Max-Cut; Expander Decomposition; Semidefinite Programming; Approxi-
mation Algorithms

1 Introduction

In the Max Cut problem, we are given a graph
and the goal is to partition the vertices into two
parts so that a maximum number of edges cross
the cut. As one of the most basic problems in the
class of constraint satisfaction problems, the study
of Max Cut has been highly influential in advanc-
ing the subject of approximability of optimization
problems, from both the algorithmic and hardness
sides. The celebrated Goemans-Williamson (GW)
algorithm for Max Cut [GW95] was the starting

point for the immense and highly successful body
of work on semidefinite programming (SDP) based
approximation algorithms. This algorithm guar-
antees finding a cut whose value (i.e., fraction of
edges crossing it) is at least 0.878 times the value
of the maximum cut. On graphs that are “almost-
bipartite” and admit a partition such that most edges
cross the cut, the algorithm performs much better
— in particular, if there is a cut such that a fraction
(1 − ε) of edges cross the cut, then the algorithm
finds a partition cutting at least a fraction 1−O(

√
ε)

1

of edges. (All through the discussion in the paper,
think of ε as a very small positive constant.)

On the hardness side, the best known NP-
hardness result shows hardness of approximating
Max Cutwithin a factor greater than 16/17 [Hås01,
TSSW00]. Much stronger and in fact tight inap-
proximability results are now known conditioned
on the Unique Games conjecture of Khot [Kho02].
In fact, one of the original motivations and appli-
cations for the formulation of the UGC in [Kho02]
was to show that finding a cut of value larger than
1−o(

√
ε) in a graph with Max-Cut value (1−ε) (i.e.,

improving upon the above-mentioned performance
guarantee of the GW algorithm substantially) is
likely to be hard. This result was strengthened in
[KKMO07] to the optimal 1 − O(

√
ε) bound, and

this paper also showed that the 0.878 approximation
factor is the best possible under the UGC. (These
results relied, in addition to the UGC, on the Major-
ity is Stablest conjecture, which was proved shortly
afterwards in [MOO10].)

There are many other works on Max Cut, includ-
ing algorithms that improve on the GW algorithm
for certain ranges of the optimum value and inte-
grality gap constructions showing limitations of the
SDP based approach. This long line of work on
Max Cut culminated in the paper [OW08] which
obtained the precise integrality gap and approxima-
tion threshold curve as a function of the optimum
cut value.
Maximum Bisection. Let us consider a closely re-
lated problem called Max Bisection, which is Max
Cut with a global “balanced cut” condition. In the
Max Bisection problem, given as input a graph with
an even number of vertices, the goal is to partition
the vertices into two equal parts while maximizing
the fraction of cut edges. Despite the close relation
to Max Cut, the global constraint in Max Bisec-
tion changes its character substantially, and the
known algorithms for approximating Max Bisec-
tion have weaker guarantees. While Max Cut has
a factor 0.878 approximation algorithm [GW95],
the best known approximation factor for Max Bi-
section equals 0.7027 [FL06], improving on pre-
vious bounds of 0.6514 [FJ97], 0.699 [Ye01], and
0.7016 [HZ02].

In terms of inapproximability results, it is
known that Max Bisection cannot be approxi-
mated to a factor larger than 15/16 unless NP ⊆

⋂
γ>0 TIME(2nγ) [HK04]. Note that this hardness

factor is slightly better than the inapproximabil-
ity factor of 16/17 known for Max Cut [Hås01,
TSSW00]. A simple approximation preserving re-
duction from Max Cut shows that Max Bisection
is no easier to approximate than Max Cut (the re-
duction is simply to take two disjoint copies of the
Max Cut instance). Therefore, the factor 0.878
Unique-Games hardness for Max Cut [KKMO07]
also applies for Max Bisection. Further, given a
graph that has a bisection cutting 1− ε of the edges,
it is Unique-Games hard to find a bisection (or even
any partition in fact) cutting 1−O(

√
ε) of the edges.

An intriguing question is whether Max Bisec-
tion is in fact harder to approximate than Max Cut
(so the global condition really changes the com-
plexity of the problem), or whether there are algo-
rithms for Max Bisection that match (or at least
approach) what is known for Max Cut.1 None of
the previously known algorithms for Max Bisec-
tion [FJ97, Ye01, HZ02, FL06] are guaranteed to
find a bisection cutting most of the edges even when
the graph has a near-perfect bisection cutting (1−ε)
of the edges (in particular, they may not even cut
75% of the edges). These algorithms are based on
rounding a vector solution of a semidefinite pro-
gramming relaxation into a cut (for example by a
random hyperplane cut) and then balancing the cut
by moving low-degree vertices from the larger side
to the smaller side. After the first step, most of the
edges are cut, but the latter rebalancing step results
in a significant loss in the number of edges cut. In
fact, as we will illustrate with a simple example in
Section 2, the standard SDP for Max Bisection has
a large integrality gap: the SDP optimum could be
1 whereas every bisection might only cut less than
0.95 fraction of the edges.

Thus an interesting “qualitative” question is one
can one efficiently find an almost-complete bisec-
tion when promised that one exists. Formally, we
ask the following question.

Question 1.1. Is there a polynomial time algorithm
that given a graph G = (V, E) with a Max Bisection
solution of value (1 − ε), finds a bisection of value
(1 − g(ε)), where g(ε)→ 0 as ε→ 0?

1Note that for the problem of minimizing the number of
edges cut, the global condition does make a big difference: Min
Cut is polynomial-time solvable whereas Min Bisection is NP-
hard.

2

Note that without the bisection constraint, we
can achieve g(ε) = O(

√
ε), and when ε = 0, we can

find a bisection cutting all the edges (see the first
paragraph of Section 2 for details). Thus this ques-
tion highlights the role of both the global constraint
and the “noise” (i.e., ε fraction of edges need to be
removed to make the input graph bipartite) on the
complexity of the problem.
Our results. In this paper, we answer the above
question in the affirmative, by proving the following
theorem.

Theorem 1.2. There is a randomized polyno-
mial time algorithm that given an edge-weighted
graph G with a Max Bisection solution of value2

(1 − ε) finds a Max Bisection of value (1 −
O(3
√
ε log(1/ε))).

We remark that for regular graphs any cut with
most of the edges crossing it must be near-balanced,
and hence we can solve Max Bisection by sim-
ply reducing to Max Cut. Thus the interesting
instances for our algorithm are non-regular graphs.

Our algorithms are not restricted to finding exact
bisections. If the graph has a β-balanced cut (which
means the two sides have a fraction β and 1−β of the
vertices) of value (1−ε), then the algorithm can find
a β-balanced cut of value 1 −O(ε1/3 log(1/ε)). The
performance guarantee of a variant of the algorithm
improves if some extra imbalance is tolerated in
the solution — for any constant parameter δ, the
algorithm can return a cut with balance in the range
β ± δ with value at least 1 − O(ε1/2). Formally, we
prove the following theorem.

Theorem 1.3. There is a randomized polynomial
time algorithm that for any constant δ > 0 given an
edge-weighted graph G with a β-balanced cut of
value (1 − ε) finds a cut (A, B) such that

∣∣∣∣|A|/|V | −
β
∣∣∣∣ 6 O(δ) of value (1 − O(

√
ε)).

As mentioned earlier, as a function of ε, the
above approximation is best possible assuming the
Unique Games Conjecture.

Our results are not aimed at improving the gen-
eral approximation ratio for Max Bisection which
remains at ≈ 0.7027 [FL06]. It remains an interest-
ing question how much this can be improved and

2The value of a cut in an edge-weighted graph is defined
as the weight of the edges crossing the cut divided by the total
weight of all edges.

whether one approach (or even match) the 0.878
factor possible for Max Cut. We hope that some
of our techniques will also be helpful towards this
goal.

More generally, our work highlights the chal-
lenge of understanding the complexity of solving
constraint satisfaction problems with global con-
straints. Algorithmically, the challenge is to ensure
that the global constraint is met without hurting the
number of satisfied constraints. From the hardness
side, the Unique-Games based reductions which
have led to a complete understanding of the ap-
proximation threshold of CSPs [Rag08] are unable
to exploit the global constraint to yield stronger
hardness results.

Our methods apply just as well to the Min Bi-
section problem where the goal is to find a bisec-
tion that cuts fewest number of edges. The best
approximation factor known for Min Bisection is
poly-logarithmic in the number of vertices [FK02].
Here we show that we can get better guarantees
in the case when the best bisection cuts a constant
fraction of the edges. Specifically, if there is a bisec-
tion of value ε, our methods guarantee efficiently
finding a bisection cutting at most O(ε1/3 log(1/ε))
of the edges, and a nearly-balanced cut (say with
bias at most 0.01) of value at most O(ε1/2). The
adaptation of our algorithm and analysis to Min
Bisection is simple, see Section 8. (Similar to Max
Bisection, the approximation guarantee O(

√
ε) is

optimal as a function of ε for constant imbalance,
assuming the so-called Small-Set Expansion con-
jecture [RST10] or a variant of the Unique Games
Conjecture [AKK+08].)

2 Method overview
2.1 Integrality gap

We begin by describing why the standard SDP
for Max Bisection has a large gap. Given a graph
G = (V, E), this SDP, which is the basis of all
previous algorithms for Max Bisection starting
with that of Frieze and Jerrum [FJ97], solves for
unit vectors vi for each vertex i ∈ V subject to∑

i vi = 0, while maximizing the objective function
�e=(i, j)∈E

1
4‖vi − v j‖

2.
This SDP could have a value of 1 and yet the

graph may not have any bisection of value more
than 0.95 (in particular the optimum is bounded
away from 1), as the following example shows.

3

Take G to be the union of three disjoint copies of
K2m,m (the complete 2m × m bipartite graph) for
some even m. It can be seen that every bisection
fails to cut at least m2/2 edges, and thus has value
at most 11/12. On the other hand, the SDP has a
solution of value 1. Let ω = e2πi/3 be the primitive
cube root of unity. In the two-dimensional complex
plane, we assign the vector/complex number ωi−1

(resp. −ωi−1) to all vertices in the larger part (resp.
smaller part) of the ith copy of K2m,m for i = 1, 2, 3.
These vectors sum up to 0 and for each edge, the
vectors associated with its endpoints are antipodal.

For all CSPs, a tight connection between inte-
grality gaps (for a certain “canonical” SDP) and in-
approximability results is now established [Rag08].
The above gap instance suggests that the picture
is more subtle for CSPs with global constraints —
in this work we give an algorithm that does much
better than the integrality gap for the “basic” SDP.
Could a stronger SDP relaxation capture the com-
plexity of approximating CSPs with global con-
straints such as Max Bisection? It is worth remark-
ing that we do not know whether an integrality gap
instance of the above form (i.e., 1−ε SDP optimum
vs. say 0.9 Max Bisection value) exists even for the
basic SDP augmented with triangle inequalities.

2.2 Notation
Suppose we are given a graph G = (V, E). We use

the following notation: E(U) = {(u, v) ∈ E : u, v ∈
U} denotes the set of edges within a set of vertices
U, edges(U1,U2) = {(u, v) ∈ E : u ∈ U1, v ∈ U2}

denotes the set of edges between two sets of vertices
U1 and U2, and G[U] denotes the subgraph of G
induced by the set U.

Definition 2.1 (Value and bias of cuts). For a cut
(S ,V \ S) of a graph G = (V, E), we define its value
to be |edges(S ,V\S)|

|E| (i.e., the fraction of edges which

cross the cut) if G is unweighted, and w(edges(S ,V\S))
w(E)

if G is edge-weighted with weight function w : E →
�>0 (where for F ⊆ E, w(F) =

∑
e∈F w(e)).

We define the bias β ∈ [0, 1] of a cut (S ,V \ S) to
be β = 1

|V | ·

∣∣∣∣|S | − |V \ S |
∣∣∣∣, and we say that the cut

(S ,V \ S) is β-biased. (Note that a 0-biased cut is
a bisection.)

Recall that the normalized Laplacian of G is a
matrix LG whose rows and columns correspond to

vertices of G that is defined as follows

LG(u, v) =


1, if u = v and du , 0,
−1/
√

dudv, if (u, v) ∈ E,
0, otherwise,

where du is the degree of the vertex u. Let λ2(LG)
be the second smallest eigenvalue of LG. We abuse
the notation by letting λ2(G) = λ2(LG). We define
the volume of a set U ⊆ V as vol(U) = volG(U) =∑

u∈U du.
We will use the following version of Cheeger’s

inequality.

Theorem 2.2 (Cheeger’s inequality for non-regular
graphs [Chu96]). For every graph G = (V, E),

λ2(G)/2 6 φ(G) 6
√

2λ2(G),

where φ(G) is the expansion of G,

φ(G) ≡ min
S⊆V

|edges(S ,V \ S)|
min(vol(S), vol(V \ S))

.

Moreover, we can efficiently find a set A ⊆ V
such that vol(A) 6 vol(V)/2 and |edges(A,V \
A)|/ vol(A) 6

√
2λ2(G).

For any two disjoint sets X,Y ⊆ V , let
uncut(X,Y) = |E(X) + E(Y)|/|E(X ∪Y)| be the frac-
tion of edges of G[X ∪ Y] that do not cross the cut
(X,Y). We say that a cut (X,Y) of V is perfect if
uncut(X,Y) = 0.

2.3 Our approach
In this section, we give a brief overview of our

algorithm. It is instructive to consider first the case
when G has a perfect bisection cut. In this case, G
is a bipartite graph. If G has only one connected
component, each part of this component has the
same number of vertices, so this is the desired bi-
section. Now assume that G has several connected
components. Then each connected component C
of G is a bipartite graph with two parts XC and YC .
Since all edges are cut in the optimal solution, XC

must lie on one side of the optimal cut and YC on
the other. So in order to find a perfect bisection
(X,Y), for every connected component C we need
to either (i) add XC to X and YC to Y or (ii) add XC

to Y and YC to X so that |X| = |Y | = |V |/2. We can
do that using dynamic programming.

Our algorithm for almost satisfiable instances
proceeds in a similar way. Assume that the optimal
bisection cuts a (1 − ε) fraction of edges.

4

1. In a preprocessing step, we use the algorithm
of Goemans and Williamson [GW95] to find
an approximate maximum cut in G. A fraction
1 − O(

√
ε) of edges cross this cut. We remove

all uncut edges and obtain a bipartite graph.
We denote the parts of this graph by A and B.
(Of course, in general |A| , |B|.)

2. Then we recursively partition G into pieces
W1, . . . ,Ws using Cheeger’s Inequality (see
Lemma 3.1). Every piece is either a suffi-
ciently small subgraph, which contains at most
an ε fraction of all vertices, or is a spectral ex-
pander, with λ2 > ε2/3. There are very few
edges between different pieces, so we can ig-
nore them later. In this step, we obtain a collec-
tion of induced subgraphs G[W1], . . . ,G[Ws]
with very few edges going between different
subgraphs.

3. Now our goal is to find an “almost perfect”
cut in every G[Wi] , then combine these cuts
and get a bisection of G. Note that every
G[Wi] is bipartite and therefore has a perfect
cut (since G is bipartite after the preprocess-
ing step). However, we cannot restrict our
attention only to this perfect cut since the op-
timal solution (S ,T) can cut G[Wi] in another
proportion. Instead, we prepare a listWi of
“candidate cuts” for each G[Wi] that cut Wi in
different proportions. One of them is close to
the cut (Wi ∩ S ,Wi ∩ T) (the restriction of the
optimal cut to Wi).

4. If G[Wi] is an expander, we find a candidate
cut that cuts G[Wi] in a given proportion by
moving vertices from one side of the perfect
cut (Wi ∩ A,Wi ∩ B) to the other, greedily (see
Lemma 4.1 and Lemma 4.2).

5. If G[Wi] is small, we find a candidate cut
that cuts G[Wi] in a given proportion using
semi-definite programming (see Lemma 4.3
and Corollary 4.4). We solve an SDP relax-
ation similar to the Goemans–Williamson re-
laxation [GW95] with “`2

2-triangle inequali-
ties”, and then find a cut by using hyperplane
or threshold rounding.

In fact, the cut that we find can be more unbal-
anced than (Wi ∩ S ,Wi ∩ T) but this is not a

problem since the set Wi is small. Note how-
ever that if a cut of another piece W j is very
unbalanced than we might need to find a cut
of Wi that is unbalanced in the other direction.
So it is important that the candidate cut of Wi

is at least as unbalanced as (Wi ∩ S ,Wi ∩ T).

6. Finally, we combine candidate cuts of sub-
graphs G[Wi] into one balanced cut of the
graph G, in the optimal way, using dynamic
programming (see Lemma 5.1).

Our improved algorithm (Theorem 1.3) which
delivers a cut of value 1 − O(

√
ε) with a small con-

stant bias has the same high level structure. Namely,
we decompose the graph into expanding and small
parts, find good cuts in these parts, and combine
them together to get a global near-balanced cut. The
small parts are handled in the same way as above.
The difference is in the notion of expansion used for
the large parts and how we find cuts in the expand-
ing parts. For the former, a part is deemed to have
sufficient expansion if the standard SDP relaxation
for α-balanced separator (for some small α > 0)
has large (Ω(ε)) objective value. (This in particular
means there every α-balanced cut has value at least
Ω(ε), but is potentially stronger as it ensures that
there are no sparse “vector-valued” cuts either.)

We give a decomposition procedure to split a
graph into such “SDP expanders” and small parts
(Lemma 7.5). We find a good cut in the union
of the expanding parts by rounding the Goemans-
Williamson SDP. The key in our analysis is to use
the “SDP expansion” properties to argue that the
vector solution must essentially behave like an inte-
gral solution. This gives us much better control of
the bias of the cut produced by random hyperplane
rounding.

2.4 Organization
The rest of the paper is devoted to the full descrip-

tion and proof of the algorithm. In Section 3, we
partition the graph into expanders and small pieces,
after proper preprocessing. In Section 4, we pro-
duce a list of candidate cuts for each expander and
small piece, by different methods. In Section 5, we
show how to choose one candidate cut for each part.
In Section 6, we put everything together to finish
the proof of Theorem 1.2. In Section 7, we prove
Theorem 1.3, giving a variant of the algorithm that
only uncut O(

√
ε) fraction of edges when some

5

constant imbalance is tolerated. In Section 8, we
apply our techniques to Min Bisection problem.

3 Preprocessing and partitioning
graph G

In this section, we present the preprocessing and
partitioning steps of our algorithms. We will as-
sume that we know the value of the optimal solu-
tion OPT = 1− εOPT (with a high precision). If we
do not, we can run the algorithm for many different
values of ε and output the best of the bisection cuts
we find.

3.1 Preprocessing: Making G bipartite and
unweighted

In this section, we show that we can assume
that the graph G is bipartite, with parts A and B,
unweighted, and that |E| 6 O(|V |/ε2

OPT).
First, we “sparsify” the edge-weighted graph

G = (V, E), and make the graph unweighted: we
sample O(ε−2

OPT |V |) edges (according to the weight
distribution) with replacement from G, then with
high probability, every cut has the same cost in the
original graph as in the new graph, up to an additive
error εOPT (by Chernoff’s bound). So we assume
that |E| 6 O(ε−2

OPT |V |).
We apply the algorithm of Goemans and

Williamson to G and find a partitioning of G into
two pieces A and B so that only an O(

√
εOPT) frac-

tion of edges lies within A or within B.

3.2 Partitioning
In this section, we describe how we partition G

into pieces.

Lemma 3.1. Given a graph G = (V, E), and pa-
rameters δ ∈ (0, 1) and λ ∈ (0, 1) such that
|E| = O(|V |/δ2), we can find a partitioning of V
into disjoint sets U1, . . . ,Up (“small sets”), and
V1, . . . ,Vq (“expander graphs”):

V =
⋃

i

Ui ∪
⋃

j

V j,

in polynomial time, so that

1. |Ui| 6 δ|V | for each 1 6 i 6 p;

2. λ2(G[Vi]) > λ for each 1 6 i 6 q;

3.
∑

i |E(Ui)| +
∑

j |E(V j)| > (1 −

O(
√
λ log(1/δ)))|E|.

Proof. We start with a trivial partitioning {V} of
V and then iteratively refine it. Initially, all sets
in the partitioning are “active”; once a set satisfies
conditions 1 or 2 of the lemma, we permanently
mark it as “passive” and stop subdividing it. We
proceed until all sets are passive. Specifically, we
mark a set S as passive in two cases. First, if |S | 6
δ|V | then we add S to the family of sets Ui. Second,
if λ2(G[S]) > λ then we add S to the family of sets
Vi.

We subdivide every active S into smaller
pieces by applying the following easy corollary of
Cheeger’s inequality (Theorem 2.2) to H = G[S].

Corollary 3.2. Given a graph H = (S , E(H)) and
a threshold λ > 0, we can find, in polynomial time,
a partition S 1, S 2, · · · , S t of S such that

1. |E(S i)| 6 |E(S)|/2 or λ2(H[S i]) > λ, for each
1 6 i 6 t.

2.
∑

i< j |edges(S i, S j)| 6
√

8λ|E(H)|.

3. each graph H[S i] is connected.

Proof. If λ2(H) > λ then we just output a trivial
partition {S }. Otherwise, we apply Theorem 2.2 to
H1 = H, find a set S 1 s.t. volH1 (S 1) 6 volH1 (S)/2
and |edges(S 1, S \ S 1)|/ volH1 (S 1) 6

√
2λ2(H1) 6

√
2λ. Then we remove S 1 from H1, obtain a graph

H2 and iteratively apply this procedure to H2. We
stop when either λ2(Hi) > λ or |E(Hi)| 6 |E(S)|/2.

We verify that the obtained partitioning
S 1, . . . , S t of S satisfies the first condition. For each
i ∈ {1, . . . , t − 1}, we have |E(S i)| 6 volHi (S i)/2 6
volHi (V(Hi))/4 = E(Hi)/2 6 |E(H)|/2. Our stop-
ping criterion guarantees that S t satisfies the first
condition. We verify the second condition.∑

i< j

|edges(S i, S j)| =
t−1∑
i=1

|edges(S i,V(Hi) \ S i)|

6
t−1∑
i=1

√
2λ volHi (S i) 6

√
2λ volH(S) = 2

√
2λ|E(H)|.

Finally, if for some i, H[S i] is not connected, we
replace S i in the partitioning with the connected
components of H[S i]. �

By the definition, sets Ui and V j satisfy proper-
ties 1 and 2. It remains to verify that

p∑
i=1

|E(Ui)|+
q∑

j=1

|E(V j)| > (1−O(
√
λ log(1/δ)))|E|.

6

We first prove that the number of iterations is
O(log(1/δ)). Note that if S is an active set and T
is its parent then |E(S)| 6 |E(T)|/2. Set V contains
O(|V |/δ2) edges. Every active set S contains at least
δ|V |/2 edges, since |E(S)| > |S | − 1 > δ|V |/2 (we
use that G[S] is connected). Therefore, the num-
ber of iterations is O(log2((|V |/δ2)

/
(δ|V |/2))) =

O(log 1/δ).
We finally observe that when we subdivide a set

S , we cut O(
√
λ|E(S)|) edges. At each iteration,

since all active sets are disjoint, we cut at most
O(
√
λ|E|) edges. Therefore, the total number of

edges cut in all iterations is O(
√
λ log(1/δ))|E|. �

4 Finding cuts in sets Ui and Vi

In the previous section, we showed how to par-
tition the graph G into the union of “small graphs”
G[Ui] and expander graphs G[Vi]. We now show
how to find good “candidate cuts” in each of these
graphs.

4.1 Candidate cuts in Vi

In this section, first we prove that there is essen-
tially only one almost perfect maximum cut in an
expander graph (Lemma 4.1). That implies that
every almost perfect cut in the graph G[Vi] should
be close to the perfect cut (Vi ∩ A,Vi ∩ B). Us-
ing that we construct a list of good candidate cuts
(Lemma 4.2). One of these cuts is close to the
restriction of the optimal cut to subgraph G[Vi].

Lemma 4.1. Suppose we are given a graph H =

(V, E) and two cuts (S 1,T1) and (S 2,T2) of G, each
of value at least (1 − δ). Then

min{volH(S 1 4 S 2), volH(S 1 4 T2)} 6 4δ|E|/λ2(H).

Proof. Let

X = S 1 4 S 2 = (S 1 ∩ T2) ∪ (S 2 ∩ T1);
Y = S 1 4 T2 = (S 1 ∩ T1) ∪ (S 2 ∩ T2).

Note that V = X ∪ Y . There are at most 2δ|E| edges
between X and Y , since

edges(X,Y) ⊂ E(S 1) ∪ E(S 2) ∪ E(T1) ∪ (T2),

|E(S 1) ∪ E(T1)| 6 δ|E| and |E(S 2) ∪ E(T2)| 6 δ|E|.
On the other hand, by Cheeger’s inequality (The-

orem 2.2), we have

|edges(X,Y)|
min(volH(X), volH(Y))

> λ2(H)/2.

Therefore,

min(volH(X), volH(Y))

6 2|edges(X,Y)|/λ2(H) 6
4δ|E|
λ2(H)

.

�

Consider one of the sets Vi. Let H = G[Vi].
Denote Ai = Vi ∩ A and Bi = Vi ∩ B. We sort all
vertices in Ai and Bi w.r.t. their degrees in H. Now
we are ready to define the family of candidates cuts
(X0,Y0), . . . , (X|Vi |,Y|Vi |) for G[Vi]. For each j, we
define (X j,Y j) as follows.

– If j 6 |Ai| then X j consists of j vertices of Ai

with highest degrees, and Y j consists of the
remaining vertices of H (i.e. Y j contains all
vertices of Bi as well as |Ai| − j lowest degree
vertices of Ai).

– If j > |Ai| then Y j consists of |Vi| − j vertices
of Bi with highest degrees, and X j consists of
the remaining vertices of H.

Clearly, |X j| = j and |Y j| = |Vi|− j. Let (S ,T) be the
restriction of the optimal bisection of G to H. We
will show that one of the cuts (X j,Y j) is not much
worse than (S ,T). By Lemma 4.1 applied to cuts
(Ai, Bi) and (S ,T) (note that uncut(Ai, Bi) = 0),

min{volH(Ai 4 S), volH(Ai 4 T)}

6
4 · uncut(S ,T)|E(H)|

λ2(H)
.

Assume without loss of generality that volH(Ai 4

S) 6 4E(H)/λ2(H) (otherwise, rename sets X and
Y). We show that volH(Ai 4 X|S |) 6 volH(Ai 4

S). Consider the case |Ai| > |S |. Note that by
the definition of X|S |, the set X|S | has the largest
volume among all subsets of Ai of size at most |S |.
Correspondingly, Ai \ X|S | has the smallest volume
among all subsets of Ai of size at least |Ai| − |S |.
Finally, note that |Ai \ S | > |Ai| − |S |. Therefore,

volH(Ai 4 X|S |) = volH(Ai \ X|S |)
6 volH(Ai \ S) 6 volH(Ai 4 S).

The case when |Ai| 6 |S | is similar. We conclude
that

volH(Ai 4 X|S |) 6 4 · uncut(S ,T)|EH |/λ2(H).

Therefore, the size of the cut (X|S |,Y|S |) is at least

|E(H)|−volH(Ai4X|S |) >
(
1−

4 · uncut(S ,T)
λ2(H)

)
|E(H)|.

7

We have thus proved the following lemma.

Lemma 4.2. There is a polynomial time algorithm
that given a graph H = G([Vi]) finds a family of
cuts Vi = {(X1,Y1), . . . , (X|Vi |,Y|Vi |)} such that for
every cut (S ,T) of H there exists a cut (X,Y) ∈ Vi

with |X| = min(|S |, |T |) and

uncut(X,Y) 6
4 · uncut(S ,T)

λ2(H)
.

4.2 Candidate cuts in Ui

In this section, we show how to find candidate
cuts for the small parts, i.e., the induced subgraphs
G[Ui].

Lemma 4.3. Suppose we are given a graph H =

(U, E) and two parameters 0 6 θ 6 1/2 and 0 <
∆ < 1. Then in polynomial time we can find a
cut (X,Y) such that for every cut (S ,T) in H, with
|S | 6 θ|U |, we have

1. uncut(X,Y) 6 O(
√

uncut(S ,T) +

uncut(S ,T)/∆).

2. |X| 6 (θ + ∆)|U |.

Proof. Let (S ,T) be the maximum cut among all
cuts with |S | 6 t|U | (of course, our algorithm does
not know (S ,T)). Let εH = uncut(S ,T). We may
assume that our algorithm knows the value of εH

(with high precision) — as otherwise, we can run
our algorithm on different values of ε and output
the best of the cuts the algorithm finds.

We write the following SDP program. For every
vertex i ∈ U, we introduce a unit vector vi. Addi-
tionally, we introduce a special unit vector v0.

maximize
1
|U |

∑
i∈U

〈v0, vi〉

subject to
1

4|E|

∑
(i, j)∈E

‖vi + v j‖
2 6 εH

‖vi‖
2 = 1 ∀i ∈ V ∪ {0}

|〈vi + v j, v0〉| 6
‖vi + v j‖

2

2
∀i, j ∈ V.

The “intended solution” to this SDP is vi = v0 if
i ∈ T and vi = −v0 if i ∈ S (vector v0 is an arbi-
trary unit vector). Clearly, this solution satisfies
all SDP constraints. In particular, it satisfies the
last constraint (“an `2

2-triangle inequality”) since

the left hand side is positive only when vi = v j,

then |〈vi + v j, v0〉| =
‖vi+v j‖

2

2 = 2. The value of this
solution is (|T | − |S |)/|U | > 1 − 2θ.

We solve the SDP and find the optimal SDP so-
lution {vi}. Note that

∑
i∈U〈v0, vi〉 > (1 − 2θ)|U |.

Let ∆′ = 2∆/3. Choose r ∈ [∆′, 2∆′] uni-
formly at random. Define a partition of U into
sets Zk, 0 6 k < 1/∆′, as follows: let Zk = {i :
k∆′ + r < |〈v0, vi〉| 6 (k + 1)∆′ + r} for k > 1 and
Z0 = {i : −∆′ − r 6 〈v0, vi〉 6 ∆′ + r}. We bound
the probability that the endpoints of an edge (i, j)
belong to different sets Zk. Note that if no point
from the set {±(k∆′ + r) : k > 1} lies between
|〈vi, v0〉| and |〈v j, v0〉| then i and j belong to the same
set Zk. The distance between |〈vi, v0〉| and |〈v j, v0〉|

is at most |〈vi + v j, v0〉|. Therefore, the probability
(over r) that i and j belong to different sets Zk is at
most |〈vi + v j, v0〉|/∆

′. So the expected number of
cut edges is at most

1
∆′

∑
(i, j)∈E

|〈vi+v j, v0〉| 6
1

2∆′

∑
(i, j)∈E

‖vi+v j‖
2 6

2|E|εH

∆′
.

(4.1)
For each k > 1, let Z+

k = {i ∈ Zk | 〈vi, v0〉 > 0}
and Z−k = {i ∈ Zk | 〈vi, v0〉 < 0}. We use hyperplane
rounding of Goemans and Williamson [GW95] to
divide Z0 into two sets Z+

0 and Z−0 . We are ready to
define sets X and Y . For each k, we add vertices
from the smaller of the two sets Z+

k and Z−k to X,
and vertices from the larger of them to Y .

Now we bound uncut(X,Y). Note that

|uncut(X,Y)| 6
∑
k<l

|edges(Zk,Zl)|

+
∑
k>0

(|E(Z+
k)| + |E(Z−k)|).

We have already shown that
∑

k<l |edges(Zk,Zl)| is
less than 2εH |E|/∆′ in expectation. If (i, j) ∈ E(Z+

k)
or (i, j) ∈ E(Z−k) for k > 1 then |〈vi + v j, v0〉| > ∆′.
Therefore,∑

k>1

(|E(Z+
k)| + |E(Z−k)|) 6

2εH |E|
∆′

=
3εH |E|

∆
.

Finally, note that when we divide Z0, the fraction
of edges of E(Z0) that do not cross the random
hyperplane is O(

√
ε0) (in expectation) where

ε0 =
1

4|E(Z0)|

∑
(i, j)∈E(Z0)

‖vi + v j‖
2

8

6
1

4|E(Z0)|

∑
(i, j)∈E

‖vi + v j‖
2 6

εH · |E|
|E(Z0)|

.

Thus,

�
[
|E(Z+

0)| + |E(Z−0)|
∣∣∣r]

6 O
(√

εH |E|/|E(Z0)
)
|E(Z0)| 6 O(

√
εH)|E|.

Combining the above upper bounds, we conclude
that

�[uncut(X,Y)] 6 O
(
εH

∆
+
√
εH

)
.

Finally, we estimate the size of the set X. Note
that if vi ∈ Z+

k then |〈vi, v0〉 − k∆′| 6 3∆′, if vi ∈ Z−k
then |〈vi, v0〉+k∆′| 6 3∆′. Therefore,

∑
i∈Zk
〈vi, v0〉 6

k(|Z+
k | − |Z

−
k |)∆

′ + 3∆′|Zk |, which implies∑
k

k
(
|Z+

k | − |Z
−
k |
)
∆′ >

∑
i∈U

〈vi, v0〉 − 3∆′|U |

> (1 − 2θ − 3∆′)|U | .

Therefore,

|Y | − |X| =
∑

k

∣∣∣|Z+
k | − |Z

−
k |
∣∣∣ > ∑

k:|Z+
k |−|Z

−
k |>0

(
|Z+

k | − |Z
−
k |
)

>
∑

k:|Z+
k |−|Z

−
k |>0

(k∆′)
(
|Z+

k | − |Z
−
k |
)

>
∑

k

k
(
|Z+

k | − |Z
−
k |
)
∆′ > (1 − 2θ − 3∆′)|U | ,

implying |X| 6 (θ + 3∆′/2)|U | = (θ + ∆)|U |. �

We apply this algorithm to every graph G[Ui] and
every θ = k/|Ui|, 0 < k 6 |Ui|/2, and obtain a list
of candidate cuts. We get the following corollary.

Corollary 4.4. There is a polynomial time algo-
rithm that given a graph H = G([Ui]) and a param-
eter ∆ ∈ (0, 1) finds a family of cutsUi such that for
every cut (S ,T) of H there exists a cut (X,Y) ∈ Ui

with |X| 6 min(|S |, |T |) + ∆|Ui| and

uncut(X,Y) 6 O
(√

uncut(S ,T) +
uncut(S ,T)

∆

)
.

5 Combining candidate cuts
In this section, we show how to choose one can-

didate cut for each set Ui and V j.
For brevity, we denote Wi = Ui for i ∈ {1, . . . , p}

and Wp+ j = V j for j ∈ {1, . . . , q}. Similarly,

Wi = Ui for i ∈ {1, . . . , p} and Wp+ j = V j for
j ∈ {1, . . . , q} Then W1, . . . ,Wp+q is a partitioning
of V , andWi is a family of cuts of G[Wi].

We say that a cut (X,Y) of G is a combination of
candidate cuts fromWi if the restriction of (X,Y)
to each Wi belongs toWi (we identify cuts (S ,T)
and (T, S)).

Lemma 5.1. There exists a polynomial time algo-
rithm that given a graph G = (V, E) and a threshold
ζ ∈ [0, 1/2], sets Wi and families of cutsWi, finds
the maximum cut among all combination cuts (X,Y)
with |X|, |Y | ∈ [(1/2 − ζ)|V |, (1/2 + ζ)|V |].

Proof. We solve the problem by dynamic pro-
gramming. Denote Hk = G[

⋃k
i=1 Wi]. For every

a ∈ {1, . . . , p + q} and b ∈ {1, . . . , |G[Ha]|}, let
Q[a, b] be the size of the maximum cut among all
combination cuts (X,Y) on Ha with |X| = b (Q[a, b]
equals −∞ if there are no such cuts). We loop over
all value of a from 1 to p + q and fill out the table
Q using the following formula

Q[a, b] = max
(X,Y)∈Wa or (Y,X)∈Wa

(Q[a − 1, b − |X|] + |edges(X,Y)|),

where we assume that Q[0, 0] = 0, and Q[a, b] =

−∞ if a 6 0 and b 6 0 and (a, b) , (0, 0).
Finally the algorithm outputs maximum among

T [p+q, d(1/2− ζ)|V |e], . . . ,T [p+q, b(1/2+ ζ)|V |c],
and the corresponding combination cut. �

Finally, we prove that there exists a good almost
balanced combination cut.

Lemma 5.2. Let G = (V, E) be a graph. Let
V =

⋃
i Ui ∪

⋃
j V j be a partitioning of V that

satisfies conditions of Lemma 3.1, andUi andV j

be families of candidate cuts that satisfy conditions
of Corollary 4.4 and Lemma 4.2, respectively. Then
there exists a composition cut (X,Y) such that∣∣∣∣∣ |X||V | − 1

2

∣∣∣∣∣ 6 max(∆, δ)

and

uncut(X,Y) 6 O
(√

λ log(1/δ)

+
√

uncut(S OPT ,TOPT)

+ uncut(S OPT ,TOPT)
(1
λ

+
1
∆

))
,

where (S OPT ,TOPT) is the optimal bisection of G.

9

Proof. Consider the optimal bisection cut
(S OPT ,TOPT). We choose a candidate cut for every
set Vi. By Lemma 4.2, for every Vi there exists a
cut (Xi,Yi) ∈ Vi such that

uncut(Xi,Yi)
6 4uncut(S OPT ∩ Vi,TOPT ∩ Vi)/λ2(G[Vi])
6 4uncut(S OPT ∩ Vi,TOPT ∩ Vi)/λ, (5.1)

and |Xi| = min(|S OPT ∩ Vi|, |TOPT ∩ Vi|). We define
sets XV and YV as follows. For each i, we add Xi

to XV if |Xi| = |S OPT ∩ Vi|, and we add Yi to XV ,
otherwise (i.e. if |Yi| = |S OPT ∩ Vi|). Similarly, we
add Yi to YV if |Yi| = |TOPT ∩ Vi|, and we add Xi

to YV , otherwise. Clearly, (XV ,YV) is a candidate
cut of

⋃
i Vi and |XV | = |S OPT ∩

⋃
i Vi|. Assume

without loss of generality that |XV | > |YV |.
Now we choose a candidate cut for every set Ui.

By Corollary 4.4, for every Ui there exists a cut
(X′i ,Y

′
i) ∈ Ui such that

uncut(X′i ,Y
′
i)

6 O
(√

uncut(S OPT ∩ Ui,TOPT ∩ Ui)

+
uncut(S OPT ∩ Ui,TOPT ∩ Ui)

∆

)
, (5.2)

and |X′i | 6 min(|S OPT ∩ Ui|, |T ∩ Ui|) + ∆|Ui|. We
assume that X′i is the smaller of the two sets X′i and
Y ′i .

We want to add one of the sets X′i and Y ′i to
XV , and the other set to YV so that the resulting
cut (X,Y) is almost balanced. We set X = XV and
Y = YV . Then consequently for every i from 1 to p,
we add X′i to the larger of the sets X and Y , and add
Y ′i to the smaller of the two sets (recall that X′i is
smaller than Y ′i). We obtain a candidate cut (X,Y)
of G.

We show that
∣∣∣|X|/|V | − 1/2

∣∣∣ 6 max(∆, δ). Ini-
tially, |X| = |XV | > |Y | = |YV |. If at some
point X becomes smaller than Y then after that∣∣∣|X| − |Y |∣∣∣ 6 δ|V | since at every step

∣∣∣|X| − |Y |∣∣∣ does
not change by more than |Ui| 6 δ|V |. So in this case∣∣∣|X|/|V | − 1/2

∣∣∣ 6 δ. So let us assume that the set X
always remains larger than Y . Then we always add
X′i to X and Y ′i to Y . We have

|X| =
∣∣∣∣XV ∪

⋃
i

X′i
∣∣∣∣

6

q∑
j=1

|S OPT ∩ V j|+

p∑
i=1

(min(|S OPT ∩ Ui|, |TOPT ∩ Ui|) + ∆|Ui|)

6

q∑
j=1

|S OPT ∩ V j| +

p∑
i=1

|S OPT ∩ Ui| + ∆|V |

= |S OPT | + ∆|V | = (1/2 + ∆)|V |.

It remains to bound uncut(X,Y). We have,

uncut(X,Y)|E| 6
∑

16i< j6p

|edges(Ui,U j)|

+
∑

16i< j6q

|edges(Vi,V j)| +
∑

16i6p
16 j6q

|edges(Ui,V j)|

+
∑

16i6p

uncut(X′i ,Y
′
i)|E(Ui)| +

∑
16 j6q

uncut(X j,Y j)|E(V j)| .

By Lemma 3.1, the sum of the first three terms
is at most O(

√
λ log(1/δ))|E|. From (5.2), we get∑

16i6p

uncut(X′i ,Y
′
i)|E(Ui)|

6 O(1)
p∑

i=1

(√
uncut(S OPT ∩ Ui,TOPT ∩ Ui)

+ uncut(S OPT ∩ Ui,TOPT ∩ Ui)/∆
)
|E(Ui)|

= O(1)
p∑

i=1

√(
|E(S OPT ∩ Ui)| + |E(TOPT ∩ Ui)|

)
·
√
|E(Ui)|

+ O(1)
p∑

i=1

|E(S OPT ∩ Ui)| + |E(TOPT ∩ Ui)|
∆

6 O(1)

√√ p∑
i=1

(
|E(S OPT ∩ Ui)| + |E(TOPT ∩ Ui)|

)
·

√√ p∑
i=1

|E(Ui)| + O
(
uncut(S OPT ,TOPT) · |E|

∆

)
6 O

(√
uncut(S OPT ,TOPT)

+
uncut(S OPT ,TOPT)

∆

)
· |E|.

From (5.1), we get∑
j

uncut(X j,Y j)|E(V j)|

6
∑

j

4 · uncut(S OPT ∩ V j,TOPT ∩ V j)|E(V j)|
λ

10

6
4 · uncut(S OPT ,TOPT)

λ
· |E| .

�

6 The bisection algorithm – proof of
Theorem 1.2

First, we run the preprocessing step described
in Section 3.1. Then we use the algorithm from
Lemma 3.1 with λ = ε2/3

OPT and δ = εOPT to find a
partition of V into sets U1, . . . ,Up,V1, . . . ,Vq. We
apply Corollary 4.4 with ∆ =

√
εOPT to all sets Ui,

and obtain a listUi of candidate cuts for each set
Ui. Then we apply Lemma 4.2 and obtain a listV j

of candidate cuts for each set V j. Finally, we find
the optimal combination of candidate cuts using
Lemma 5.1. Denote it by (X,Y). By Lemma 5.2,
we get that uncut(X,Y) is at most

O
(√

λ log(1/δ) +
√
εOPT +

εOPT

λ
+
εOPT

∆

)
6 O(3

√
εOPT log(1/εOPT)),

and ∣∣∣∣∣ |X||V | − 1
2

∣∣∣∣∣ 6 max(∆, δ) = O(
√
εOPT).

By moving at most O(
√
εOPT)|V | vertices of the

smallest degree from the larger size of the cut to
smaller part of the cut, we obtain a balanced cut. By
doing so, we increase the number of uncut edges
by at most O(

√
εOPT |E|). The obtained bisection

cut cuts a 1 −O(3
√
εOPT log(1/εOPT)) fraction of all

edges.
It is easy to see that a slight modification of the

algorithm leads to the following extension of Theo-
rem 1.2.

Theorem 6.1. There is a randomized polynomial
time algorithm that given an edge-weighted graph
G with a β-biased cut of value (1 − ε) finds a β-
biased cut of value (1 − O(3

√
ε log(1/ε) +

√
ε/(1 −

β))).

Proof. We use the algorithm above, while changing
DP algorithm used by Lemma 5.1 to find the best
combination with bias β± t (where t = O(

√
ε)). We

modify the proof of Lemma 5.2 to show that there
exists a β± t cut of value 1−O(

√
ε). As previously,

we first find sets X = XV and Y = YV with |XV | >
|YV |. Now, however, if |X| − |Y | > β|V | then we add

X′i to X and Y ′i and Y; otherwise, we add X′i to Y and
Y ′i and X. We argue again that if at some point the
difference

∣∣∣|X| − |Y |∣∣∣ becomes less than O(
√
ε|V |),

then after that
∣∣∣|X| − |Y |∣∣∣ = O(

√
ε|V |), and therefore,

we find a cut with bias β + O(
√
ε). Otherwise,

there are two possible cases: either we always have
|X| − |Y | > β|V |, and then we always add X′i to X
and Y ′i to Y , or we always have |X| − |Y | > β|V |,
and then we always add X′i to Y and Y ′i to X. Note,
however, that in both cases

∣∣∣|X|−|Y |−β|V |∣∣∣ decreases
by |Y ′i | − |X

′
i | >

∣∣∣|S OPT ∩Ui| − |TOPT ∩Ui|
∣∣∣− 2∆|Ui|

after each iteration. Thus after all iterations, the
value of

∣∣∣|X| − |Y | − β|V |∣∣∣ decreases by at least

p∑
i=1

∣∣∣∣|S OPT ∩ Ui| − |TOPT ∩ Ui|

∣∣∣∣ − 2∆|Ui|

>
∣∣∣∣∣∣∣S OPT ∩

⋃
i

Ui

∣∣∣ − ∣∣∣TOPT ∩
⋃

i

Ui

∣∣∣∣∣∣∣
− 2∆

∣∣∣⋃
i

Ui

∣∣∣.
Taking into the account that |XV | − |YV | = |S OPT ∩⋃

i Vi| − |TOPT ∩
⋃

i Vi|, we get the following bound
for the bias of the final combination cut (X,Y),∣∣∣∣|X| − |Y | − β|V |∣∣∣∣
6

∣∣∣∣∣∣∣S OPT ∩
⋃

i

Vi

∣∣∣ − ∣∣∣TOPT ∩
⋃

i

Vi

∣∣∣ − β|V |∣∣∣∣
−

∣∣∣∣∣∣∣S OPT ∩
⋃

i

Ui

∣∣∣ +
∣∣∣TOPT ∩

⋃
i

Ui

∣∣∣∣∣∣∣ + 2∆
∣∣∣⋃

i

Ui

∣∣∣
6

∣∣∣∣|S OPT | − |TOPT | − β|V |
∣∣∣∣ + 2∆|V | = 2∆|V |.

We get the exact β-biased cut by moving at most
O(
√
ε)|V | vertices of the smallest degree from the

larger size of the cut to smaller part of the cut. By
doing so, we lose at most O(

√
ε)|E|/(1 − β) cut

edges. Therefore the theorem follows. �

7 Improving the performance when
small (constant) imbalance is toler-
ated

In this section we prove Theorem 1.3. By ap-
plying the sparsification procedure described in
Section 3.1, we may assume that the graph G is
unweighted.

We begin by describing a difference graph de-
composition procedure that will be used to prove

11

Theorem 1.3. This will ensure a slightly different
expansion property for the expanding parts, which
we define first.

7.1 (α, γ)-expansion
For a subset W ⊆ V , we denote by µ(W) =

|W |
|V |

the measure of W. Note that this measure is with
respect to the uniform distribution and not the sta-
tionary distribution on vertices (which is used by
definition of vol W).

Definition 7.1. Let 0 < α, γ < 1. A graph
G = (V, E) is said to be an (α, γ)-expander if for
every subset S ⊂ V with α 6 |S |

|V | 6 1/2, one has
|edges(S ,V \ S)| > γ · |E|.

An induced subgraph G[W] of is said to be an
(α, γ)-expander (relative to G) if for every S ⊂ W
with measure α 6 |S |

|W | 6 1/2, one has |edges(S ,W \
S)| > γ · µ(W)|E|.

Similar to spectral expanders, we can also argue
that if a graph is an (α, γ)-expander, then any two
large cuts in the graph must differ in very few ver-
tices. This is the analog of Lemma 4.1 with the
difference being that we measure distance between
cuts with respect to the uniform measure instead of
the stationary distribution.

Lemma 7.2. Let G = (V, E) be an (α, γ)-expander.
For ζ < γ/2, let (A, A) and (B, B) are two cuts in G
such that at least a fraction (1 − ζ) of the edges of
G cross each of them. Then

min
{
µ(A∩B) +µ(A∩B), µ(A∩B) +µ(A∩B)

}
< α.

Proof. Assume for definiteness that |A ∩ B| + |A ∩
B| 6 |A ∩ B| + |A ∩ B|. Let X = (A ∩ B) ∪ (A ∩ B);
we have µ(A ∩ B) + µ(A ∩ B) = µ(X) 6 1/2. Any
edge leaving X must fail to be in at least one of the
two cuts (A, A) and (B, B). Thus |edges(X, X)| 6
2ζ |E| < γ|E|. Since G is an (α, γ)-expander, this
implies µ(X) < α. �

Now we prove a similar partition lemma as
Lemma 3.1, but partition the graph into (α, γ)-
expanders and small parts.

7.2 SDP relaxation for (α, γ)-expansion
Consider the following SDP for a graph G =

(V, E) (we identify V = {1, 2, . . . , n}), parametrized
by α. The SDP is the standard one for the α-
balanced separator problem. (Below ‖x‖ denotes
the `2-norm of a vector x.)

Semidefinite program SDP(α)(G):

Minimize
1

4|E|

∑
e=(i, j)∈E

‖vi − v j‖
2

subject to

‖vi‖ = 1 for i = 1, 2, . . . , n
�
i, j

[‖vi − v j‖
2] > 8α(1 − α) . (7.1)

Lemma 7.3. If G is not an (α, γ)-expander, then
the above SDP has a feasible solution of cost less
than γ.

Proof. Suppose S ⊂ V is a subset of density
µ(S) ∈ [α, 1/2] such that |edges(S , S)| < γ · |E|.
Taking vi = 1 for i ∈ S and vi = −1 for i ∈ S
gives a feasible solution to SDP(α)(G) of value
|edges(S , S)|/|E| < γ. �

We now show that a good SDP solution can be
rounded into a sparse, somewhat balanced cut (S , S)
via random hyperplane rounding. The method is
standard, but the subtlety lies in the fact that the
measure we use for the size of S is not related to
the edge weights or degrees but just the number of
vertices in S . The proof is deferred to Appendix A.

Lemma 7.4. Let α 6 1/2. There is a polynomial
time randomized algorithm that given a solution
to the above SDP with objective value γ, finds
a set S ⊂ V with α/2 6 µ(S) 6 1/2 satisfying
|edges(S , S)| < 6

√
γ

α
|E| with probability at least

0.9.
In particular, G is not an (α/2, 6

√
γ/α)-expander if the

SDP has a solution with value at most γ.

7.3 The partition lemma for (α, γ)-
expanders

We now present the partition algorithm that given
an arbitrary graph G = (V, E), partitions the graph
into induced subgraphs each of which is either an
(α, γ)-expander or is of small measure (at most η),
while cutting a small fraction of the edges. For-
mally, we prove the following.

Lemma 7.5. For any choice of parameters 0 <
α, γ, η < 1, there is a polynomial time algorithm
that on input a graph G = (V, E), outputs a partition
V = V1∪V2∪· · ·∪Vr such that for i, 1 6 i 6 r, either
µ(Vi) 6 η or the induced subgraph G[Vi] is an
(α, γ)-expander, and the number of edges crossing

12

between different parts Vi and V j for i , j is at
most O

(√
γ

α2 log(1/η)
)
|E|.

Proof. Let n = |V |. The idea is to recursively de-
compose the graph using the method of Lemma 7.4
till each part either has at most ηn vertices, or is an
(α, γ)-expander as certified by the optimum SDP
objective value being larger than γ. For a subset
T ⊆ V , define the subroutine Decompose(G[T])
on the subgraph induced by T as follows:

1. If |T | 6 ηn, return T .
(In this case, the subgraph is already small
enough.)

2. Compute the optimum value of the semidefi-
nite program SDP(α)(G[T]). If this value is at
least

γT
def
=
γ · µ(T)|E|
|E(T)|

,

where E(T) denotes the set of edges in the
induced subgraph G[T], return T .
(In this case, the induced subgraph G[T] is
already an (α, γ)-expander by Lemma 7.3.)

3. Otherwise, run the algorithm of Lemma 7.4
(with input an SDP solution of value less than
γT) to find a partition T = T1 ∪ T2 with

max{µ(T1), µ(T2)}
6 (1 − α/2)µ(T) 6 e−α/2µ(T) (7.2)

and

|edges(T1,T2)| 6 6
√
γT

α
|E(T)|

=
6
√
γ · |E|
α

·
√
µ(T)|E(T)| .(7.3)

Now recursively call Decompose(G[T1]) and
Decompose(G[T2]) on the subgraphs induced
by T1 and T2, and return the union of the parts
so produced.

Remark 7.6. For our application, it is crucial that
the decomposition returns components that are all
either small or rigid in the sense that any two good
cuts are close to each other. A key idea in the above
decomposition procedure is that the threshold for
expansion γT is not fixed to be a constant, but varies
with the graph G[T]. In particular, if the graph G[T]
is sparser than G, then the threshold for expansion

is higher. This is because in a sparse component
G[T], two cuts could differ in a large fraction of
vertices yet yield roughly the same value. Hence,
the threshold for expansion γT beyond which G[T]
is not further decomposed is higher for a sparse
component G[T].

The partition claimed in the lemma is obtained by
running Decompose(G). The algorithm clearly ter-
minates (by virtue of (7.2) and the fact that we stop
when the parts have at most ηn vertices). Clearly
each part in the final decomposition is either an
(α, γ)-expander or has at most ηn vertices. It only
remains to establish the bound on the number of
edges cut. By (7.3), the total number of edges cut
by all the recursive calls at a particular depth j is

6
√
γ · |E|
α

r j∑
i=1

√
µ(Ti)|E(Ti)|

where G[Ti], i = 1, 2, . . . , r j are the disjoint in-
duced subgraphs occurring in the decomposition
tree at depth j. By Cauchy-Schwartz and the fact
that

∑r j

i=1 |E(Ti)| 6 |E|, the above quantity is at

most 6
√
γ

α
· |E|. Since the maximum depth of re-

cursive calls is at most O(log(1/η)/α) by (7.2), the
total number of edges cut over all levels is at most
O(log(1/η)/α) · 6

√
γ

α
· |E|. �

7.4 The algorithm
First, we run the preprocessing step described

in Section 3.1. Then we use the algorithm from
Lemma 7.5 to find a partition of V into sets
V1, . . . ,Vq.

In Section 7.5, we prove the following lemma,
where (α, γ)-SDP-expander is defined by Defini-
tion 7.10. Notice that by construction, the (α, γ)-
expanders produced by Lemma 7.5 are (α, γ)-SDP-
expanders.

Lemma 7.7. Suppose G is the vertex-disjoint union
of G[V1], . . . ,G[Vr] for a partition V1, . . . ,Vr of V
(i.e., G does not contain edges joining Vi and V j

for i , j). Furthermore, suppose that for every
k ∈ [r], µ(Vk) > η and the induced subgraph G[Vk]
is an (α, γ)-SDP-expander (relative to G). If there
exists a β-biased bisection of G that cuts 1 − ε of
the edges, we can compute x ∈ {±1}n such that∣∣∣�

i
xi − β

∣∣∣ 6 O(
√
α + (ε/γ)1/5), (7.4)

13

�
(i, j)∈E

1
4 (xi − x j)2 > 1 − O(

√
ε). (7.5)

The running time is polynomial in n and exponential
in r (which is bounded by 1/η).

Let W be the union of expanders, and U1, . . . ,Up

be the small sets. We enumerate all possible β, and
use Lemma 7.7 to find a list of candidate cutsW
for G[W] with parameter β. We use Corollary 4.4
to find candidate cutsU j for each G[Ui].

We use Lemma 5.1 to find the best combination
of the candidate cuts, with parameter t = cδ for
some constant c. Thus, we only need to prove the
following lemma.

Lemma 7.8. LetW andU j be families of candi-
date cuts we get by the procedure above. Then there
exists a composition cut (X,Y) such that

– uncut(X,Y) 6 O
(√
γ log(1/η)/α2 +

√
uncut(S OPT ,TOPT) +

uncut(S OPT ,TOPT)
∆

)
and

–
∣∣∣∣ |X||V | − 1

2

∣∣∣∣ 6 O
(
√
α +

√
uncut(S OPT ,TOPT) +(

uncut(S OPT ,TOPT
γ

)1/5
)

,

where (S OPT ,TOPT) is the optimal bisection of G.

Proof. The proof goes along the lines of the proof
for Lemma 5.2. Instead of choosing candidate cuts
in Vi, we need to choose a cut in W — we just
choose the one generated from β∗, which is the bias
of optimal solution in G[W]. �

Fix α = δ2, γ = εOPT /δ
5, η = δ2 and δ = εOPT ,

we prove the following theorem.

Theorem 7.9. There is a randomized polynomial
time algorithm that for any constant δ > 0 given
an edge-weighted graph G with a Max Bisection
of value (1 − ε) finds a cut (A, B) of value at least
1 − O(

√
ε) satisfying

∣∣∣|A|/|V | − 1/2
∣∣∣ 6 O(δ).

It is easy to generalize Theorem 7.9 to its β-
biased cut version, which is Theorem 1.3.

7.5 Improved Approximation with SDP-
based Expansion

In this section, we prove Lemma 7.7 by show-
ing how to approximate optimal solution’s behav-
ior on expanders when the graph is partitioned by
Lemma 7.5. The rough idea is to use Lemma 7.2
to argue that finding max-cuts on the expanders is

a good approximation. But in order to get better
performance, we need to do some more work.

Observe that the decomposition procedure in
Section 7.3 has a stronger guarantee than stated
Lemma 7.5. Specifically, each of the compo-
nents produced by the decomposition is an (α, γ)-
expander as certified by the SDP, which is a stricter
requirement.

To make this formal, define an (α, γ)-SDP ex-
pander as follows:

Definition 7.10. For vertex set A ⊆ V, we say the
induced subgraph G[A] is a (α, γ)-SDP-expander
(relative to G) if the optimal value of the relaxation
SDP(α)(G[A]) is at least γ · µ(W) · |E|/|E(A)|. In
other words, every embedding u1, . . . , un ∈ �

n with
�i, j∈A‖ui − u j‖

2 > 8α(1 − α) satisfies∑
e=(i, j)∈E(A)

‖ui − u j‖
2 > 4γ · µ(A) · |E| .

Since the semidefinite program SDP(α) is a
relaxation, (α, γ)-SDP-expansion implies (α, γ)-
expansion. In other words (α, γ)-SDP expansion is
a strictly stronger notion than just (α, γ)-expansion.

Suppose V1, . . . ,Vr is the partition computed by
the decomposition procedure in Section 7.3. Then,
the subgraphs G[Vi] with µ(Vi) > η are, in fact,
guaranteed to be (α, γ)-SDP-expanders (instead of
(α, γ)-expanders).

Now present an algorithm that exploits this prop-
erty of the decomposition, and therefore prove
Lemma 7.7.

Lemma 7.7. (restated) Suppose G is the vertex-
disjoint union of G[V1], . . . ,G[Vr] for a partition
V1, . . . ,Vr of V (i.e., G does not contain edges join-
ing Vi and V j for i , j). Furthermore, suppose that
for every k ∈ [r], µ(Vk) > η and the induced sub-
graph G[Vk] is an (α, γ)-SDP-expander (relative to
G). If there exists a β-biased bisection of G that
cuts 1 − ε of the edges, we can compute x ∈ {±1}n

such that ∣∣∣�
i

xi − β
∣∣∣ 6 O(

√
α + (ε/γ)1/5),

�
(i, j)∈E

1
4 (xi − x j)2 > 1 − O(

√
ε).

The running time is polynomial in n and exponential
in r (which is bounded by 1/η).

14

Proof. Let x′ be a β-biased bisection of G that cuts
1−ε of the edges. Suppose x′ has bias βk in part Vk,
so that�i∈Vk x′i = βk and therefore�i, j∈Vk (x′i−x′j)

2 =

2(1 − βk)(1 + βk) = 2(1 − β2
k).

Since there are only r parts, we can enumerate
all choices for β1, . . . , βr in time polynomial in n
and exponential in r. Hence, we can assume that
the biases β1, . . . , βr are known to the algorithm.
Let v1, . . . , vn be a feasible solution to the following
semidefinite program.∑

e=(i, j)∈E

1
4‖vi − v j‖

2 > (1 − ε)|E| (7.6)

�
i, j∈Vk
‖vi − v j‖

2 = 2(1 − β2
k). (7.7)

Note that the semidefinite program is feasible
since the integral cut x′ yields a solution. Fur-
thermore, given the values of β1, . . . , βr a feasi-
ble solution to the SDP can be found efficiently.
We will show that the expansion properties of the
graphs G[V1], . . . ,G[Vr] imply that the embedding
v1, . . . , vn form essentially an integral solution. Re-
call that in the intended integral solution to the
semidefinite program, all vertices are assigned ei-
ther +1 or −1, and hence are clustered in two an-
tipodal directions. We will argue that for most parts
G[Vi], nearly all of its corresponding vectors are
clustered along two anti-podal directions.

Consider the vectors u1, . . . , un defined as ui =

v⊗t
i , where t is the even integer (we determine the

best choice for t later). We can upper bound the
average length of an edge of G in the embedding
u1, . . . , un as follows

�
(i, j)∈E

1
4 ‖ui − u j‖

2 6 O(tε) .

We say a part Vk is good if �i, j∈Vk‖ui − u j‖
2 6

8α(1 − α). Otherwise, we say that Vk is bad. Let
Vbad be the union of the bad parts. Consider a bad
part Vk ⊆ Vbad (i.e., �i, j∈Vk‖ui − u j‖

2 > 8α(1 − α)).
Since G[Vk] is an (α, γ)-SDP-expander, it holds that∑

e=(i, j)∈E(A)
1
4 ‖ui − u j‖

2 > γµ(Vk)|E|. Therefore, we
can lower bound the average length of an edge of
G in the embedding u1, . . . , un in terms of µ(Vbad),

�
(i, j)∈E

1
4 ‖ui − u j‖

2 > γµ(Vbad) .

It follows that µ(Vbad) 6 O(tε/γ) (which means
that the vertices in Vbad have negligible influence
on the bias of a bisection).

Now we will show that for every good part Vk ⊆

V \ Vbad, the vectors are somewhat integral in that
they are all clustered around two antipodal points.
Consider a good part Vk ⊆ V \Vbad. The vectors as-
sociated with Vk are close to each other on average,
i.e., �i, j∈Vk‖ui − u j‖

2 6 8α(1 − α). Since ui = v⊗t
i , if

the vectors ui are correlated, then the original vec-
tors vi are highly correlated (or anti-correlated) on
average. Formally, suppose two vertices i, j ∈ Vk

satisfy |〈vi, v j〉| 6 1 − δ, where we choose δ = 1/t.
Then, 〈ui, u j〉 6 (1 − δ)t 6 e−tδ = 1/e, which means
‖ui−u j‖

2 > Ω(1).Since�i, j∈Vk‖ui−u j‖
2 6 8α(1−α),

it follows that

�
i, j∈Vk

{
|〈vi, v j〉| 6 1 − δ

}
6 O(α) . (7.8)

In other words, within a good component G[Vk], at
most α-fraction of the pairs of vectors vi, v j are less
than 1 − δ correlated.

The improved bound on the bias stems from
the fact that the Goemans-Williamson rounding
procedure has a better balance guarantee on near-
integral solution. Specifically, consider the follow-
ing simple rounding procedure: Let g be an in-
dependent standard Gaussian vector in �n. For
i ∈ V , define xi as the sign of 〈g, vi〉. The Goemans–
Williamson analysis shows that x cuts 1−O(

√
ε) of

the edges in expectation. Another (related) property
of this rounding is that for any two vertices i, j with
|〈vi, v j〉| > 1 − δ,

�
x

∣∣∣ 1
4 (xi − x j)2 − 1

4 ‖vi − v j‖
2
∣∣∣ 6 O(

√
δ) = O(

√
1/t) .

(7.9)

Consider a good part Vk ⊆ V \Vbad. We will esti-
mate �x

∣∣∣�i, j∈Vk
1
4 (xi − x j)2 − 1

2 (1 − β2
k)
∣∣∣ . The sec-

ond property (7.9) of the Goemans–Williamson
rounding implies that

�
x

∣∣∣∣ �
i, j∈Vk

[
1
4 (xi − x j)2

∣∣∣ |〈vi, v j〉| > 1 − δ
]
−

�
i, j∈Vk

[
1
4‖vi − v j‖

2
∣∣∣ |〈vi, v j〉| > 1 − δ

] ∣∣∣∣ = O(
√

1/t) .

On the other hand, we can estimate the effect of
conditioning on the event |〈vi, v j〉| > 1 − δ on the
expectation over i, j ∈ Vk (using the fact that Vk is
a good part and the observation (7.8)).∣∣∣∣ �

i, j∈Vk

[
1
4 (xi − x j)2

]
−

15

�
i, j∈Vk

[
1
4 (xi − x j)2

∣∣∣ |〈vi, v j〉| > 1 − δ
] ∣∣∣∣ 6 O(α)

(7.10)∣∣∣∣ �
i, j∈Vk

[
1
4 ‖vi − v j‖

2
]
−

�
i, j∈Vk

[
1
4‖vi − v j‖

2
∣∣∣ |〈vi, v j〉| > 1 − δ

] ∣∣∣∣ 6 O(α)

(7.11)

Combining these bounds and using the fact that
�i, j∈Vk

1
4‖vi − v j‖

2 = 1
2 (1 − β2

k) implies that

�
x

∣∣∣∣∣ �i, j∈Vk

1
4 (xi − x j)2 − 1

2 (1 − β2
k)
∣∣∣∣∣ 6 O

(√
1/t + α

)
(7.12)

Observe that the bias is given by,

| �
i∈Vk

xi| =
√
�

i, j∈Vk
xix j

=

√
1 − 2 �

i, j∈Vk

(
1 − xix j

2

)
=

√
1 − 2 �

i, j∈Vk

(
(xi − x j)2

4

)
.

If f denote the function f (u) =
√

1 − 2u,
then by the above equality the bias �i∈Vk xi =

f (�i, j∈Vk
1
4 (xi − x j)2). Since f satisfies | f (u) −

f (u′)| 6 O(
√
|u − u′|), we can estimate the expected

deviation of the bias �x|�i∈Vk xi − βk | as follows:

�
x

∣∣∣∣ �
i∈Vk

xi − βk

∣∣∣∣ (7.13)

=�
x

∣∣∣∣ f (
�i, j∈Vk

1
4 (xi − x j)2

)
− f

(
1
2 (1 + βk)(1 − βk)

)∣∣∣∣
6O(1)�

x

∣∣∣�i, j∈Vk
1
4 (xi − x j)2 − 1

2 (1 − β2
k)
∣∣∣1/2

6O(1)
(
�
x

∣∣∣�i, j∈Vk
1
4 (xi − x j)2 − 1

2 (1 − β2
k)
∣∣∣)1/2

(using Cauchy–Schwarz)

6O(
√

1/t + α)1/2 (by (7.12))

6O(t−1/4 + α1/2) . (7.14)

Finally, we obtain the following bound on the ex-
pected deviation of the bias

�
x

∣∣∣∣ �
i∈V

xi − β
∣∣∣∣

6
r∑

k=1

µ(Vk)�
x

∣∣∣∣ �
i∈Vk

xi − βk

∣∣∣∣
(using triangle inequality)

6
r∑

k∈[r]
Vkgood

µ(Vk)�
x

∣∣∣∣ �
i∈Vk

xi − βk

∣∣∣∣ + O(tε/γ)

(using µ(Vbad) 6 O(tε/γ))

6O
(
t−1/4 + α1/2 + tε/γ

)
(by (7.14))

6O(
√
α + (ε/γ)1/5)

(choosing t such that t5 = (γ/ε)4) .

�

8 Minimum Bisection
The techniques of this work almost immediately

imply the following approximation algorithm for
the minimum bisection problem.

Theorem 8.1. Suppose G is a graph with a β-
biased bisection cutting ε-fraction of edges then:

– For every constant δ > 0 it is possible to ef-
ficiently find a bisection with bias β ± O(δ)
cutting at most O(

√
ε)-fraction of edges.

– It is possible to efficiently find a β-biased bisec-
tion cutting at most O(3

√
ε log(1/ε) +

√
ε/(1 −

β))-fraction of edges.

Proof. The result follows essentially along the lines
of the corresponding results for Max-Bisection
(Theorem 1.2 and Theorem 1.3). We simply need
to change the vi − v j terms in the SDP formulation
and analysis to vi + v j, and likewise for xi− x j in the
±1 vector x (the cut) found by the algorithm. The
details are therefore omitted in this version. �

A Proof of Lemma 7.4
Proof. We will round the vectors into a cut using
a random hyperplane. Specifically, pick a random
vector r ∈ (N(0, 1))n at random, and let P = {i |
〈vi, r〉 > 0}. We will let S be the smaller of the two
sets P,V \ P. Clearly µ(S) 6 1/2. We will now
bound the probability that µ(S) < α/2 or the cut
(S , S) has too many edges crossing it.

The expected number of edges crossing the cut
is

� |edges(S , S))| =
∑

(i, j)∈E

arccos〈vi, v j〉

π

= |E| �
(i, j)∈E

[arccos〈vi, v j〉

π

]
(A.1)

As the SDP objective value is γ, we have
�(i, j)∈E[‖vi − v j‖

2] 6 4γ, or equivalently

16

�(i, j)∈E[〈vi, v j〉] > 1 − 2γ. By an averaging argu-
ment,

�
(i, j)∈E

[〈vi, v j〉 6 0] 6 2γ . (A.2)

Now

�
(i, j)∈E

[
arccos〈vi, v j〉

π

]
6 �

(i, j)∈E
[〈vi, v j〉 6 0]

+ �
(i, j)∈E

[
arccos〈vi, v j〉

π
〈vi, v j〉 > 0

]
6 2γ +

1
π

arccos
(
�

(i, j)∈E

[
〈vi, v j〉 | 〈vi, v j〉 > 0

])
(using (A.2) and Jensen)

6 2γ +
arccos(1 − 2γ)

π

6 2γ +
2
π

√
γ < 3

√
γ .

By Markov inequality, the probability that
|edges(S , S)| > 6

√
γ

α
· |E| is at most α/2.

Let us now analyze the size of S . Clearly
�[|P|] = |V |/2. Also

�[|P||V \ P|] =
1
2

∑
i, j

arccos〈vi, v j〉

π

> 0.878 ·
∑
i, j

1 − 〈vi, v j〉

2

(by Goemans-Williamson analysis)

> 0.878 · 2α(1 − α)|V |2 (using (7.1))

Thus �[µ(P)] = 1/2 and �[µ(P)(1 − µ(P))] >
0.878 · 2α(1 − α) > 3α/4 since α 6 1/2. Note
that µ(S) = 1/2 − |µ(P) − 1/2|. Hence

�[µ(S) < α/2] = �

[∣∣∣∣µ(P) −
1
2

∣∣∣∣ > 1
2
−
α

2

]
<
�[(µ(P) − 1/2)2]
1/4 − α

2 (1 − α/2)

6
1/4 − 3α/4
1/4 − α/2

6 1 − α .

We can thus conclude that with probability at least
α/2, µ(S) > α/2 and |edges(S , S)| < 6

√
γ

α
· |E|.

Repeating the rounding procedure O(1/α) times
boosts the success probability to 90%. �

References

[AKK+08] Sanjeev Arora, Subhash Khot, Alexandra
Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi, Unique games on ex-
panding constraint graphs are easy, Pro-
ceedings of the 40th Annual ACM Sym-
posium on Theory of Computing, 2008,
pp. 21–28. 3

[Chu96] F. R. K. Chung, Laplacians of graphs and
Cheeger’s inequalities, Combinatorics, Paul
Erdős is Eighty 2 (1996), 157–172. 4

[FJ97] Alan M. Frieze and Mark Jerrum, Improved
approximation algorithms for max k-cut
and max bisection, Algorithmica 18 (1997),
no. 1, 67–81. 2, 3

[FK02] Uriel Feige and Robert Krauthgamer, A
polylogarithmic approximation of the mini-
mum bisection, SIAM J. Comput. 31 (2002),
no. 4, 1090–1118. 3

[FL06] Uriel Feige and Michael Langberg, The
RPR2 rounding technique for semidefinite
programs, J. Algorithms 60 (2006), no. 1,
1–23. 2, 3

[GW95] Michel X. Goemans and David P.
Williamson, Improved approximation algo-
rithms for maximum cut and satisfiability
problems using semidefinite programming,
Journal of the ACM 42 (1995), no. 6,
1115–1145. 1, 2, 5, 8

[Hås01] Johan Håstad, Some optimal inapproxima-
bility results, Journal of the ACM 48 (2001),
no. 4, 798–859. 2

[HK04] Jonas Holmerin and Subhash Khot, A new
PCP outer verifier with applications to
homogeneous linear equations and max-
bisection, Proceedings of the 36th Annual
ACM Symposium on Theory of Computing,
2004, pp. 11–20. 2

[HZ02] Eran Halperin and Uri Zwick, A unified
framework for obtaining improved approxi-
mation algorithms for maximum graph bi-
section problems, Random Struct. Algo-
rithms 20 (2002), no. 3, 382–402. 2

[Kho02] Subhash Khot, On the power of unique 2-
prover 1-round games, Proceedings of the
34th Annual ACM Symposium on Theory
of Computing, 2002, pp. 767–775. 2

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mos-
sel, and Ryan O’Donnell, Optimal inap-
proximability results for MAX-CUT and
other 2-variable CSPs?, SIAM J. Comput.
37 (2007), no. 1, 319–357. 2

[MOO10] Elchanan Mossel, Ryan O’Donnell, and

17

Krzysztof Oleszkiewicz, Noise stability of
functions with low influences: invariance
and optimality, Annals of Mathematics 171
(2010), no. 1, 295–341. 2

[OW08] Ryan O’Donnell and Yi Wu, An optimal
sdp algorithm for max-cut, and equally op-
timal long code tests, Proceedings of the
40th Annual ACM Symposium on Theory
of Computing, 2008, pp. 335–344. 2

[Rag08] Prasad Raghavendra, Optimal algorithms
and inapproximability results for every
CSP?, Proceedings of the 40th ACM Sym-
posium on Theory of Computing, 2008,
pp. 245–254. 3, 4

[RST10] Prasad Raghavendra, David Steurer, and
Madhur Tulsiani, Reductions between ex-
pansion problems, manuscript, 2010. 3

[TSSW00] Luca Trevisan, Gregory B. Sorkin, Madhu
Sudan, and David P. Williamson, Gadgets,
approximation, and linear programming,
SIAM J. Comput. 29 (2000), no. 6, 2074–
2097. 2

[Ye01] Yinyu Ye, A .699-approximation algorithm
for Max-Bisection, Mathematical Program-
ming 90 (2001), 101–111. 2

18

	Introduction
	Method overview
	Integrality gap
	Notation
	Our approach
	Organization

	Preprocessing and partitioning graph G
	Preprocessing: Making G bipartite and unweighted
	Partitioning

	Finding cuts in sets Ui and Vi
	Candidate cuts in Vi
	Candidate cuts in Ui

	Combining candidate cuts
	The bisection algorithm � proof of Theorem 1.2
	Improving the performance when small (constant) imbalance is tolerated
	(,)-expansion
	SDP relaxation for (,)-expansion
	The partition lemma for (,)-expanders
	The algorithm
	Improved Approximation with SDP-based Expansion

	Minimum Bisection
	Proof of Lemma 7.4
	References

