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Perturbation Resilience
Konstantin Makarychev and Yury Makarychev

Abstract

This chapter introduces perturbation resilience (also known as Bilu-Linial stabil-

ity). Loosely speaking, an instance is perturbation-resilient if the optimal solution

remains the same when we perturb the instance. We present algorithmic and hard-

ness results for perturbation-resilient instances. In particular, we describe certified

algorithms that attempt to bridge the gap between the worst-case and structured

instances: on one hand, they always find an approximate solution; on the other

hand, they exactly solve perturbation-resilient instances.

1.1 Introduction

In this chapter, we discuss the notion of perturbation resilience (also known as

stability), which was introduced by Bilu and Linial (2010). The notion of pertur-

bation resilience aims to capture real-life instances of combinatorial optimization

and clustering problems. Informally, an instance of a combinatorial optimization

or clustering problem is perturbation-resilient if the optimal solution remains the

same when we perturb the instance.

Definition 1.1 Consider a combinatorial optimization or clustering problem.

Suppose that every instance has a number of parameters; for example, if the prob-

lem is a graph partitioning problem, the parameters are edge weights; if it is a

constraint satisfaction problem, they are constraint weights; if it is a clustering

problem, they are distances between points. A γ-perturbation of an instance I is

an instance I ′ produced by multiplying each parameter in I by a number between

1 and γ (the number may be different for each parameter).1

Definition 1.2 An instance I is γ-perturbation resilient if every γ-perturbation

1 All problems we consider are scale invariant, so equivalently we can divide the parameters by a
number between 1 and γ; we will use this convention when we talk about clustering problems.
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of I has the same optimal solution as I (we require that I have a unique optimal

solution).

While the solution should not change, the value or cost of the solution may and,

generally speaking, will change when we perturb the instance. The larger γ is, the

more restrictive the γ-perturbation resilience condition becomes. In particular, the

instance is 1-stable if and only if it has a unique solution.

In this chapter, we also describe certified algorithms (see Definition 1.4 below),

which attempt to bridge the gap between the worst-case and structured instances:

on one hand, they always find an approximate solution; on the other, they exactly

solve perturbation-resilient instances.

Motivation. The definition of perturbation resilience is particularly applicable

to machine learning problems, where we are interested in finding the true solu-

tion/clustering/partitioning rather than in optimizing the objective function per

se. Indeed, when we frame a real-life problem as a machine learning problem, we

make a number of somewhat arbitrary modelling decisions (for example, when we

solve a clustering problem, we choose one similarity function among a number of

reasonable choices). If the optimal solution is very sensitive to these modelling

choices, then, by solving the problem exactly, we will likely not find the true so-

lution. This suggests that there is no point in solving non-perturbation-resilient

instances of many machine learning problems in the first place. Additionally, em-

pirical evidence shows that in many real-life instances, the optimal solution stands

out among all feasible solutions and is thus not sensitive to small perturbations of

the parameters.

Weak perturbation resilience. The definition of perturbation resilience is some-

what strict. Perhaps, it is more natural to require that the optimal solution to

a perturbed instance be close but not necessarily equal to the optimal solution

for the original instance. This notion is captured in the definitions of (γ,N)-weak

perturbation resilience.2

Definition 1.3 (Makarychev et al. (2014)) Consider an instance I of a combi-

natorial optimization problem. Let s∗ be an optimal solution and N be a set of

solutions, which includes all optimal solutions. Then s∗ is better than any solution

s outside of N . Assume further that for every γ-perturbation I ′ of I, s∗ is a better

solution for I ′ than s is. Then we say that I is (γ,N)-weakly perturbation-resilient

or simply γ-weakly perturbation-resilient. We say that an algorithm solves a weakly

perturbation-resilient instance I, if given a (γ,N)-weakly perturbation-resilient in-

stance, it finds a solution s ∈ N (crucially, the algorithm does not know N).

One should think of set N in Definition 1.3 as the set of solutions that are close

to s∗ in some sense. Let us say we solve Max Cut. Then, N may be the set of

2 We note that a related notion of weak perturbation-resilience, called (γ, ε)-perturbation resilience,
was introduced by (Balcan and Liang, 2016).
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cuts (S′, T ′) that can be obtained from the optimal cut (S∗, T ∗) by moving at

most an ε fraction of the vertices from one side of the cut to the other. Or, N

may be the set of cuts that partition some subset of the vertices V0 (informally,

the “core of the graph” or the subset of “important vertices”) in the same way as

(S∗, T ∗). Or, it may be a set of cuts that satisfy some other structural property.

Note that an instance is (γ, {s∗})-weakly perturbation-resilient if and only if it is

γ-perturbation-resilient.

It would be interesting to further relax the definition of perturbation resilience.

In particular, it would be more natural to require only that the optimal solution

not change if we randomly perturb the input. Unfortunately, we do not have any

results for this weaker definition of perturbation resilience.

Certified Algorithms. Let us now define the notion of a certified approximation

algorithm (Makarychev and Makarychev, 2019). The definition is inspired by the

definitions of perturbation resilience and smoothed analysis (Spielman and Teng,

2004) (see also Chapters 13–15 of this book). Recall that in the smoothed analysis

framework, we analyze the performance of an algorithm on a small random pertur-

bation of the input instance. That is, we show that, after we randomly perturb the

input, the algorithm can solve it with the desired accuracy in the desired time. A

certified algorithm perturbs the input instance on its own and then solves the ob-

tained instance exactly. Importantly, the perturbation does not have to be random

or small (in fact, we will later see that for many problems the perturbation must

be considerable).

Definition 1.4 A γ-certified algorithm is an algorithm that, given an instance I
of the problem, returns a γ-perturbation I ′ of I and an optimal solution s∗ for I ′.
We will say that I ′ certifies s∗.

As we will see in Section 1.2, certified algorithms have a number of desirable

properties. A γ-certified algorithm always gives a γ-approximation for the problem

and its “complement”, exactly solves γ-perturbation-resilient instances, and solves

weakly perturbation-resilient instances. Also, one may run a certified algorithm, get

a perturbed instance I ′ and an optimal solution s∗ for it, then, taking into account

problem-specific considerations, decide for oneself whether I ′ is similar enough to

I and, consequently, whether s∗ is a reasonably good solution for I.

Robust Algorithms. Most algorithms for perturbation-resilient instances of com-

binatorial optimization problems (but not clustering problems) that we discuss in

this chapter are robust – they never output an incorrect answer, even if the input

is not γ-perturbation-resilient.

Definition 1.5 An algorithm for γ-perturbation-resilient instances is robust if the

following holds: if the input instance is γ-perturbation-resilient, the algorithm finds

the optimal solution; if the instance is not γ-perturbation-resilient, the algorithm
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either finds an optimal solution or reports that the instance is not γ-perturbation-

resilient.

This property is very desirable, as in real life we can only assume that input

instances are perturbation-resilient but we cannot be completely certain that they

indeed are.

Running time. The running time of most certified algorithm we consider in this

chapter will be polynomial in the size of the input and the magnitude of the param-

eters. Thus, we will refer to these algorithms as pseudo-polynomial-time algorithms.

Specifically, the running time will be polynomial in the size of the input and the

ratio between the largest and the smallest parameters. To simplify the exposition, we

will additionally assume that the parameters are integers between 1 and W . How-

ever, this assumption is not crucial (see (Makarychev and Makarychev, 2019)). In

this chapter, we will also talk about other (“non-certified”) algorithms for pertur-

bation and weakly-perturbation resilient instances – these algorithms will be true

polynomial-time algorithms, whose running time is polynomial in the input size.

Organization. We discuss results for combinatorial optimization problems in Sec-

tions 1.2–1.3 and results for clustering problems in Sections 1.5-1.7.

1.2 Combinatorial Optimization Problems

In this section, we describe properties of certified algorithm for combinatorial opti-

mization problems.

Preliminaries. We will formally define what a combinatorial optimization problem

is. Our definition will capture various constraint satisfaction, graph partitioning,

and covering problems. It will be instructive for us to keep in mind two examples

of such problems, Max Cut and Min Uncut.

Definition 1.6 In Max Cut, given a graph G = (V,E,we), the goal is to find a

cut (S, S̄) in G that maximizes the total weight of the cut edges. In Min UnCut,

given a graph G = (V,E,we), the goal is to find a cut (S, S̄) in G that minimizes

the total weight of the edges not cut by (S, S̄).

For a given graphG, the value of a cut (S, S̄) w.r.t. the Max Cut objective plus the

cost of (S, S̄) w.r.t. the Min Uncut objective equals the total weight of all the edges

and does not depend on the specific cut (S, S̄). In particular, the optimal solution

for Max Cut is also an optimal solution for Min Uncut and vice versa. However,

as we will discuss later a good approximate solution for one of the problems is not

necessarily a good solution for the other. We say that Max Cut and Min Uncut

are complementary problems. Now we give a general definition of a combinatorial

optimization problem.

Definition 1.7 An instance of a combinatorial optimization problem is specified
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by a set of feasible solutions S (the solution space), a set of constraints C, and

constraint weights wc > 0 for c ∈ C. Typically, the solution space S is of exponential

size and is not provided explicitly. Each constraint is a map from S to {0, 1}. We

say that a feasible solution s ∈ S satisfies a constraint c in C if c(s) = 1.

We consider maximization and minimization objectives.

• The maximization objective is to maximize the total weight of the satisfied con-

straints: find s ∈ S that maximizes valI(s) =
∑
c∈C wcc(s).

• The minimization objective is to minimize the total weight of the unsatisfied

constraints: find s ∈ S that minimizes
∑
c∈C wc(1−c(s)) = w(C)−valI(s) (where

w(C) =
∑
c∈C w(c) is the total weight of all the constraints).

We say that maximization and minimization are complementary objectives; like-

wise, we call two instances that only differ in the objective complementary instances.

Note that complementary instances have the same optimal solutions.

Weights {wc}c∈C are the parameters of the instance in the sense of Definition 1.1.

As is standard for maximization and minimization constraint satisfaction prob-

lems, we do not require that a feasible solution s ∈ S satisfy all of the constraints.

In other words, we assume that the constraints are “soft”; later we will consider

problems with “hard” and “soft” constraints (see Theorem 1.12).

Definition 1.8 An optimization problem is a family F of instances. We require

that all instances in F have the same type of the objective (either all of them have a

maximization or all have a minimization objective). We assume that if an instance

(S, C, w) is in F , then so is (S, C, w′) for any choice of positive weights w.

Let us see why this definition captures Max Cut and Min Uncut. For a given

instance G = (V,E,w) of Max Cut or Min Uncut, S is the set of all the cuts in G.

For every edge e ∈ E, there is a constraint ce; ce((S, S̄)) = 1 if e is cut by (S, S̄).

The objective for Max Cut is to maximize
∑
c∈C wcc(S, S̄). The objective for Min

Uncut is to minimize
∑
c∈C wc(1− c(S, S̄)).

Consider two other examples.

Example 1.9 In Minimum Multiway Cut, we are given a graph G = (V,E,we)

and a set of terminals t1, . . . , tk. The goal is to partition G into k clusters P1, . . . , Pk
such that ti ∈ Pi for i ∈ {1, . . . , k} so as to minimize the total weight of the cut

edges. For this problem, S is the set of all partitions P1, . . . , Pk such that ti ∈ Pi
for every i. For every edge e ∈ E, there is a constraint ce; ce((P1, . . . , Pk)) = 1 if e

is not cut by (P1, . . . , Pk). The objective is to minimize
∑
c∈C wc(1−c(P1, . . . , Pk)).

Example 1.10 In Maximum Independent Set, we are given a graphG = (V,E,wv),

where wv are positive vertex weights. The goal is to find an independent set3 I that

3 Recall that a set I ⊂ V is an independent set if no edge in e ∈ E has both its endpoints in I. A set
C ⊂ V is a vertex cover if every edge e ∈ E has at least one endpoint in C. Note that I is an
independent set if and only if V \ I is a set cover.
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maximizes w(I). For this problem, S is the set of all independents sets I in G. For

every vertex v ∈ V , there is a constraint cv; cv(I) = 1 if v ∈ I. The objective is

to maximize
∑
c∈C wcc(I). The problem complementary to Maximum Independent

Set is Minimum Vertex Cover. In Minimum Vertex Cover, the objective is to find

a vertex cover C ⊂ V that minimizes w(C); equivalently, the objective is to find an

independent set I that minimizes
∑
c∈C wc(1− c(I)).

Basic Properties of Certified Algorithms. Now, we discuss basic properties

of certified algorithms. First, we show that certified algorithms provide an approx-

imate solution for worst case instances and solve perturbation-resilient and weakly

perturbation-resilient instances.

Theorem 1.11 Consider a γ-certified algorithm A.

• A finds a γ-approximate solution regardless of what the input instance is. Further,

it finds a γ-approximation for both the maximization and minimization objectives.

• If the instance is γ-perturbation-resilient, A finds the optimal solution. If it is

(γ,N)-weakly stable, A finds a solution in N .

Proof Consider an instance I. Denote its optimal solution by s∗. Denote the in-

stance and solution found by A by I ′ and s′. For each constraint c ∈ C, let wc and

w′c be its weights in I and I ′, respectively.

I. First, we prove that the algorithm always gives a γ-approximation for both ob-

jectives. Consider the maximization objective. The value of s′ (w.r.t. weights wc)

equals∑
c∈C

wcc(s
′) ≥

∑
c∈C

w′c
γ
c(s′) =

1

γ

∑
c∈C

w′cc(s
′)

(?)

≥ 1

γ

∑
c∈C

w′cc(s
∗) ≥ 1

γ

∑
c∈C

wcc(s
∗),

where (?) holds since s′ is an optimal solution for I ′. We conclude that s′ is a

γ-approximate solution for the maximization objective. Similarly, we upper bound

the approximation factor for the minimization objective.∑
c∈C

wc(1− c(s′)) ≤
∑
c∈C

w′c(1− c(s′)) ≤
∑
c∈C

w′c(1− c(s∗)) ≤ γ
∑
c

wc(1− c(s∗)).

II. Now, assume that I is γ-perturbation-resilient. By the definition of perturbation

resilience, I and I ′ have the same optimal solution. Thus, s∗ is an optimal solution

not only for I ′ but also for I. Finally, assume that I is (γ,N)-weakly perturbation-

resilient. Since I is (γ,N) weakly perturbation-resilient and I ′ is a γ-perturbation

of I, the optimal solution s′ for I ′ must lie in N .

We note that traditional approximation results for maximization and minimiza-

tion objectives are often very different. For example, the algorithm for Max Cut

by Goemans and Williamson (1995) gives an αGW ≈ 0.878 approximation, while

the best known approximation algorithm for Min Uncut gives only an O(
√

log n)
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approximation (Agarwal et al., 2005). Similarly, Minimum Vertex Cover admits a

2-approximation algorithm, while its complement, Maximum Independent Set, does

not even have an n1−δ approximation if P 6= NP(for every δ > 0).

Consider an instance of an optimization problem. We may choose a subset of

constraints H ⊂ C and require that all of them be satisfied. We call them hard

constraints and the obtained instance an instance with hard constraints. Formally,

given an instance (S, C, w) and a subset of constraints H, we define the correspon-

dent instance (S ′, C′, w) with hard constraints as follows: S ′ = {a ∈ S : c(s) =

1 for every c ∈ H}; C′ = C \H; w′(c) = w(c) for c ∈ C′.

Theorem 1.12 (Makarychev and Makarychev, 2019) Assume that there is a

pseudo-polynomial-time γ-certified algorithm for a problem P , where γ = γn is at

most polynomial in n. Then there is also a pseudo-polynomial-time γ-certified al-

gorithm for a variant P ′ of P with hard constraints. Accordingly, the maximization

and minimization variants of P ′ admit γ-approximation algorithms.

We leave the proof as an exercise (see Exercise 1.3).

Remark Constraint satisfaction problems (CSP) with hard constraints are often

much harder for approximation algorithms than those without hard constraints.

More precisely, algorithms for minimization CSPs without hard constraints typi-

cally can also solve instances with hard constraints. However, algorithms for max-

imization CSPs often cannot solve instances with hard constraints. For example,

the algorithm for Max 2-SAT by Lewin et al. (2002) gives a 0.9401 approximation.

However, there is no even an n1−δ approximation algorithm for Max 2-SAT with

hard constraints. The latter is also true for Max 2-Horn SAT (which is a variant of

Max 2-SAT in which all the constraints are Horn clauses).

1.3 Designing Certified Algorithms

In this section, we will describe a general framework for designing certified algo-

rithms, robust algorithms for perturbation-resilient instances, and algorithms for

weakly perturbation-resilient instances, as well as proving that LP or SDP relax-

ations for perturbation-resilient instances are integral (Makarychev et al., 2014;

Makarychev and Makarychev, 2019). To use this framework, one needs to either

develop a procedure for solving a certain combinatorial task (see Task 1.13 and

Lemma 1.14 below) or design a rounding scheme (procedure) that satisfies so-called

approximation and co-approximation properties (see Theorems 1.17 and 1.19 be-

low).

General Framework. Consider an optimization problem. We design a certified

algorithm that (1) starts with an arbitrary solution and (2) then iteratively improves

it. This approach is somewhat similar to local search, except that the improvements
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are not necessarily local. We show that it suffices to have a procedure for the

following task.

Task 1.13 Assume that we are given an instance I(S, C, w), a partition of its

constraints C = C1 ∪ C2, and a parameter γ ≥ 1. The task is either

• Option 1: to find s ∈ S such that γ
∑
c∈C1

wcc(s) >
∑
c∈C2

wc(1− c(s)), or

• Option 2: to report that for every s ∈ S:
∑
c∈C1

wcc(s) ≤
∑
c∈C2

wc(1− c(s)).

(Note that the above options are not mutually exclusive.)

When we use this procedure, C1 and C2 will be the sets of the constraints that

are currently unsatisfied and satisfied, respectively. To give some intuition what

Options 1 and 2 say, imagine that γ = 1. Then Option 1 is to find a solution s such

that the weight of the currently unsatisfied constraints satisfied by s is greater than

the weight of the currently satisfied constraints unsatisfied by s. In other words,

Option 1 is to find a solution s better than the current solution. Option 2 is to

report that there is no solution better than s.

Lemma 1.14 Assume that (1) there is a polynomial-time algorithm for Task 1.13

above and (2) there is a polynomial-time algorithm that finds some solution s ∈ S.

Then there exists a pseudo-polynomial-time certified algorithm for the problem.

Before we prove Lemma 1.14, we show how to get a certified algorithm for Max

Cut and Min Uncut.

Theorem 1.15 There exists a pseudo-polynomial-time γ-certified algorithm for

Max Cut and Min Uncut, where γ = O(
√

log n log log n) is the approximation factor

of the algorithm for Sparsest Cut with non-uniform demands by Arora et al. (2008).

Proof To prove the theorem, we show how to solve Task 1.13 in polynomial time.

Recall that in our formulation of Max Cut, ce(S, S̄) = 1 if edge e is cut. Let

E1 = {e ∈ E : ce ∈ C1} and E2 = {e ∈ E : ce ∈ C2}; denote the total weight

of the edges in Ei cut by (S, S̄) by w(Ei(S, S̄)). Let φ(S) = w(E2(S,S̄))
w(E1(S,S̄))

. Then our

goal is to either find a cut (S, S̄) such that φ(S) < γ or report that φ(S) ≥ 1 for

every (S, S̄). Now the problem of minimizing φ(S) over all cuts (S, S̄) is the same

as finding the sparsest cut with non-uniform demands in graph (V,E2) with edge

capacities w, demand pairs E1, and demand weights w. We run the approximation

algorithm for Sparsest Cut and get a cut (S, S̄) that approximately – within a factor

of γ – minimizes φ(S). If φ(S) < γ, we report cut (S, S̄); otherwise, we report that

φ(S′) ≥ 1 for every cut (S′, S̄′).

Our certified algorithm gives γn = O(
√

log n log log n) approximation for Max

Cut and Min Uncut. Let us compare this result with known approximation results

for Max Cut and Min Uncut. For Max Cut, we can obtain a much better approxi-

mation factor of αGW ≈ 0.878 (Goemans and Williamson, 1995). However, for Min
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Uncut, the best known approximation factor is O(
√

log n) (Agarwal et al., 2005),

which is comparable to γn. Note that there is also a γn-certified algorithm with

an approximation factor of αGW . The algorithm first finds an αGW approximation

for Max Cut, and then iteratively improves it as described in Theorem 1.15. Can

the bound on γn be improved? It turns out that the optimal value of γn is essen-

tially equal to the best approximation factor αn for Sparsest Cut with non-uniform

demands (see Makarychev et al. (2014) for details).

Proof of Lemma 1.14 As stated in the introduction, we assume that all weights wc
are integers between 1 and W . We first find a feasible solution s and then iteratively

improve it.

Improvement Procedure. At each iteration, we let C1 = {c ∈ C : c(s) = 0} and C2 =

{c ∈ C : c(s) = 1} be the sets of unsatisfied and satisfied constraints, respectively.

Define weights w′ as follows: w′c = wc if c ∈ C1 and w′c = γwc if c ∈ C2. We

run the procedure for Task 1.13 on instance I ′ = (S, C, w′). Consider two cases.

Assume first that the procedure returns a solution s′ such that γ
∑
c∈C1

w′cc(s
′) >∑

c∈C2
w′c(1− c(s′)) (Option 1). We get that

∑
c∈C1

wcc(s
′) >

∑
c∈C2

wc(1− c(s′))
and thus valI(s′) =

∑
c∈C1∪C2

wcc(s
′) >

∑
c∈C2

wc = valI(s). Therefore, solution

s′ improves s. We use this s′ in the next iteration of the algorithm.

Assume now that the procedure reports that for every solution s′:
∑
c∈C1

w′cc(s
′) ≤∑

c∈C2
w′c(1 − c(s′)) (Option 2) or, equivalently, valI′(s

′) =
∑
c∈C1∪C2

w′cc(s
′) ≤∑

c∈C2
w′c = valI′(s) We return instance I ′ and solution s.

When the algorithm terminates, it outputs an instance I ′, which is a γ-perturbation

of I, and an optimal solution s for it. Thus, the algorithm is indeed a γ-certified

algorithm. It remains to bound its running time. At each iteration, the value of the

solution increases by at least 1 (recall that we have assumed that all weights are in-

tegers). Therefore, the algorithm terminates in at most
∑
c∈C wc ≤ |C|W iterations.

Since each iteration requires polynomial time, the running time is polynomial in n

and W .

Using Convex Relaxations. We now describe how to design certified algorithms

using linear or semidefinite programming relaxations (or, in fact, any polynomially-

tractable convex relaxations).

While our ultimate goal is to design a certified approximation algorithm, imagine

for a moment that we simply want to design a regular approximation algorithm. One

standard approach is to write a relaxation for the problem and design a rounding

scheme for it. For example, to solve Maximum Independent Set (see Example 1.10),

we can use the following linear programming (LP) relaxation:

maximize
∑
u∈V

wuxu (1.1)

subject to: xu + xv ≤ 1 for (u, v) ∈ E and 0 ≤ xu ≤ 1 for u ∈ V
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Our discussion below applies to any combinatorial optimization problem; but it

might be instructive to keep relaxation (1.1) in mind. We refer to problem solutions

s ∈ S as combinatorial solutions and relaxation solutions x as fractional solutions;

we say that x is integral if it corresponds to a combinatorial solution s ∈ S. We

assume that in the relaxation we have a variable xc for each constraint c so that

xc = c(s) for every integral solution x and corresponding combinatorial solution s.4

Suppose first that we design an approximation algorithm for a maximization

problem. Then the relaxation is to maximize fval(x) =
∑
c∈C wcxc subject to certain

problem specific constraints. We solve the relaxation, find a fractional solution x,

and round it to a combinatorial solution R(x) using a randomized rounding scheme

R. Assume that the rounding scheme satisfies the following approximation condition

for some α ≥ 1:

• Approximation Condition. The probability5 that each constraint c ∈ C is

satisfied by R(x) is at least xc/α.

Then the expected weight of the constraints satisfied by R(x) is at least fval
α . Thus,

we get a randomized α-approximation algorithm.

Suppose now that we design an algorithm for a minimization problem. Then the

relaxation objective is to minimize
∑
c∈C wc(1−xc). Now, we use a rounding scheme

that satisfies the following co-approximation condition for some β ≥ 1:

• Co-approximation Condition. The probability that each constraint c ∈ C is

unsatisfied by R(x) is at most β(1− xc).

The expected weight of the unsatisfied constraints is at most β
∑
c∈C wc(1−xc). We

get a β-approximation algorithm. We see that approximation and co-approximation

conditions play a central role in the design of traditional approximation algorithms.

It turns out that they can also be used to design certified algorithms.

Definition 1.16 We say that a rounding scheme R is an (α, β)-rounding if it

simultaneously satisfies the approximation and co-approximation conditions with

parameters α and β.

Theorem 1.17 Assume that there exists an (α, β)-rounding scheme R.

I. Assume that R is computable in randomized polynomial time. Let W = maxc∈C wc

minc∈C wc

be the ratio between the maximum and the minimum weights. Then there exists a

randomized6 certified γ-approximation algorithm for the problem where γ = αβ+ε;

its running time is polynomial in the instance size, W , and 1/ε.

II. Now we make a stronger assumption. Assume that the support of R is of polyno-

mial size and can be found in polynomial time and that all the weights are integers

4 Note that if we do not have variables xc in the relaxation, we can usually add them, since
expressions for them appear in the relaxation objective anyway.

5 The probability is over the random choices made by R.
6 More precisely, the algorithm is a Las Vegas algorithm and as such, always outputs a correct

solution.
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between 1 and W . Then there exists a certified γ-approximation algorithm where

γ = αβ; its running time is polynomial in the instance size and W .

In both cases, the solution s∗ returned by the algorithm is an optimal solution for

the convex relaxation for I ′.

Proof To simplify the exposition, we will only prove part II. The proof of part I is

very similar but more technical. We refer the reader to Makarychev and Makarychev

(2019) for details. Note that the condition that the support of R can be found in

polynomial time is not very restrictive; most rounding schemes satisfy it.

We use Lemma 1.14 to design the algorithm. Namely, we show how to solve

Task 1.13 in polynomial time. First, we solve the convex relaxation for the problem

and obtain a fractional solution x. If
∑
c∈C1

wcxc ≤
∑
c∈C2

wc(1 − xc), then for

every s ∑
c∈C1

wcc(s) +
∑
c∈C2

wcc(s) ≤
∑
c∈C1

wcxc +
∑
c∈C2

wcxc ≤
∑
c∈C2

wc. (1.2)

So we report that
∑
c∈C1

wcc(s) ≤
∑
c∈C2

wc(1 − c(s)) for every s (Option 2). In

this case, the certified algorithm from Lemma 1.14 returns a solution s∗ of value

w(C2) =
∑
c∈C2

wc. Equation (1.2) shows that the value of every fractional solution

(let alone integral) is at most valI(s∗) = w(C2).

Assume now that
∑
c∈C1

wcxc >
∑
c∈C2

wc(1 − xc). We apply rounding scheme

R and obtain a solution R(x). From the approximation and co-approximation con-

ditions, we get

E

[
γ
∑
c∈C1

wcc(R(x))−
∑
c∈C2

wc(1− c(R(x)))

]
≥ γ

α

∑
c∈C1

wcxc − β
∑
c∈C2

wc(1− xc)

since γ = αβ
= β

(∑
c∈C1

wcxc −
∑
c∈C2

wc(1− xc)
)
> 0.

Thus for some solution s in the support of R(x), we have γ
∑
c∈C1

wcc(s) >∑
c∈C2

wc(1− c(s)). We find and return such a solution s.

As an immediate corollary, we get an algorithm for solving γ-perturbation-resilient

and γ-weakly perturbation-resilient instances of combinatorial optimization prob-

lems. As we will describe below (see Theorem 1.19), it is actually sufficient to make

slightly weaker assumptions to get algorithms for perturbation-resilient and weakly

perturbation-resilient instances. Before we state Theorem 1.19, let us discuss how

we can relax the conditions in Theorem 1.17. First, it is sufficient to design a round-

ing scheme that only rounds an optimal fractional solution. For some problems, this

may be an easier task as the optimal fractional solution may satisfy certain addi-

tional properties (e.g., be half-integral). Also, it is sufficient to design a rounding

scheme that only rounds fractional solutions that are close to integral solutions.

Definition 1.18 Let us say that a fractional solution x is δ-close to integral
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if x = (1 − δ)xint + δxfrac for some integer solution xint and fractional solution

xfrac (for LP relaxations this condition implies that each LP variable xc is in

[0, δ]∪ [1−δ, 1]). Rounding scheme R is a δ-local (α, β)-rounding if it is defined and

satisfies the approximation and co-approximation conditions for fractional solutions

x that are δ-close to an integral solution; the rounding scheme may but does not

have to be defined or satisfy the approximation and co-approximation conditions

for fractional solutions that are not δ-close to integral solutions.

Remark It is sufficient to have a δ-local rounding scheme (with δ ≥ 1/ poly(n))

in Theorem 1.17. Designing such a scheme may be a considerably easer task than

designing a rounding scheme for arbitrary solutions. If we have such a scheme, we

proceed as follows. Denote the fractional solution corresponding to the combina-

torial solution s by x(s). We find an optimal fractional solution x∗ and then let

x = (1 − δ)x(s) + δx∗. Note that x is δ-close to integral. It is easy to see that if

x∗ is better than x(s), then so is x. Then we use x in the proof of Theorem 1.17

(see Makarychev and Makarychev (2019) for details).

Now, we describe a condition under which polynomial-time algorithms for solving

γ-perturbation-resilient and (γ + ε,N)-weakly stable instances of combinatorial

optimization problems are guaranteed to exist. Note that we do not make any

assumptions about the weights wc.

Theorem 1.19 Makarychev and Makarychev (2016); Angelidakis et al. (2017)

Assume that there is an (α, β)-rounding scheme or a δ-local (α, β)-rounding scheme

R. Let γ = αβ. Then we have:

• The convex relaxation is integral for γ-perturbation-resilient instances. R does

not have to be computable in polynomial-time.

• There exists a robust polynomial-time algorithm for solving γ-perturbation-resilient

instances. The running time depends only on the size of the input. Again, R does

not have to be computable in polynomial-time (we use R only in the analysis of

the algorithm).

• Assume that the support of R(x) is of polynomial size and can be found in poly-

nomial time and that ε, δ ≥ 1/ poly(n). Then there exists a polynomial-time

algorithm for solving (γ + ε)-weakly perturbation-resilient instances.

1.4 Examples of Certified Algorithms

Maximum Independent Set. We now prove that there exist a (k − 1)-certified

algorithm for Maximum Independent Set (MIS) in k-colorable graphs and a robust

algorithm for (k − 1)-perturbation-resilient instances of the problem (see Exam-

ple 1.10 for the definition of MIS). To get the algorithms, we follow the approach
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we discussed in the previous section and design an (α, β)-rounding scheme with

αβ = k − 1.

Consider a k-colorable graph G = (V,E,w). Solve relaxation (1.1) for MIS. Let

x be an optimal vertex solution. It is known that x is half-integral (Nemhauser

and Trotter, 1975). Define Vt = {u ∈ V : xu = t} for t ∈ {0, 1/2, 1}. Consider the

following rounding scheme due to Hochbaum (1983) (the rounding scheme needs to

know a proper k-coloring (C1, . . . , Ck) of V ).

Rounding scheme R
choose i ∈ {1, . . . , k} uniformly at random

return S = V1 ∪ (V1/2 ∩ Ci).

Theorem 1.20 (Angelidakis et al. (2019)) R is an (α, β)-rounding for MIS with

α = k/2 and β = 2(k − 1)/k. Given the coloring, the rounding algorithm outputs

a distribution of independent sets in polynomial time; the distribution support is of

polynomial size.

Proof It is easy to see that the rounding scheme always outputs an indepen-

dent set S. If u ∈ V1, then u ∈ S (always); if u ∈ V0, then u /∈ S (always) –

in these two cases there is no randomness involved, and the approximation and

co-approximation conditions trivially hold. Now if u ∈ V1/2, then u ∈ S with prob-

ability 1/k (this happens when i is the color of u). The approximation condition

holds since Pr (u ∈ S) = 1/k = xu/α; the co-approximation condition holds since

Pr (u /∈ S) = k−1
k = β(1− xu).

We conclude that there exists a polynomial-time (k−1)-certified algorithm for MIS

and a robust polynomial-time algorithm for (k−1)-perturbation-resilient instances.

Note that the certified algorithm needs to know the k-coloring of the graph, but

the robust algorithm does not; the algorithm simply solves the LP relaxation and

outputs the solution, which is guaranteed to be integral (see Theorem 1.19).

Minimum Multiway Cut. Now, we design certified and robust algorithms for

Minimum Multiway Cut (see Example 1.9 for the definition of the problem). To

simplify the exposition, we focus on the case k = 3. Consider the LP relaxation

by Călinescu et al. (1998) for the problem. For every vertex u, there is a vector

ū = (u1, u2, u3) in the LP. In the integral solution corresponding to a partition

(P1, P2, P3): ui = 1, if u ∈ Pi; and ui = 0, otherwise. That is, ū = ei (the i-th

standard basis vector) if u ∈ Pi. The objective is to minimize 1
2

∑
e=(u,v)∈E w(e)‖ū−

v̄‖1 subject to (i) t̄j = ej for all j ∈ {1, 2, 3}, (ii) u1 + u2 + u3 = 1 for all u ∈ V ,

and (iii) uj ≥ 0 for all u ∈ V , j ∈ {1, 2, 3}. It is easy to see that by adding auxiliary

variables, we can write the objective as a linear function. Let d(ū, v̄) = 1
2‖ū− v̄‖1.

The relaxation requires that each vector ū lie in the triangle ∆ = conv(e1, e2, e3)

with vertices e1, e2, e3. Our goal is to design a δ-local (α, β)-rounding for Minimum

Multiway Cut with αβ = 4/3 and δ = 1/30. As is standard for approximation
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Figure 1.1 Each vector ū lies in the triangle with vertices e1, e2, e3. The left figure shows
the 2-vertex cut of radius 3/10 with pivot i = 3; the right figure shows the ball cut of
radius 4/5 with pivot i = 3.

algorithms for Minimum Multiway Cut, we will consider a rounding scheme that

(randomly) cuts triangle ∆ into 3 pieces P̂1, P̂2, P̂3 so that ei ∈ P̂i and then lets

Pi = {u : ū ∈ P̂i} for each i. It is immediate that the rounding gives a feasible

solution, since t̄i = ei ∈ P̂i. We will describe how to cut triangle ∆ so that the

obtained rounding scheme is a δ-local (α, β)-rounding.

We are going to define two families of cuts, two-vertex cuts and ball cuts (in-

troduced by Karger et al. (2004)). Given a vertex ei and radius r ∈ (0, 1), let

Br(ei) = {x̄ : d(x̄, ei) ≤ r} be the ball of radius r around ei w.r.t. distance d. Geo-

metrically, Br(ei) is the triangle with vertices ei, (1−r)ei+rej1 , and (1−r)ei+rej2 ,

where ej1 , ej2 are the basis vectors other than ei. The two-vertex cut of radius

r ∈ (0, 1) with pivot i ∈ {1, 2, 3}, shown on Figure 1.1, is defined by: P̂j = Br(ej)

for j ∈ {j1, j2} and P̂i = ∆\ (P̂j1 ∪ P̂j2). The ball cut of radius r ∈ (0, 1) with pivot

i ∈ {1, 2, 3}, shown on Figure 1.1, is defined by: P̂i = Br(ei), every point x̄ /∈ P̂i
belongs to either P̂j1 or P̂j2 depending on whether it lies closer to ej1 or ej2 w.r.t.

distance d. Now we are ready to present the rounding scheme.

Rounding scheme R
choose r ∈ (0, 2/5) uniformly at random

choose pivot i ∈ {1, 2, 3} uniformly at random

with probability 1/3, let (P̂1, P̂2, P̂3) be the two-corner cut of radius r with pivot i

otherwise, let (P̂1, P̂2, P̂3) be the ball cut of radius 1− r with pivot i

let Pj = {u ∈ V : ū ∈ P̂j} for j ∈ {1, 2, 3}
return partition P = (P1, P2, P3)

Theorem 1.21 (Angelidakis et al. (2017)) R is a δ-local (α, β)-rounding for

Minimum Multiway Cut with α = 10/9 and β = 6/5.

We leave the proof as an exercise (see Exercise 1.4). We conclude that there exists

a polynomial-time 4/3-certified algorithm for Multiway Cut with 3 terminals and

a robust polynomial-time algorithm for 4/3-perturbation-resilient instances. These

results generalize to (2−2/k)-perturbation-resilient instances of Multiway Cut with

k terminals; see Angelidakis et al. (2017).
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1.5 Perturbation-resilient Clustering Problems

In this section, we consider k-clustering problems with the `p objective. This is a

broad class of problems which includes k-means, k-medians, and k-center.

Definition 1.22 (k-clustering with the `p objective) An instance of k-clustering

with the `p objective (p ≥ 1) consists of a metric space (X, d) and a natural number

k. The goal is to partition X into k disjoint clusters C1, . . . , Ck and assign a center

ci to each cluster Ci so as to minimize the following objective function:

k∑
i=1

∑
u∈Ci

dp(u, ci).

For p =∞, the objective function is maxi∈{1,...,k}
u∈Ci

|d(u, ci)|.

Note that k-medians is the k-clustering problem with the `1 objective; k-means is

k-clustering with the `2 objective; and k-center is k-clustering with the `∞ objective.

Consider an instance (X, d) of k-clustering with the `p objective. In an optimal

solution to this problem, each point is assigned to the closest center c1, . . . , ck.

That is, if u ∈ Ci, then d(u, ci) ≤ d(u, cj) for all j 6= i. This is an important

property common to all so-called clustering problems with a center based objective.

Note that the optimal clustering C1, . . . , Ck is determined by the centers c1, . . . , ck.

Specifically, {C1, . . . , Ck} is the Voronoi partition for c1, . . . , ck; that is, Ci is the

set of points in X that are closer to ci than to any other cj .

Now let us assume that the distance from every point in X to its own center is less

than the distances to other centers by a certain margin. Specifically, suppose that

there exists an optimal clustering C1, . . . , Ck with centers c1, . . . , ck that satisfies the

following condition called λ-center proximity: for every u ∈ Ci, not only d(u, ci) ≤
d(u, cj) but also λd(u, ci) < d(u, cj).

Definition 1.23 (λ-center proximity) Let (X, d) be an instance of the k-clustering

problem with the `p objective. Consider an optimal solution C1, . . . , Ck with centers

c1, . . . , ck. We say that c1, . . . , ck satisfies the λ-center proximity condition (where

λ ≥ 1) if for every u ∈ Ci and j 6= i, we have λd(u, ci) < d(u, cj).

We say that (X, d) has an optimal solution satisfying the λ-center proximity con-

dition if there exists an optimal solution C1, . . . , Ck with centers c1, . . . , ck satisfying

the λ-center proximity condition.

The optimal set of centers is not necessarily unique for a given clustering C1, . . . , Ck.

Some optimal sets of centers for C1, . . . , Ck may satisfy the λ-center proximity con-

dition, while others do not.

In Section 1.6, we show that there exists an algorithm – a variant of the classic

single-linkage clustering – that finds the optimal clustering if this clustering satisfies

the 2-center proximity condition for some set of optimal centers. We note that it is
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NP-hard to find the optimal clustering in instances satisfying λ-center proximity

condition with λ < 2 (Ben-David and Reyzin, 2014). Now we restate Definitions 1.1

and 1.2 taking into account specifics of clustering problems.

Definition 1.24 (Perturbations and Metric Perturbations) Consider a metric

space (X, d). We say that a symmetric function d′ : X×X → R+ is a γ-perturbation

of d if for all u, v ∈ X we have 1
γ d(u, v) ≤ d′(u, v) ≤ d(u, v). We say that d′ is a

metric γ-perturbation of d if d′ is a γ-perturbation of d and a metric itself i.e., d′

satisfies the triangle inequality.

Note that a (non-metric) γ-perturbation d′ may violate the triangle inequality

and thus is not necessarily a metric.

Definition 1.25 (Perturbation Resilience) Consider an instance (X, d) of the k-

clustering problem with the `p objective. Let C1, . . . , Ck be the optimal clustering.

Then, (X, d) is γ-perturbation-resilient if for every γ-perturbation of d, the unique

optimal clustering of (X, d′) is C1, . . . , Ck. Similarly, (X, d) is metric γ-perturbation-

resilient if for every metric γ-perturbation of d, the unique optimal clustering of

(X, d′) is C1, . . . , Ck.

The definition of metric γ-perturbation resilience is less restrictive than that of γ-

perturbation resilience: if an instance is γ-perturbation resilient, it is also metric γ-

perturbation-resilient but not the other way around. In particular, every algorithm

that solves metric γ-perturbation-resilient instances also solves γ-perturbation re-

silient instances.

Note that in the definition of γ-perturbation resilience we do not require that

the optimal centers of the clusters C1, . . . , Ck are the same for distance functions

d and d′. If we added this requirement we would get a much stronger definition of

γ-perturbation resilience or metric γ-perturbation resilience (see Exercise 1.7).

Perturbation resilience is a stronger notion than center proximity: Every γ-

perturbation-resilient instance satisfies the γ-center proximity condition. We prove

this implication in Theorem 1.27. The converse statement does not hold and, thus,

these notions are not equivalent (see Exercise 1.10).

In this chapter, we present two results on γ-perturbation resilience. First, we

give a dynamic programming algorithm that finds an exact solution to any 2-center

proximity instance of the k-clustering problem (see Theorem 1.29). Since every

metric 2-perturbation-resilient instance satisfies the 2-center proximity condition

(see Theorem 1.27), our algorithm also works for metric 2-perturbation-resilient

instances. Then, we discuss a connection between perturbation resilience and lo-

cal search and show that the standard local search algorithm for k-medians is a

(3 + ε)-certified algorithm. Thus, this algorithm returns the optimal clustering for

γ-perturbation-resilient instances and gives a (3 + ε)-approximation for arbitrary

instances.
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Open Question 1.26 Suppose we replace the requirement that d′ be a γ-perturbation

of d with the requirement that d′ be a metric γ-perturbation of d in the definition

of a γ-certified algorithm (see Definition 1.4). Can we design a (3 + ε)-certified

algorithm according to the new definition?

1.5.1 Metric Perturbation Resilience Implies Center Proximity

We show that metric perturbation resilience implies center proximity.

Theorem 1.27 (Metric Perturbation Resilience Implies Center Proximity, Awasthi

et al. (2012) and Angelidakis et al. (2017)) Let (X, d) be a metric γ-perturbation-

resilient instance of the k-clustering problem with the `p objective (p ≥ 1). Con-

sider the unique optimal solution C = (C1, . . . , Ck) and an optimal set of centers

{c1, . . . , ck} (which is not necessarily unique). Then, centers c1, . . . , ck satisfy the

γ-center proximity property.

Proof Consider an arbitrary point p in X. Let ci be the closest center to p in

{c1, . . . , ck} and cj be another center. We need to show that d(p, cj) > γd(p, ci).

Suppose that d(p, cj) ≤ γd(p, ci). Let r∗ = d(p, ci). Define a new metric d′. Consider

the complete graph G = (X,E) on the metric space X. Let the length len(u, v) of

every edge (u, v) be d(u, v). Then, d(u, v) is the shortest path metric on G. We now

shorten edge (p, cj) while preserving the lengths of all other edges. Specifically, we

let len′(p, cj) = r∗ and len′(u, v) = d(u, v) for (u, v) 6= (p, cj). Let d′ be the shortest

path metric on graph G with edge lengths len′(u, v). Observe that d′(u, v) = d(u, v)

unless there is a shortcut that goes along the edge (p, cj). That is, the distance

d′(u, v) between any two points u and v equals the length of the shortest of the

following three paths: (1) u → v, (2) u → p → cj → v, and (3) u → cj → p → v.

Thus,

d′(u, v) = min
(
d(u, v), d(u, p) + r∗ + d(cj , v), d(u, cj) + r∗ + d(p, v)).

Note that len(u, v)/γ ≤ len′(u, v) ≤ len(u, v). Hence, d(u, v)/γ ≤ d′(u, v) ≤
d(u, v) and thus d′(u, v) is a γ-perturbation. Thus, the optimal clustering of X for

d′ is the same as for d. Namely, it is C1, . . . , Ck. However, generally speaking, the

optimal centers for clusters C1, . . . , Ck may differ for metrics d and d′ (for some γ-

perturbations they do!). Nevertheless, we claim that ci and cj are optimal centers for

clusters Ci and Cj with respect to metric d′. This leads to a contradiction with our

assumption that d(p, cj) ≤ γd(p, ci), because p must be closer to its own center ci
than to cj and, consequently, we must have d(p, ci) = d′(p, ci) < d′(p, cj) = d(p, ci).

Therefore, to finish the proof we need to show that ci and cj are optimal centers

for clusters Ci and Cj with respect to the metric d′. To this end, we prove that the

metric d′ equals d within clusters Ci and Cj and, hence any optimal center for Ci
w.r.t. d is also an optimal center w.r.t d′ and vice versa.
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Lemma 1.28 For all u, v ∈ Ci, we have d(u, v) = d′(u, v). Also, for all u, v ∈ Cj,
we have d(u, v) = d′(u, v).

Proof To prove that d′(u, v) = d(u, v), we need to show that d(u, v) < min(d(u, p)+

r∗+d(cj , v), d(u, cj)+r∗+d(p, v)). Assume without loss of generality that d(u, p)+

r∗ + d(cj , v) ≤ d(u, cj) + r∗ + d(p, v). Then,

d(u, p) + r∗ + d(cj , v) =
(
d(u, p) + d(p, ci)︸ ︷︷ ︸

≥d(u,ci)

)
+ d(cj , v) ≥ d(u, ci) + d(cj , v).

1. If u, v ∈ Ci, then the closest center to v is ci and, particularly, d(cj , v) >

d(ci, v). Thus, d(u, p) + r∗ + d(cj , v) > d(u, ci) + d(ci, v) ≥ d(u, v).

2. If u, v ∈ Cj , then the closest center to u is cj and, particularly, d(u, ci) >

d(u, cj). Thus, d(u, p) + r∗ + d(cj , v) > d(u, cj) + d(cj , v) ≥ d(u, v).

1.6 Algorithm for 2-Perturbation-resilient Instances

In this section, we prove that a variant of the single-linkage clustering algorithm

finds the exact optimal solution for instances of clustering problems with the `p
objective satisfying the 2-center proximity condition (or, more formally: instances

that have an optimal solution C1, . . . , Ck with centers c1, . . . , ck that satisfy the

2-center proximity condition).

Single-linkage clustering is a classic algorithm that works as follows. Given a

metric space (X, d) on n points, it creates n clusters each containing a single point

from X. Then, at every step it picks the two closest clusters and merges them.

The distance between clusters is usually defined as the distance between the two

closest points in the clusters i.e., d(C ′, C ′′) = minu∈C′

v∈C′′
d(u, v). Thus, at every step

the number of clusters decreases by 1. The algorithm stops when only k clusters

remain.

Single-linkage clustering is a fairly simple and relatively fast algorithm. However,

it fails to find an optimal clustering when the clusters are not isolated from each

other. It is also very fragile to noise because adding just a few extra points to the

data set X can drastically alter the output. We cannot use single-linkage clustering

as is for perturbation-resilient instances, since this algorithm may output a very

bad clustering even if the instance is γ-perturbation-resilient with arbitrarily large

γ (see Exercise 1.11) and for this reason will use a dynamic programming-based

postprocessing step.

Theorem 1.29 (Angelidakis et al. (2017)) There exists a polynomial-time algo-

rithm that given an instance (X, d) of k-clustering with the `p objective outputs an

optimal solution if (X, d) has an optimal solution satisfying the 2-center proximity

condition.
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Algorithm. Consider the complete graph G on X, in which every edge (u, v) has

length d(u, v). Our algorithm first constructs the minimum spanning tree (MST) T

in G and then clusters T using dynamic programming. To construct the MST, we

can use one of many known algorithms, particularly Kruskal’s algorithm which is

essentially a variant of single-linkage clustering. We describe the dynamic program

later in this section. Now we show that if an instance has an optimal solution

satisfying the 2-center proximity condition then all clusters in that solution must

form connected components in the minimum spanning tree.

Theorem 1.30 Consider an instance (X, d) of k-clustering with the `p objective.

Let C1, . . . , Ck be an optimal clustering with centers c1, . . . , ck satisfying the 2-center

proximity condition; and let T = (X,E) be the minimum spanning tree (MST) in

the complete graph on X with edge lengths d(u, v). Then, each cluster Ci is a subtree

of T (i.e., for every two vertices u, v ∈ Ci, the unique shortest path from u to v in

T completely lies within Ci).

We will need the following lemma.

Lemma 1.31 Consider an instance (X, d) of the k-clustering problem with the `p
objective. Suppose that C1, . . . , Ck is an optimal clustering for (X, d) and c1, . . . , ck
is an optimal set of centers. If c1, . . . , ck satisfy the 2-center proximity property,

then for every two distinct clusters Ci and Cj and all points u ∈ Ci and v ∈ Cj,
we have d(u, ci) < d(u, v).

Proof Since c1, . . . , ck satisfy the 2-center proximity property, we have 2d(u, ci) <

d(u, cj) and 2d(v, cj) < d(v, ci). Thus, by the triangle inequality, 2d(u, ci) < d(u, v)+

d(v, cj) and 2d(v, cj) < d(u, v)+d(u, ci). We sum these inequalities with coefficients

2/3 and 1/3 and obtain the desired bound: d(u, ci) < d(u, v).

Proof of Theorem 1.30 Since T is a tree, it suffices to show that for every u ∈ Ci,
all points on the unique path in T from u to ci lie in Ci. Consider an arbitrary

point u ∈ Ci and denote the path from u to ci by u1, . . . , uM , where u1 = u and

uM = ci. We prove by induction on m that all um (m = 1, . . . ,M) are in Ci.

The point u1 = u is in Ci. Also, uM ∈ Ci because uM = ci is the center of Ci.

Suppose that um ∈ Ci and m < M−1, we show that um+1 ∈ Ci. By the MST cycle

property, (uM , um) is the longest edge in the cycle um → um+1 → · · · → uM → um
(since all edges in the cycle but edge (uM , um) belong to the MST). Particularly,

d(um, ci) ≡ d(um, uM ) ≥ d(um, um+1). By the induction hypothesis um ∈ Ci.

Therefore, by Lemma 1.31, um+1 also belongs to Ci (because if um+1 was not in

Ci we would have d(um, ci) < d(um, um+1)).

Dynamic Program. We now describe a dynamic program for finding the optimal

clustering in the MST. Let us choose an arbitrary vertex r in X as a root for

the MST T . Denote by Tu the subtree rooted at vertex u. We define two types of

subproblems OPT and OPTAC :
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1. Let OPT(u,m) be the optimal cost of partitioning subtree Tu into m clusters

that are subtrees of T .

2. Let OPTAC(u,m, c) be the optimal cost of partitioning subtree Tu into m clus-

ters subject to the following constraint: vertex u and all points in its cluster

must be assigned to the center c.

The cost of k-clustering X equals OPT (r, k). For simplicity, we assume that the

MST is a binary tree (the general case can be handled by transforming any tree to

a binary tree by adding “dummy” vertices). Let left(u) be the left child of u and

right(u) be the right child of u.

We write recurrence relations on OPT and OPTAC . To compute OPT(u,m) we

need to find the optimal center for u and return OPT(u,m, c). Thus,

OPT(u,m) = min
c∈X

OPTAC(u,m, c).

To find OPTAC(u,m, c), we find the optimal solutions for the left and right

subtrees and combine them. To this end, we need to guess the number of clusters

mL and mR in the left and right subtrees. We present formulas for OPTAC(u,m, c)

in the four possible cases.

1. If both children left(u) and right(u) are in the same cluster as u, then

min
mL,mR∈Z+

mL+mR=m+1

d(c, u) + OPTAC(left(u), c,mL) + OPTAC(right(u), c,mR).

2. If left(u) is in the same cluster as u, but right(u) is in a different cluster, then

min
mL,mR∈Z+

mL+mR=m

d(c, u) + OPTAC(left(u), c,mL) + OPT(right(u),mR).

3. If right(u) is in the same cluster as u, but left(u) is in a different cluster, then

min
mL,mR∈Z+

mL+mR=m

d(c, u) + OPT(left(u),mL) + OPTAC(right(u), c,mR).

4. If u, left(u), and right(u) are in different clusters, then

min
mL,mR∈Z+

mL+mR=m−1

d(c, u) + OPT(left(u),mL) + OPT(right(u),mR).

We compute the values of OPTAC(u,m, c) in the four cases above and choose the

minimum among them.

The sizes of the DP tables for OPT and OPTAC are O(n× k) and n× k× n) =

O(n2k), respectively. It takes O(n) and O(k) time to compute each entry in the

tables OPT and OPTAC , respectively. Thus, the total running time of the DP

algorithm is O(n2k2). The running time of Prim’s MST algorithm is O(n2).
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1.7 (3 + ε)-Certified Local Search Algorithm for k-medians

A common heuristic for clustering as well as for related problems such as Facility

Location is local search (see also Chapter 13). Sometimes, local search algorithms

are used on their own and sometimes to process the output of other algorithms. It

is known that local search gives a (3+ε)-approximation for k-medians and a (9+ε)-

approximation for k-means (Arya et al. (2004); Kanungo et al. (2004)), where ε > 0

is arbitrary. The running time is exponential in 1/ε. We will see that local search

is a (3 + ε)-certified algorithm k-medians.

Below, we will focus on the k-medians problem though similar results hold for

any clustering problems with the `p objective. Consider an arbitrary set of centers

c1, . . . , ck. The optimal clustering C1, . . . , Ck for this set of centers is defined by the

Voronoi partition i.e., u ∈ Ci if and only if ci is the closest center to u (ties between

centers are broken arbitrarily). Denote by cost(c1, . . . , ck) its cost.

We now describe a 1-local search algorithm. The algorithm maintains a set of

k centers c1, . . . , ck. It starts with an arbitrary set of centers c1, . . . , ck. Then, at

every step, it considers all possible swaps ci → u, where ci is a center in the current

set of centers, and u is a point outside of this set. If we can improve the solution by

swapping ci with u, we perform this swap. In other words, if for some pair (ci, u), we

have cost(c1, . . . , ci−1, u, ci+1, . . . , ck) < cost(c1, . . . , ck), then we replace the center

ci with u. The algorithm terminates when no swap ci → u can improve the solution.

We call the obtained set of centers 1-locally optimal and denote it by L. A more

powerful (alas less practical) version of the local search algorithm considers swaps

of size up to ρ instead of 1. We call this algorithm the ρ-local search algorithm. Its

running time is exponential in ρ.

Theorem 1.32 (Cohen-Addad and Schwiegelshohn (2017) and Balcan and White

(2017)) The ρ-local search algorithm for k-medians outputs the optimal solution

on (3 +O(1/ρ))-perturbation-resilient instances7.

This result follows from the following theorem.

Theorem 1.33 The ρ-local search algorithm for k-medians is (3 + O(1/ρ))-

certified.

Proof Consider an arbitrary metric space (X, d). Suppose that the local search

algorithm outputs a clustering with centers L = {l1, . . . , lk}. We show that there

exists a γ-perturbation of d – a distance function d′ : X ×X → R+ for which L is

the optimal solution (where γ = 3 +O(1/ρ)). We note that, generally speaking, d′

does not have to satisfy the triangle inequality and thus (X, d′) is not necessarily a

metric space.

We define d′ as follows: If li is the closest center to u in L, then d′(u, li) =

7 In contrast to Theorem 1.29, Theorem 1.32 requires that the instance be perturbation resilient, not
only metric perturbation resilient.
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d(u, li)/γ; otherwise, d′(u, li) = d(u, li). Consider an arbitrary set of centers S =

{s1, . . . , sk}. We need to show that the cost of the k-median clustering with centers

in L is at most the cost of the k-median clustering with centers in S with respect

to the new distance function d′ and thus L is an optimal solution for d′. Let l(u)

and s(u) be the closest centers to point u in L and S respectively with respect to

d; and let l′(u) and s′(u) be the closest centers to point u in L and S respectively

with respect to d′. Our goal is to prove that∑
u∈X

d′(u, l′(u)) ≤
∑
u∈X

d′(u, s′(u)). (1.3)

Observe that for every point u ∈ X, we have d(u, v) = d′(u, v) for all v but v =

l(u). Thus, l′(u) = l(u) and d′(u, l′(u)) = d(u, l(u))/γ. Consequently, the left hand

side of (1.3) equals
∑
u∈X d(u, l(u))/γ. Similarly, s′(u) = s(u) and d′(u, s′(u)) =

d(u, s(u)) if l(u) /∈ S. However, if l(u) ∈ S, then d′(u, s′(u)) = min
(
d(u, s(u)), d(u, l(u))/γ

)
as, in this case, the optimal center for u in S w.r.t. d′ can be l(u).

Let us split all vertices in X into two groups A = {u : l(u) ∈ S} and B = {u :

l(u) /∈ S}. Then, for u ∈ A, we have d′(u, s′(u)) = min
(
d(u, s(u)), d(u, l(u))/γ

)
;

and for u ∈ B, we have d′(u, s′(u)) = d(u, s(u)). Thus, inequality (1.3) is equivalent

to ∑
u∈X

d(u, l(u))

γ
≤
∑
u∈A

min
(
d(u, s(u)),

d(u, l(u))

γ

)
+
∑
u∈B

d(u, s(u)),

which after multiplying both parts by γ can be written as∑
u∈X

d(u, l(u)) ≤
∑
u∈A

min
(
γd(u, s(u)), d(u, l(u))

)
+
∑
u∈B

γd(u, s(u)). (1.4)

For u ∈ A, we have d(u, s(u)) ≤ d(u, l(u)) since both s(u) and l(u) are in S and

s(u) = arg minv∈S d(u, v). Thus, min
(
γd(u, s(u)), d(u, l(u))

)
≥ d(u, s(u)). Conse-

quently, inequality (1.4) follows from the following theorem.

Theorem 1.34 (Local Approximation; Cohen-Addad and Schwiegelshohn (2017))

Let L be a ρ-locally optimal set of centers with respect to a metric d and S be an

arbitrary set of k centers. Define sets A and B as above. Then,
∑
u∈X d(u, l(u)) ≤∑

u∈A d(u, s(u)) + γ
∑
u∈B d(u, s(u)), for some γ = 3 +O(1/ρ).

We refer to Cohen-Addad and Schwiegelshohn (2017) for the proof.

1.8 Bibliographical Notes

In the first paper on the subject, Bilu and Linial (2010) defined perturbation re-

silience, explained its importance, and gave an algorithm for O(n)-perturbation-
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resilient instances of Max Cut.8 Bilu et al. (2013) gave an algorithm for O(
√
n)-

perturbation-resilient instances of Max Cut. Mihalák et al. (2011) designed a greedy

algorithm for 1.8-perturbation-resilient instances of TSP. Then, Makarychev et al.

(2014) designed a general framework for solving perturbation-resilient instances of

combinatorial optimization problems (which we described in this chapter). The

framework provides a general recipe for designing algorithms for perturbation-

resilient and weakly perturbation-resilient instances, as well as proving that LP

and SDP relaxations for perturbation-resilient instances are integral. This frame-

work was used to design algorithms for several optimization problems, includ-

ing algorithms for O(
√

log n log logn)-perturbation-resilient instances of Max Cut

(Makarychev et al., 2014), (2 − 2/k)-perturbation-resilient instances of Minimum

Multiway Cut (Angelidakis et al., 2017), (1 + ε)-perturbation-resilient instances

of planar Maximum Independent Set, and (k − 1)-perturbation-resilient instances

of Maximum Independent Set in k-colorable graphs (Angelidakis et al., 2019).

Makarychev and Makarychev (2019) introduced certified algorithms and showed

how to design them using the framework we discussed above.

There are a number of negative results for perturbation-resilient instances. Most

of the negative results show that there are no robust algorithms for γ-perturbation-

resilient instances and no polynomial-time γ-certified algorithms. The assumption

that the algorithms are certified or robust is crucial. In fact, proving that there is no

polynomial-time algorithm, robust or otherwise, for perturbation-resilient instances

is very challenging; to do so, one needs to get a reduction that maps known “hard

instances” of some problem to perturbation-resilient instances of the problem at

hand. Nevertheless, we know that there is no polynomial-time algorithm for ∞-

perturbation-resilient instances of Max k-Cut (for every k ≥ 3) if RP 6= NP

(Makarychev et al., 2014), and there is no polynomial-time algorithm for o(
√
n)-

perturbation-resilient instances of Maximum Independent Set if finding a planted

clique in a random graph is hard (Angelidakis et al., 2019). Note that there are

strong negative results for some very basic problems: there are no polynomial-time

n1−δ-certified algorithms for Set Cover, Min Vertex Cover/Maximum Independent

Set, Max 2-Horn SAT; also, there are no polynomial-time robust algorithms for

n1−δ-perturbation-resilient instances of these problems. The result for Max 2-Horn

SAT is particularly striking, since maximization and minimization variants of the

problem admit a constant-factor approximation. The negative results suggest that

one should study algorithms for special families of perturbation-resilient instances.

This was done by Angelidakis et al. (2019), who gave an algorithm for planar

(1 + ε)-perturbation-resilient instances of Maximum Independent Set. This result

is particularly interesting as it holds when the perturbation resilience parameter

γ = 1 + ε is arbitrarily close to 1.

The study of perturbation-resilient instances of clustering problems was initiated

8 Note that Bilu and Linial, as well as many other authors, refer to “perturbation resilience” as
“stability”.
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by Awasthi et al. (2012) who gave an algorithm for finding the optimal clustering for

3-perturbation-resilient instances. Similarly to the algorithm we discussed in this

chapter, their algorithm first runs single-linkage clustering and then recovers the

optimal solution using dynamic programming. However, the dynamic program used

in their algorithm is quite different from the one we presented here – it is simpler

and faster but requires that the input be more perturbation-resilient. Balcan and

Liang (2016) designed an algorithm for (1 +
√

2)-perturbation-resilient instances

(1 +
√

2 ≈ 2.414). Balcan et al. (2015) gave algorithms for 2-perturbation-resilient

instances of symmetric and asymmetric k-center and obtained matching hardness

results. Angelidakis et al. (2017) offered the definition of metric γ-perturbation

resilience and presented an algorithm for metric 2-perturbation-resilient instances

of k-medians and k-means, which we discussed in this chapter (see Theorem 1.29).

Ben-David and Reyzin (2014) showed that it is NP-hard to find the optimal clus-

tering for instances of k-medians satisfying the (2− ε)-center proximity condition.

Cohen-Addad and Schwiegelshohn (2017) observed that the local search algo-

rithm finds the optimal clustering for (3 + ε)-perturbation-resilient instances. In

their paper, they used a slightly different model from the one we discussed in this

chapter. Theorem 1.32 is due to Balcan and White (2017). Very recently, Frig-

gstad et al. (2019) designed an algorithm for solving (1 + ε)-perturbation-resilient

instances of Euclidean k-means and k-medians (where the points lie in a fixed di-

mensional Euclidean space). As was noted in (Makarychev and Makarychev, 2019),

their algorithm is also (1 + ε)-certified.

We also refer the reader to the survey by Makarychev and Makarychev (2016)

for a more detailed though somewhat outdated overview of known results for

perturbation-resilient instances. Finally, we note that this chapter is based in part

on (Makarychev and Makarychev, 2019).
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Exercises

1.1 Consider an instance I of a maximization constraint satisfaction problem

(such as Max 3SAT or Max 2CSP), in which the constraints are individually

satisfiable. Assume that I has a unique optimal solution. Show that I is ∞-

perturbation-resilient iff there is a solution that satisfies all the constraints.

1.2 Give examples of α-approximation algorithms for combinatorial optimization

and clustering problems that are not α-certified.

1.3 Prove Theorem 1.12. (Hint: assign very large weights to c ∈ H.)

1.4 Prove Theorem 1.21.

1.5 Consider a maximization optimization problem P . Assume that every instance

I = (S, C, w) has value at least α ·w(C) for some α ≤ 1 (for example, α = 1/2

for Max Cut, α = 1/2k for Boolean k-CSP). Prove that every γ-perturbation-

resilient instance I = (S, C, w) has a solution of value at least γ
γ+1/αw(C).

1.6 Consider a maximization problem P . Assume that it does not admit an α-

approximation (α > 1); more precisely, there is a Karp-reduction from 3-

SAT to P that maps a yes-instance to an instance whose optimal solution

has value at least c · w(C), and a no-instance to an instance whose optimal

solution has value less than c·w(C)
α . Prove that then there is no polynomial-time

algorithm for deciding whether an instance I of P is α-perturbation-resilient

(if NP 6= coNP).

1.7 Show that there are no instances (X, d) of k-clustering problems with |X| >
k and γ ≥ 2 satisfying the following strong version of the γ-perturbation

resilience condition: For every metric γ-perturbation d′ of d there is only one

set of optimal centers, and this set of centers is the same as for metric (X, d).

1.8 Consider a γ-perturbation-resilient instance (X, d) of the k-clustering problem

with the `p objective. Show that a γ-certified solution to (X, d) is an optimal

solution for this problem.

1.9 Show that a γ-certified solution to an arbitrary instance of the k-clustering

problem with the `p objective is a γp approximation to the optimal solution.

1.10 Give an example of an instance (X, d) of k-medians which is not γ-perturbation-

resilient, but whose unique optimal solution satisfies the γ-center proximity

property.

1.11 Give an example of a 100-perturbation-resilient instance for which the single-

linkage clustering is suboptimal.


