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Abstract

Suppose that every k points in a n point metric space X are D-distortion embed-
dable into `1. We give upper and lower bounds on the distortion required to embed the
entire space X into `1. This is a natural mathematical question and is also motivated
by the study of relaxations obtained by lift-and-project methods for graph partitioning
problems. In this setting, we show that X can be embedded into `1 with distortion
O(D×log(n/k)). Moreover, we give a lower bound showing that this result is tight if D
is bounded away from 1. For D = 1+δ we give a lower bound of Ω(log(n/k)/ log(1/δ));
and for D = 1, we give a lower bound of Ω(log n/(log k + log log n)). Our bounds sig-
nificantly improve on the results of Arora, Lovász, Newman, Rabani, Rabinovich and
Vempala, who initiated a study of these questions.

1 Introduction

In this paper we study the following question raised by Arora, Lovász, Newman, Rabani,
Rabinovich and Vempala [5]:

Suppose that every k points in a metric space X are D-distortion embeddable
into `1. What is the least distortion with which we can embed the entire space
X into `1?

In other words, what do local properties (embeddability of subsets) of the space tell us
about global properties (embeddability of the entire space)? This is a natural question about
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metric spaces and our research is motivated by numerous applications of low distortion metric
embeddings in computer science and mathematics1.

The study of embeddings of metric spaces into normed spaces has played an important
role in the development of approximation algorithms. In particular, finite metrics arise nat-
urally in mathematical programming relaxations of graph partitioning problems and the
distortion required for embedding into `1 is directly related to the approximation factor
achievable using this approach. The challenge here is to find computationally tractable met-
rics that admit low distortion embeddings into `1. The classical theorem due to Bourgain [8]
states that any n point metric is embeddable into `1 with distortion O(log n). Linial, London
and Rabinovich [16] and independently Aumann and Rabani [7] showed that this result is
tight and exploited it to design an O(log n) approximation for sparsest cut.

Considering tighter relaxations is one potential route to improved results. Indeed the
study of SDP relaxations and the so called `2

2 metrics that arise from them have given rise
to better approximations for sparsest cut [6, 4]. One avenue for further improvement is the
application of lift-and-project methods (such as those given by Lovász–Schrijver [18] and
Sherali–Adams [25]) which are systematic ways to design a sequence of increasingly tighter
relaxations. The metrics that arise from k rounds of lift-and-project satisfy the property
that every subset of size k is isometrically embeddable into `1. This naturally leads to the
question of how such local embeddability affects global embeddability of the metric.

Independent of the motivation from combinatorial optimization, the question of the re-
lationship between local and global properties of metric spaces is fairly natural. It has been
studied before in the context of other properties of metric spaces. Menger’s theorem [23]
states that the embeddability of a metric into `n2 is characterized by embeddability of all sub-
sets of size n+3 into `n2 . Similarly, it is known that metric is a tree metric if and only if every
subset of size four is a tree metric. Tradeoffs between local and global distortions for tree
metrics were recently studied by Abraham, Balakrishnan, Kuhn, Malkhi, Ramasubramanian,
and Talwar [1].

Analogous local-global questions have been studied in other realms, including analysis,
combinatorics, geometry, topology, and mathematical logic. One such example is Helly’s
theorem [15] on intersections of bounded convex sets. The influential theory of graph minors
studies global graph properties that arise from the local property of subgraphs excluding a
given set of minors. Other examples are numerous compactness theorems that state that if
some property holds for every finite subset of elements, then the property holds for the entire
set (e.g. if every finite subtheory is consistent, then the entire theory is consistent). In func-
tional analysis, many properties of a Banach space are deduced from properties of its finite
dimensional subspaces. In particular, one important parameter is the largest Banach–Mazur
distance between a k dimensional subspace of a Banach space and the k dimensional Eu-
clidean space (see e.g. [27, Section 6]). In computer science, such local-global considerations
arise in property testing and in the study of PCPs.

1A good introduction to the area of low distortion metric embeddings and their applications in computer
science is Matoušek’s book “Lectures on Discrete Geometry” [21, Section 15].

2



1.1 Our results

We show that if every k point subset of n point metric space X can be embedded into `1 with
distortion D, then X can be embedded into `1 with distortion2 O(D× log(n/k)). Moreover,
we give a lower bound showing that this result is tight if D is bounded away from 1. For
D = 1 + δ we give a lower bound of Ω(log(n/k)/ log(1/δ)); and for D = 1, we give a lower
bound of Ω(log n/(log k+ log log n)). We summarize our results and compare them with the
results obtained by Arora, Lovász, Newman, Rabani, Rabinovich and Vempala [5] in the
table below.

Upper Bounds

This paper Arora et al [5]

D O(D log(n/k)) O
(
D (n/k)2)

Lower Bounds

1 Ω
(

logn
log k+log logn

)
(log n)Ω(1/k)

1 + δ Ω
(

log(n/k)
log(1/δ)

)
D ≥ 3/2 Ω(D log(n/k)) Ω

(
D log2(n/k)

logn

)
for D ∼ C log2 n

log2(n/k)

Figure 1: The local distortion (the distortion with which every k points are embeddable into
`1) is given in the first column. In the last row we assume that D ≤ log n/ log(n/k).

Our results significantly improve the results obtained in [5]. We completely solve the
problem for every D bounded away from 1. We also answer the main open question posed
by Arora, Lovász, Newman, Rabani, Rabinovich, and Vempala [5]: we construct a metric
space that requires large distortion to embed into `1, such that every subset of size no(1)

embeds isometrically into `1. There is still a gap between our lower and upper bounds for
metric spaces locally embeddable into `1 isometrically. Closing this gap is an interesting
open question.

We also show that even if a small fraction α (say 1%) of all subsets of size k embeds into
`p with distortion at most D, then we still can embed the entire space into `p with distortion
at most

D ·O(log(n/k) + log log(1/α) + log p).

In subsequent work [12], we show that our results imply strong lower bounds for Sherali–
Adams relaxations of the Sparsest Cut, MAX CUT, Vertex Cover, Maximum Acyclic Sub-
graph and other problems. Namely, we prove that the integrality gap for the Sparsest Cut

2We also generalize this result to all `p spaces.
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problem is at least

Ω

(
max

(√
log n

log r + log log n
,

log n

r + log log n

))

after r rounds of the Sherali–Adams lift-and-project. The integrality gap for MAX CUT,
Vertex Cover and Maximum Acyclic Subgraph remains 2− ε even after nγ rounds (for every
positive ε and some γ that depends on ε). We also show how to obtain Sherali–Adams
gap examples for any problem that has a Unique Games based hardness result (with some
additional conditions on the reduction from Unique Games).

1.2 Overview

Before we describe the technical details of our results, we give a brief (and imprecise) overview
of our techniques.

Our upper bound is based on combining two embeddings, one that handles large distances
and the other that handles small distances. In order to construct the first embedding, we
construct a hitting set S of size k such that the local neighborhood of every point contains a
point in S. The local embeddability property guarantees that S is embeddable into `1 with
small distortion. We extend this embedding to an embedding of the entire set. In order to do
this, we construct a random clustering of the points in the space such that nearby points are
likely to fall in the same cluster; each cluster is then mapped to a point in the hitting set S.
We show that this embedding does not stretch any pair of points by a large amount and is a
good embedding for pairs of points at large distances. The second embedding is obtained by
taking the first O(log(n/k)) densities in Bourgain’s embedding. Again, this does not stretch
any pair of points by a large amount. On the other hand, it is a good embedding for small
distances.

Our lower bounds are based on constant degree expander graphs used in previous work [3].
Instead of the commonly used shortest path metric however, we define a different metric
particularly convenient for the purpose of constructing embeddings into `1. Our choice of this
metric was inspired by the papers of de la Vega and Kenyon-Mathieu [13] and Schoenebeck,
Trevisan, and Tulsiani [26], who used a similar metric (distribution of cuts) in their integrality
gap examples. We exploit the fact that subgraphs of constant degree expander graphs are
sparse and show that such sparse graphs equipped with the new metric embed well into `1.
All short distances are preserved exactly (which is convenient in our iterative construction)
and long distances are distorted by a small factor. By appropriately choosing parameters,
we are able to construct embeddings with distortion at most 1 + δ. However the metric
on the entire expander still requires high distortion for embedding into `1. In order to
obtain examples with high global distortion where the metric on subsets is isometrically
embeddable into `1, we show that obtaining distortion sufficiently close to 1 is enough. In
this case, we guarantee that a slightly different metric (obtained by adding a small constant
to all distances) is in fact isometrically embeddable into `1. This changes all distances by a
factor of at most 2 and still has high global distortion.
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2 Embedding Theorem

In this section, we prove the following theorem.

Theorem 2.1. Let k be a positive integer and p ≥ 1. Suppose that every subset of size k of
a finite metric space (X, d) is embeddable into `p with distortion D. Then the metric space
(X, d) is embeddable into `p with distortion O(D · log(|X|/k)).

For simplicity of presentation, we assume throughout the proof that all distances in our
metric space are distinct. This is a standard assumption and we may make it without loss of
generality. We denote the ball of radius R about x by B(x,R) = {y : d(x, y) ≤ R}. Finally,
we define the local radius for every point as follows.

Definition 2.2. For every point x of the metric space X, define radius Rx,m to be the
minimum radius R for which the ball B(x,R) contains m points:

Rx,m = min(R : |B(x,R)| = m).

Note that for a point x, the local neighborhood (mentioned in the overview) is the ball
B(x,Rx,m).

2.1 Hitting Set

In this section we describe a greedy algorithm for finding a set S of size at most k that
intersects with every ball B(x, 2Rx,m). The following lemma first appeared in the paper of
Chan, Dinitz and Gupta [11].

Lemma 2.3. For every finite metric space (X, d) and every positive integer m there exists
a subset S ⊂ X of size at most b|X|/mc such that for every point x in X the ball about x of
radius 2Rx,m contains at least one point from S. In other words, for every x in X

B(x, 2Rx,m) ∩ S 6= ∅.

Moreover, for every x and y in S the balls B(x,Rx,m) and B(y,Ry,m) do not intersect.

We need the following simple observation.

Lemma 2.4. For every finite metric space (X, d), every positive integer m and every two
points x and y in X, the following inequality holds:

|Rx,m −Ry,m| ≤ d(x, y).

Proof. Notice, that the ball B(x,Ry,m + d(x, y)) contains the ball B(y,Ry,m). Therefore,
|B(x,Ry,m + d(x, y))| ≥ |B(y,Ry,m)| = m and Rx,m ≤ Ry,m + d(x, y). Similarly, Ry,m ≤
Rx,m + d(x, y).
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Proof of Lemma 2.3. We give an explicit (deterministic) algorithm for finding the set S. The
algorithm maintains three sets: a set of “active” points A, a set of “unsatisfied” balls B, and
a set of selected points S. Initially the set A contains all points of the metric space X, the
set B contains all balls B(x,Rx,m):

B = {B(x,Rx,m) : x ∈ X} ;

and the set S is empty. At each iteration we pick the ball B(x,Rx,m) of smallest radius from
B and add the center of this ball, the point x, to S. Then we remove all points of the ball
B(x,Rx,m) from the set of active points A:

A = A \ B(x,Rx,m);

we also remove all balls that intersect with B(x,Rx,m) from B:

B = {B(y,Ry,m) ∈ B : B(y,Ry,m) ∩ B(x,Rx,m) = ∅} .

When the set B becomes empty, the algorithm stops and returns the set S.
Let us analyze the algorithm. Observe that after every iteration all balls in B contain

points only from the set A. Hence at every step we remove exactly m points from A (recall
that every ball B(x,Rx,m) contains exactly m points from X by the definition of Rx,m).
Therefore, after b|X|/mc iterations A will contain less than m elements and thus the set B
will be empty. Hence the set S contains at most b|X|/mc points.

We now need to check that S intersects with every ball B(y, 2Ry,m). Consider an arbitrary
point y and the step at which B(y,Ry,m) was removed from B. Let x be the point that was
added to the set S at this step. Since B(y,Ry,m) was removed from B, the ball B(y,Ry,m)
intersects with the ball B(x,Rx,m). Hence

d(x, y) ≤ Rx,m +Ry,m.

Notice that Rx,m ≤ Ry,m, since at every step we choose the ball of smallest radius. Thus x
lies in the ball of radius 2Ry,m about y. This concludes the proof.

Corollary 2.5. For every finite metric space (X, d) and every positive integer m there exists
a subset S ⊂ X of size at most b|X|/mc and a mapping g : X → S such that for every point
x in X,

d(x, g(x)) ≤ 2Rx,m.

2.2 Partitioning

In this section, we describe a randomized mapping of the metric space X into itself that
“glues” together points at small distances with high probability. Our algorithm is based on
the clustering technique of Calinescu, Karloff and Rabani [10] and Fakcharoenphol, Rao, and
Talwar [14].
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Lemma 2.6. For every finite metric space (X, d) and every positive integer m there exists
a random mapping f : X → X such that for every x and y in X,

1. d(x, f(x)) ≤ Rx,m (always);

2. Pr (f(x) 6= f(y)) ≤ O(logm)× d(x,y)
Rx,m+Ry,m

.

Proof. We present a probabilistic algorithm that finds the mapping f .

1. Pick a random number α uniformly distributed in (0, 1).

2. Pick a random (uniform) total order <π on the elements of the space X.

3. Now define the mapping f : X → X as follows: For every point x, let f(x) be the
minimal point z in the ball B(x, α ·Rx,m) with respect to the order <π.

4. Return the mapping f .

Clearly, the mapping returned by the algorithm always satisfies the first property:

d(x, f(x)) ≤ α ·Rx,m ≤ Rx,m.

To verify the second property, consider two points x and y in X. We will show that

Pr
(
f(x) <π f(y)

)
≤ (2 logm+O(1))× d(x, y)

Ry,m

.

Enumerate all points in the ball B(x,Rx,m) in the order of increasing distance from the
point x: z1, . . . , zm. Write

Pr (f(x) <π f(y)) =
m∑
i=1

Pr (f(x) = zi and f(y) >π zi) . (1)

Observe that if f(y) >π zi, then zi does not belong to the ball B(y, α ·Ry,m). Therefore,

(f(x) = zi and f(y) >π zi) ≤ Pr (f(x) = zi | zi ∈ B(x, αRx,m) and zi /∈ B(y, αRy,m))

× Pr (zi ∈ B(x, αRx,m) and zi /∈ B(y, αRy,m)) .

Let us estimate the probabilities in the right hand side. We have

Pr(zi ∈ B(x, αRx,m) and zi /∈ B(y, αRy,m)) = Pr (d(x, zi) ≤ αRx,m and d(y, zi) > αRy,m)

= Pr

(
d(zi, x)

Rx,m

≤ α <
d(zi, y)

Ry,m

)
≤ max

(
d(zi, y)

Ry,m

− d(zi, x)

Rx,m

, 0

)
.
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Applying the triangle inequality d(zi, y) ≤ d(zi, x)+d(x, y) and the inequality Rx,m−Ry,m ≤
d(x, y) we get

d(zi, y)

Ry,m

− d(zi, x)

Rx,m

≤ d(zi, x) + d(x, y)

Ry,m

− d(zi, x)

Rx,m

=
d(zi, x)

Rx,m

· Rx,m −Ry,m

Ry,m

+
d(x, y)

Ry,m

≤ 2d(x, y)

Ry,m

.

We now show that

Pr (f(x) = zi | zi ∈ B(x, αRx,m) and zi /∈ B(y, αRy,m)) ≤ 1

i
.

Indeed for any fixed α = α0, if zi lies in the ball B(x, α0Rx,m), then the points z1, . . . , zi−1

also lie in this ball. Therefore, conditionally on α = α0 the probability that zi is the minimal
point with respect to the order <π is at most 1/i.

Now we can bound (1) as follows:

Pr (f(x) <π f(y)) =
m∑
i=1

1

i
× 2d(x, y)

Ry,m

≤ (2 logm+O(1))× d(x, y)

Ry,m

.

Hence

Pr (f(x) 6= f(y)) ≤ (2 logm+O(1))× d(x, y)×
(

1

Rx,m

+
1

Ry,m

)
.

We are almost done. Assume without loss of generality that Rx,m ≤ Ry,m. If Rx,m ≥ d(x, y),
then Ry,m ≤ 2Rx,m and hence

Pr (f(x) 6= f(y)) ≤ (2 logm+O(1))× d(x, y)×
(

1

Rx,m

+
1

Ry,m

)
≤ (9 logm+O(1))× d(x, y)

Rx,m +Ry,m

.

If Rx,m ≤ d(x, y), then

Pr (f(x) 6= f(y)) ≤ 1 ≤ 3
d(x, y)

Rx,m +Ry,m

.

2.3 Embedding for Large Scales

We combine the results of the previous two sections and obtain an embedding of X into `p
that separates points at large distances.
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Lemma 2.7. For every finite metric space (X, d) and every positive integer m there exists
a subset S ⊂ X of size at most b|X|/mc and a probabilistic mapping h : X → S such that
for every two points x and y in X the following conditions hold:

1. d(x, h(x)) ≤ 5Rx,m (always);

2. Pr (h(x) 6= h(y)) ≤ O(logm)× d(x,y)
Rx,m+Ry,m

;

3. E [d(h(x), h(y))] ≤ O(logm)× d(x, y);

4. E [d(h(x), h(y))] ≥ d(x, y)− 5(Rx,m +Ry,m).

Proof. Choose the set S as in Corollary 2.5 and let f and g be mappings from Lemma 2.6
and Corollary 2.5. Define h(x) = g(f(x)). Let us verify that conditions 1-4 are satisfied.

1. We have

d(x, h(x)) ≤ d(x, f(x)) + d(f(x), g(f(x))) ≤ Rx,m + 2Rf(x),m ≤ Rx,m + 4Rx,m = 5Rx,m.

Here we used the following simple observation:

Rf(x),m ≤ Rx,m + d(x, f(x)) ≤ 2Rx,m.

2. The probability of the event h(x) 6= h(y) is not greater than the probability of the
event f(x) 6= f(y). Therefore, the second condition follows from Lemma 2.6.

3. Verify the third condition:

E [d(h(x), h(y))] = E [d(h(x), h(y)) | h(x) 6= h(y)] Pr (h(x) 6= h(y))

≤ E [d(x, y) + d(x, h(x)) + d(y, h(y)) | h(x) 6= h(y)] Pr (h(x) 6= h(y))

≤ d(x, y) + 5(Rx,m +Ry,m)×O(logm)× d(x, y)

Rx,m +Ry,m

= O(logm)× d(x, y).

4. Finally,

E [d(h(x), h(y))] ≥ d(x, y)− E [d(x, h(x)) + d(y, h(y))] ≥ d(x, y)− 5(Rx,m +Ry,m).

We are ready to finish the construction of the embedding that handles large distances.

Lemma 2.8. Let (X, d) be a finite metric space and let k be a positive integer. Suppose that
every subset S ⊂ X of size k is embeddable into a normed space (V, ‖ · ‖) with distortion D.
Then there exists an embedding ϕ : X ↪→ V such that for all x and y,

1. ‖ϕ(x)− ϕ(y)‖ ≤ D ·O(log(|X|/k))× d(x, y);

2. ‖ϕ(x)− ϕ(y)‖ ≥ d(x, y)− (7D + 2)× (Rx,m +Ry,m).
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Proof. Set m = d|X|/ke. Pick a set S and a random mapping h as in Lemma 2.7. Since the
size of S is at most k there exists a distortion D embedding ν : S ↪→ V . By rescaling it we
may assume that for every x and y in S:

d(x, y) ≤ ‖ν(x)− ν(y)‖ ≤ D × d(x, y).

Define ϕ as follows:
ϕ(x) = E [ν(h(x))] .

Verify that it satisfies condition 1:

‖ϕ(x)− ϕ(y)‖ = ‖E [ν(h(x))− ν(h(y))] ‖ ≤ E‖ν(h(x))− ν(h(y))‖
≤ E [D × d(h(x), h(y))] ≤ D ×O(log(|X|/k))× d(x, y).

Consider an arbitrary x′ in the intersection S ∩B(x, 2Rx,m) and y′ in S ∩B(y, 2Ry,m). Then

‖ϕ(x)− ν(x′)‖ ≤ E ‖ν(h(x))− ν(x′)‖ ≤ E [D × d(h(x), x′)]

≤ E [D × (d(h(x), x) + d(x, x′))] ≤ 7D ×Rx,m,

and similarly ‖ϕ(y)− ν(y′)‖ ≤ 7D ×Ry,m. Therefore,

‖ϕ(x)− ϕ(y)‖ ≥ ‖ν(x′)− ν(y′)‖ − ‖ϕ(x)− ν(x′)‖ − ‖ϕ(y)− ν(y′)‖
≥ d(x′, y′)− 7D × (Rx,m +Ry,m)

≥ d(x, y)− (7D + 2)× (Rx,m +Ry,m).

2.4 Bourgain’s Embedding for Small Scales

We show that Bourgain’s embedding applied at the first log(n/k) scales preserves short
distances and does not expand long distances. The proof is a slight modification of Bourgain’s
original argument [8].

Lemma 2.9. For every finite metric space (X, d), every real p ≥ 1 and every positive integer
m there exists an embedding ψ : X ↪→ `p such that for every x and y in X

1. ‖ψ(x)− ψ(y)‖p ≤ d(x, y);

2. ‖ψ(x)− ψ(y)‖p ≥ Ω(1/ logm)×min(d(x, y), Rx,m +Ry,m).

Proof. Let ` = dlogme. Pick a random integer number r from 1 to `. Then choose a random
subset Wr ⊂ X, where each point of X belongs to Wr with probability 2−r (the choices are
independent for distinct points). Now, for every x in X, define ψ(x) to be the distance from
x to the set Wr:

ψ(x) = d(x,Wr) ≡ min
w∈Wr

d(x,w).
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Note that ψ(x) is a random variable. The `p norm is defined in the standard way:

‖ψ(x)− ψ(y)‖p = (E |ψ(x)− ψ(y)|p)1/p .

Fix two arbitrary points x and y in X and verify that ψ satisfies conditions 1 and 2. By
the triangle inequality, |ψ(x)− ψ(y)| is always less than or equal to d(x, y). Hence the first
condition holds.

By Lyapunov’s inequality,

‖ψ(x)− ψ(y)‖p ≥ ‖ψ(x)− ψ(y)‖1.

Therefore, we need to prove the second condition only for p = 1. Let ∆ = min(d(x, y), Rx,m+
Ry,m)/2. We will show that for every 0 < t < ∆,

Pr (ψ(x) ≤ t ≤ ψ(y) or ψ(y) ≤ t ≤ ψ(x)) ≥ Ω(1/ logm); (2)

and hence,

‖ψ(x)− ψ(y)‖1 =

∞∫
0

Pr (ψ(x) ≤ t ≤ ψ(y) or ψ(y) ≤ t ≤ ψ(x)) dt ≥ Ω(1/ logm)×∆.

Fix an arbitrary t in the segment [0,∆]. Let m′ be the size of the smallest of the balls
B(x, t) and B(y, t). Without loss of generality assume that |B(x, t)| = m′ and |B(y, t)| ≥ m′.
Note that m′ ≤ m, since t ≤ max(Rx,m, Ry,m). Hence there exists a “scale” i ∈ {1, . . . , `}
such that 2i−1 ≤ m′ ≤ 2i. Assume that r = i, then with a constant probability the set
Wi contains no points from B(x, t) and with a constant probability Wi contains at least one
point from B(y, t). Moreover, since the balls B(x, t) and B(y, t) are disjoint, with a constant
probability (conditional on r = i) both events happen:

Pr (B(x, t) ∩Wr = ∅ and B(y, t) ∩Wr 6= ∅ | r = i) ≥ Ω(1),

which implies
Pr (ψ(x) ≥ t and ψ(y) ≤ t) ≥ Ω(1/ logm).

Remark 2.10. A similar statement was independently proved by Abraham, Bartal, and
Neiman [2, Theorem 2]. Our lemma is a generalization of the result of Mendel and Naor [22,
Lemma 3.4], stating that every metric space that has anm-center (which means, in our terms,
that all balls B(x,Rx,m) have a nonempty (mutual) intersection) is embeddable into `1 with
distortion logm. Notice that if a metric space has an m center, then d(x, y) ≤ Rx,m + Ry,m

for every x and y. Therefore, in this case, our embedding works for all distances. Mendel
and Naor also used the first logm scales of Bourgain’s embedding in their proof.
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2.5 Proof of Theorem 2.1

In this section, we finish the proof of Theorem 2.1.

Proof of Theorem 2.1. Let ϕ and ψ be the embeddings from Lemmas 2.8 and 2.9. After
appropriate rescaling we get that

• for all x and y,
‖ϕ(x)− ϕ(y)‖p ≤ O(D log(|X|/k)× d(x, y));

‖ψ(x)− ψ(y)‖p ≤ O(D log(|X|/k)× d(x, y));

• for all x and y with d(x, y) ≥ 10D × (Rx,m +Ry,m),

‖ϕ(x)− ϕ(y)‖p ≥ d(x, y);

• for all x and y with d(x, y) ≤ (Rx,m +Ry,m),

‖ψ(x)− ψ(y)‖p ≥ 10D × d(x, y) ≥ d(x, y);

• finally, for all x and y with d(x, y) ≥ (Rx,m +Ry,m),

‖ψ(x)− ψ(y)‖p ≥ 10D × (Rx,m +Ry,m).

Notice that ψ expands all distances by a factor at least 10D. The desired embedding is
the direct sum of the embeddings ϕ and ψ. It is easy to see that it is expanding, but does
not increase distances more than D ·O(log(|X|/k)) times.

2.6 Embedding using random samples

Suppose that only an α fraction of all subsets of size k embeds into `p with distortion at
most D. We show that the entire space embeds into `p with distortion at most

D ·O(log(|X|/k) + log log(1/α) + log p).

Lemma 2.11. Let (X, d) be a metric space and γ ∈ (0, 1). Consider a probabilistic distri-
bution Dγ of subsets Y ⊂ X with measure Pr ({Y }) = γ|Y |(1− γ)|X\Y |, that is, each x in X
belongs to Y with probability γ. Denote the event “Y embeds into `p with distortion D” by
E. Then the entire space X embeds into `p with distortion at most

O(D × (log(1/γ) + log log(1/Pr (E)) + log p)). (3)

Proof. We use the same embedding as in Theorem 2.1 with

k =

⌊
γ|X|

log(1/Pr (E)) + 2p

⌋
.
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The distortion of this embedding is at most O(D log(|X|/k)) = (3). The only property of
X we used in the proof of Theorem 2.1 is that the set S from Lemma 2.3 embeds into `p
with distortion D (see Lemma 2.8). We shall prove a slightly weaker statement which is still
sufficient for the proof. Namely, we show that there exists an embedding ν of S into `p such
that for all x and y in S,

A: ‖ν(x)− ν(y)‖p ≤ O(D)× d(x, y);

B: ‖ν(x)− ν(y)‖p ≥ Ω(1)× (d(x, y)− (Rx,m +Ry,m)).

As before, let m = d|X|/ke. Let TY be the set of those points x in S for which there
exists a point y in Y at distance at most Rx,m. Since each ball B(x,Rx,m) contains m points,
the probability that x belongs to TY is equal to 1− δ, where

δ = (1− γ)m ≤ Pr (E)

e2p
.

Moreover, since for every distinct x and y in S, the balls B(x,Rx,m) and B(y,Ry,m) are
disjoint, the events x ∈ TY and y ∈ TY are independent.

Let E ′ be the event “Y embeds into `p with distortion D and TY is not empty”. Then
Pr (E ′) ≥ Pr (E)−Pr (TY = ∅) ≥ Pr (E)−δ > 4 Pr (E) /5. Let Ỹ be a random set distributed
according to Dγ conditional on the event E ′; denote the random set TỸ by T̃ .

Fix now a subset Y of X that embeds into `p with distortion D. Consider the embedding
νY : TY ↪→ `p that maps each x in TY to the closest point y in Y and then embeds Y into
`p (using a non-contracting embedding). Notice that νY satisfies properties A and B. Below
we describe an algorithm that extends νY to the set S: for every nonempty set T and every
point x in S it returns a point qT (x) in T . We show that the mapping of x to the random
variable νỸ (qT̃ (x)) is an embedding of S into `p satisfying properties A and B.

Input: a nonempty set T ;
Output: mapping qT : S → T ;

1. Enumerate all points in S with numbers 1 to k:

• Pick an arbitrary starting point x1 in S;

• For all i < k, let xi+1 be the closest point to xi in the set S \ {x1, . . . , xi}.

Remark: the ordering of points x1, . . . , xk does not depend on the set T .

2. Consider the following walk : xi goes to xi+1 unless there is a point yi in T at distance
less than d(xi, xi+1), in which case xi goes to yi. More precisely, at every step, xi goes
to

N(xi) =

{
yi, if d(xi, yi) ≤ d(xi, xi+1);

xi+1, otherwise;

13



where yi is the closest point to xi in T . Note that N(xk) = yk. Continue to move xi
till it hits the set T :

xi 7→ xi+1 7→ · · · 7→ xi+t 7→ yi+t ∈ T.
Denote the number of steps needed to reach T by ti:

ti = min
{
t : N t(xi) ∈ T

}
;

and let qT (xi) be the last point of the walk:

qT (xi) = N ti(xi).

3. Return the mapping qT .

Notice that the algorithm does not move elements of the set T . If i < j then

d(N(xi), xj) ≤ d(xi, N(xi)) + d(xi, xj) ≤ 2d(xi, xj);

and if xi ∈ T then similarly d(xi, N(xj)) ≤ 2d(xi, xj). Hence

d(qT (xi), qT (xj)) ≤ 2ti+tjd(x, y).

Estimate the probability of the event ti ≥ t (for a random Y ). If ti ≥ t then xi, . . . , xi+t−1

do not belong to TY . Hence, this probability is at most δt and the probability that ti+ tj ≥ t
is at most 2δdt/2e. We have for positive t,

Pr (ti + tj ≥ t | E ′) =
2δdt/2e

Pr (E ′)
≤ 5

2
e−pt;

and

Pr (qT̃ (x) = x and qT̃ (y) = y) = Pr (ti + tj = 0 | E ′) ≥ 1− 5

2e
= Ω(1).

Therefore,

‖νỸ (qT̃ (x))− νỸ (qT̃ (y))‖p = E
[
‖νY (qTY

(x))− νY (qTY
(y))‖pp | E ′

]1/p
≤ O(Dd(x, y))×

(
1 +

∞∑
t=1

2tp Pr (ti + tj ≥ t | E ′)

)1/p

≤ O(Dd(x, y)).

and

‖νỸ (qT̃ (x))− νỸ (qT̃ (y))‖p = E
[
‖νY (qTY

(x))− νY (qTY
(y))‖pp | E ′

]1/p
≥ (d(x, y)−Rx,m −Ry,m) Pr (qT̃ (x) = x and qT̃ (y) = y)

≥ Ω(1)× (d(x, y)−Rx,m −Ry,m).
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The following theorem is an easy corollary of the lemma we proved.

Theorem 2.12. Let (X, d) be a metric space of size n. Suppose that an α fraction of all
subsets of size k embeds into `p with distortion at most D. Then entire space (X, d) embeds
into `p with distortion at most

D ·O(log(n/k) + log log(1/α) + log p).

Proof. Let γ = k/(2n). Then a random set Y distributed as Dγ contains at most k elements
with probability at least half. Therefore, Y embeds into `p with distortion D with probability
at least α/2.

Remark 2.13. In the bound above, one can replace log p with logD. The proof of the new
bound is similar to the previous one.

3 Lower Bound Constructions

3.1 Embedding Sparse Graphs into `1

Now we present our lower bounds. We will construct metric spaces that embed locally into
`1 with small distortion, but whose global distortion is large. In this section, we prove that
every sparse graph with high girth equipped with an appropriate metric embeds into `1 with
very small distortion. Later we will use this to show that the metric spaces we construct
locally embed into `1 with small distortion.

Definition 3.1. A graph G is α-sparse, if every subgraph on k vertices contains at most αk
edges.

To embed a sparse graph, we will decompose it to several pieces, embed them separately,
and then combine the embeddings. We will need the following definition, which was implicitly
introduced in [3].

Definition 3.2. We say that a graph G is l-path decomposable if every 2-connected subgraph
H of G (other than an edge) contains a path of length l such that every vertex of the path
has degree 2 in H.

Every l-path decomposable graph is either

1. a vertex or an edge; or

2. the union of (more than one) connected components, each of which is also l-path
decomposable; or

3. a one point union of l-path decomposable (proper) subgraphs (we say that a union of
several graphs is a one point union if there exists a vertex belonging to all graphs; and
the intersection of every two of these graphs contains only this vertex); or
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4. the union of an l-path decomposable subgraph and a path of length l (that do not have
common vertices except for the endpoints of the path).

Arora, Bollobás, Lovász, and Tourlakis [3] proved that every 1 + η sparse graph with
girth Ω(1/η) is Ω(1/η)-path decomposable.

Theorem 3.3. Suppose G = (V,E) is an l-path decomposable graph. Let d(·, ·) be the
shortest path distance on G, and L = bl/9c; µ ∈ [1/L, 1]. Then there exists a probabilistic
distribution of multicuts of G (or in other words random partition of G in pieces) such that
the following properties hold. For every two vertices u and v,

1. If d(u, v) ≤ L, then the probability that u and v are separated by the multicut (i.e. lie
in different parts) equals

ρ(u, v) = ρµ(u, v) = 1− (1− µ)d(u,v);

moreover, if u and v lie in the same part, then the unique shortest path between u and
v also lies in that part.

2. If d(u, v) > L, then the probability that u and v are separated by the multicut is at least
1− (1− µ)L.

3. Every piece of the multicut partition is a tree.

Proof idea. Each multicut is a subset S of edges (i.e. the edges removed to obtain the
partition): the multicut S separates two vertices if every path between them intersects
S. We will ensure that every edge belongs to S with probability µ. Additionally, if the
distance between two edges e1, e2 is less than L, the events that e1 ∈ S, and e2 ∈ S will be
independent. We will also ensure that if there is more than one simple path between u and
v, all but one path will be cut with probability 1. Our proof will be by induction: using the
path-decomposability of G, we will reduce the problem to smaller subproblems. In order to
argue about paths of length l which we will encounter during the decomposition we need the
following lemma.

Lemma 3.4. Suppose a graph H is a path of length at least 3L. Then there exists a distribu-
tion of multicuts S of H that satisfies the property of the theorem. Moreover, the endpoints
of the path are separated with probability 1.

Proof. Let us subdivide the path into three paths P1, P2, and P3, each of length at least L.
We now add every edge to S with probability µ. However, our decisions are not independent,
and we add edges so that: all decisions for P1 and P2 are independent; all decisions for P2 and
P3 are independent; we add to S at least one edge either from P1 or from P3. This coupling
is possible since the probability that we add at least one edge from P1 plus the probability
that we add at least one edge from P3 is at least 1− (1− µ)L + 1− (1− µ)L ≥ 2− 2/e > 1.

First assume that both vertices u and v lie in the same path Pi or they lie in the neighbor-
ing paths Pi and Pi+1. Then all our choices for the edges between u and v are independent.
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Therefore, the probability that S separates u and v is 1 − (1 − µ)d(u,v) = ρ(u, v). Hence
S satisfies condition 1 in this case. Now assume that u lies in P1 and v lies in P3 (or vice
versa). Then d(u, v) > L. If S contains an edge from P2 then u and v are separated, so

Pr(u and v are separated) ≥ Pr (S ∩ E(P2) 6= ∅) = 1− (1− µ)|E(P2)| ≥ 1− (1− µ)L.

Finally, since S contains either an edge from P1 or from P3, the endpoints of H are always
separated.

Proof of Theorem 3.3. We prove by induction that there exists the required distribution on
multicuts S ⊂ E. We first verify the base case. If G consists of two vertices connected by
an edge then let S contain this edge with probability µ. Otherwise, G is decomposable into
the union of smaller l-path connected subgraphs. Consider three cases.
1. The graph G is the union of connected components Ci. Since each Ci has less vertices
than G, by the induction hypothesis, there exists a probability distribution on multicuts Si
in each Ci. Let S = ∪iSi, where all Si are drawn independently. Then if u and v lie in the
same connected component Ci then Pr(S separates u and v) = Pr(Si separates u and v); if
u and v lie in distinct connected components Pr(S separates u and v) = 1 ≥ 1 − (1 − µ)L

whereas d(u, v) =∞ > L.
2. The graph G has a cut vertex c. Represent G as the union of subgraphs Ci that have only
one common vertex c. Construct a distribution of multicuts Si for each Ci. Let S = ∪iSi,
where all Si are drawn independently. Assume first that u and v lie in the same subgraph
Ci. Then every simple path between them lies entirely in Ci. Therefore, S separates u and
v if and only if Si separates them. By the induction hypothesis, the probability that the
multicut S separates u and v satisfies condition 1. Now assume that u and v lie in distinct
subgraphs: u ∈ Ci, v ∈ Cj. Then each path between u and v must visit c. We have

Pr(S separates u and v) = Pr (S separates u and c or S separates c and v)

= 1− (1− Pr (S separates u and c))(1− Pr (S separates c and v))

= 1− (1− Pr (Si separates u and c))(1− Pr (Sj separates c and v)).

If d(u, c) ≤ L and d(v, c) ≤ L, then

Pr(S separates u and v) = 1− (1− ρ(u, c))(1− ρ(c, v))

= 1− (1− µ)d(u,c)(1− µ)d(c,v) = 1− (1− µ)d(u,c)+d(c,v) = ρ(u, v).

Here we used that d(u, v) = d(u, c) + d(c, v). Now consider the case when either d(u, c) ≥ L
or d(v, c) ≥ L. Assume without loss of generality d(u, c) ≥ L. Note that d(u, v) = d(u, c) +
d(c, v) > L. Hence we have to show that u are v are separated with probability at least
1− (1− µ)L. Indeed,

Pr(S separates u and v) = 1− (1− Pr(Si separates u and c))(1− Pr(Sj separates c and v))

≥ 1− (1− Pr(Si separates u and c)) · 1
= Pr(Si separates u and v) ≥ 1− (1− µ)L.
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Finally, since each piece of every multicut partition Si is a tree, every piece of S is also a
tree.

3. The graph G is the union of a subgraph H and a path P of length l. Denote the endpoints
of the path by x and y. Let SH be a distribution on multicuts in H that satisfies condition 1.
Subdivide P into three pieces A1, A2 and A3, each of length at least 3L. Let Si be the
multicut whose existence is guaranteed by Lemma 3.4 for the path Ai (we choose multicuts
SH , S1, S2, S3 independently). Let S = SH ∪ S1 ∪ S2 ∪ S3. Consider two vertices u and v.
Note that either both of them lie in H ∪ A1 ∪ A2, or in H ∪ A2 ∪ A3, or in H ∪ A1 ∪ A3

(of course, these possibilities are not mutually exclusive). First, assume that u and v lie in
H ∪A1 ∪A2. Since A3 is always cut by S, the multicut S separates u and v in G if and only
if the multicut SH ∪ S1 ∪ S2 separates them in H ∪ A1 ∪ A2. Additionally, if dG(u, v) ≤ L
then dH∪A1∪A2(u, v) = dG(u, v), and if dG(u, v) > L then dH∪A1∪A2(u, v) > L. Therefore, it
suffices to verify that condition 1 holds for H ∪A1 ∪A2. Indeed, the graph H ∪A1 ∪A2 is a
one point union of graphs H and A1 ∪A2; in turn, the graph A1 ∪A2 is a one point union of
graphs A1 and A2. We already proved that a one point union of graphs satisfying condition 1
satisfies condition 1. Therefore, the multicut SH ∪S1 ∪S2 of the graph H ∪A1 ∪A2 satisfies
condition 1. Similarly, condition 1 holds when u and v lie in H ∪ A2 ∪ A3, or u and v lie in
H ∪ A1 ∪ A3.

Finally, we know that every cycle inH is cut by the multicut (by the induction hypothesis)
and the path P is cut by the multicut. Therefore, every piece of the constructed multicut
partition is a tree.

Corollary 3.5. Let G = (V,E), L, µ and ρ be as in Theorem 3.3. Then the metric space
(V, ρ) embeds into `1 with distortion 1+O(e−µL). Moreover, if d(u, v) ≤ L then the embedding
preserves the distance between u and v; if d(u, v) > L then the distance between images of u
and v lies between 1− (1− µ)L and 1.

Proof. The distribution of multicuts from Theorem 3.3 defines the desired embedding3: the
distance between images of u and v equals the probability that the multicut separates u
and v. If d(u, v) ≤ L then the distance between u and v is preserved by the embedding. If
d(u, v) > L then the distance between u and v in the cut metric lies between 1 − (1 − µ)L

and 1. Hence the distortion is at most
1

1− (1− µ)L
= 1 +O(e−µL).

3.2 Lower Bound for Non-Isometric Case

In this section, we construct a metric space that locally embeds into `1 almost isometrically,
but the minimum distortion with which the entire space embeds into `1 is high. The metric

3Given a distribution of multicuts we construct an embedding to `1 as follows: pick a random multicut
from the distribution; map all vertices in every part to either 1 or −1 with probability a half. Then the
expected distance between images of two vertices exactly equals the probability that the vertices are separated
by the multicut.
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space will be based on a 3-regular expander graph whose k vertex subgraphs are sparse. The
underlying expander graph was used by Arora, Lovász, Newman, Rabani, Rabinovich, and
Vempala [5] in their construction of such metric space. However, we equip this graph with a
different metric. We need the following lemma that was proved by Arora, Bollobás, Lovász,
and Tourlakis [3].

Lemma 3.6 ([3], Lemma 2.8, Lemma 2.12; see also [5], Lemma 3.3). There exists a 3-
regular expander graph on n vertices with girth Ω(log n) such that every subset of k points
has sparsity 1 +O( 1

log(n/k)
). Therefore, this expander is Ω(log(n/k))-path decomposable.

We are ready to prove the following theorem.

Theorem 3.7.
I. For every n, k < n and δ ∈ (0, 1/2], there exists a metric space (X, ρ) on n points such
that

• every embedding of (X, ρ) into `1 requires distortion Ω
(

log(n/k)
log 1/δ

)
;

• every subset of X of size k embeds into `1 with distortion 1 + δ.

Moreover, the aspect ratio of X (i.e. the ratio between the diameter of X and the minimal
distance between two points) is O(log(n/k)).
II. For every n, k < n and D ∈ (1, logn

log(n/k)
), there exists a metric space (X, ρ) on n points

such that

• every embedding of (X, ρ) into `1 requires distortion Ω(D log(n/k));

• every subset of X of size k embeds into `1 with distortion O(D).

Proof.
I. Let G be the expander from Lemma 3.6. Denote the set of its vertices by X. We know
that every subgraph of G on k · 3 · 2l vertices (for every l) is Ω(log(n/(k · 3 · 2l)))-path
decomposable. Choose l = Θ(log(n/k)) so that every subgraph on k · 3 · 2l vertices is l-path
decomposable. Let µ = c log(1/δ)/l, where c is a sufficiently large constant.

Let us equip X with the metric ρ defined as

ρ(u, v) = ρµ(u, v) = 1− (1− µ)d(u,v),

where d(u, v) is the shortest path distance between u and v in G. We will now prove that
every subset of X of size k embeds into `1 with distortion at most 1 + δ. Let Y be a
subset of X of size k. Consider the set of vertices Bd(Y, l) whose distance to Y is at most l:
Bd(Y, l) = {x : d(x, Y ) ≤ l}. Let H be the graph induced by Bd(Y, l) on G. Since degree of
each vertex in G is at most 3, the size of Bd(Y, l) is at most k · 3 · 2l. Therefore, H is l-path
decomposable. By Corollary 3.5, there exists an embedding ψ : Bd(Y, l) → `1 such that for
every u, v ∈ Bd(Y, l) (for L = bl/9c):

1. if dH(u, v) ≤ L then ‖ψ(u)− ψ(v)‖1 = 1− (1− µ)d(u,v);
2. if dH(u, v) > L then 1 ≥ ‖ψ(u)− ψ(v)‖1 ≥ 1− (1− µ)L.
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Note that since H is a subgraph of G, the shortest path distance between two vertices in
H, dH(u, v), is at least the shortest path distance between them in G, dG(u, v) ≡ d(u, v).
However, if u, v ∈ Y , and dG(u, v) ≤ l then the shortest path between them lies in H. Hence
dH(u, v) = dG(u, v). Therefore, for u, v ∈ Y , if dG(u, v) ≤ L then ‖ψ(u)−ψ(v)‖1 = ρ(u, v); if
dG(u, v) > L then 1 ≥ ‖ψ(u)−ψ(v)‖1 ≥ 1− (1−µ)L. Hence the distortion of the embedding
ψ : (Y, ρ) ↪→ `1 is at most 1+O(e−µL) = 1+O(e−c/9·log(1/δ)) < 1+δ (if we choose c sufficiently
large).

As was shown by Linial, London and Rabinovich [16] and Aumann and Rabani [7], the
distortion with which a bounded degree expander graph is embeddable into `1 is at least (up
to a constant factor) the ratio of the average distance between all vertices in the graph to
the average length of an edge:

2

n(n− 1)

∑
u,v∈V (G)

ρ(u, v)

/
1

|E(G)|
∑

(u,v)∈E(G)

ρ(u, v) .

Therefore, the least distortion with which (X, ρ) embeds into `1 is

Ω(1)

(1− (1− µ))
= Ω

(
log(n/k)

log(1/δ)

)
. (4)

Finally, the diameter of X is at most 1; the minimal distance between two points is µ.
Hence the aspect ratio is O(log(n/k)).
II. Consider the metric space (X, ρ ≡ ρµ) constructed in part I for δ = 1/2. Recall that
µ = Θ(1/ log(n/k)).

Let us equip X with a new distance function ρµ/D(u, v) = 1 − (1 − µ/D)d(u,v) (where
d(u, v) is the shortest path metric in the underlying expander). Note that since

1

D

(
1− (1− µ)d(u,v)

)
≤ 1− (1− µ/D)d(u,v) ≤ 1− (1− µ)d(u,v),

and every k point subspace of (X, ρµ) embeds into `1 with a constant distortion, then every
k point subspace of (X, ρµ/D) embeds into `1 with distortion at most O(D). On the other
hand, the entire space (X, ρµ/D) embeds into `1 with distortion at least (similarly to (4))

Ω(1)

(1− (1− µ/D))
= Ω

(
D log

n

k

)
.

(The average distance in X with respect to ρµ/D is a constant, since if d(u, v) = Ω(log n)
then ρµ/D(u, v) = 1 − e−Ω(µ logn/D). Recall that D < log n/ log(n/k). Hence ρµ/D(u, v) =
Ω(1).)

3.3 Lower Bound for Isometric Case

In this section, we present a metric space such that every subset of size k isometrically
embeds into `1, whereas every embedding of the entire space into `1 requires distortion at
least Ω(log n/(log log n+log k)). Our construction will be a perturbation of the metric space
we presented in Section 3.2.
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Theorem 3.8. Consider a metric space (X, ρ) on n points. Let k < n; let M be the aspect
ratio (i.e. the ratio between the diameter of X and the shortest distance). Suppose now that
every subspace of (X, ρ) of size k embeds into `1 with distortion at most 1 + 1/(2kM). Then
there exists a 2-Lipschitz equivalent metric ρ̂ on X such that every subspace of (X, ρ̂) of size
k embeds isometrically into `1.

We need the following definition and lemma.

Definition 3.9. Let S(u, v) be the metric defined by S(u, v) = 1, if u 6= v; and S(u, v) = 0,
if u = v. This metric is often called the discrete metric.

Lemma 3.10. Consider a metric space (Y, ρ) on k points. If for every two points u and v
from Y :

|ρ(u, v)− S(u, v)| ≤ 1

2k
,

then (Y, ρ) is isometrically embeddable into `2.

Proof. We will prove that the matrix

Guv = 1− ρ(u, v)2/2

is positive semidefinite and, therefore, there exists a set of unit vectors zu in `2 such that

〈zu, zv〉 = 1− ρ(u, v)2/2.

This implies that the mapping u 7→ zu is an isometric embedding, since

‖zu − zv‖2 =
√
‖zu‖2 + ‖zv‖2 − 2〈zu, zv〉 = ρ(u, v).

Express the matrix G as the sum of three matrices:

G =
1

2
I +


1
2
· · · 1

2
...

. . .
...

1
2
· · · 1

2

+Q.

Observe, that the eigenvalues of the matrix I/2 are equal to 1/2; the second matrix is positive
semidefinite. Then |Quv| ≤ 1/(2k) + 1/(8k2) and Quu = 0 for all u and v. Therefore, the
eigenvalues of Q are bounded in absolute value by

‖Q‖∞ ≤ (k − 1)×
[

1

2k
+

1

8k2

]
=

4k2 − 3k − 1

8k2
≤ 1

2
.

Hence G is positive semidefinite.

Corollary 3.11. Consider a metric space (Y, ρ) on k points. If for every two points u and
v from Y :

|ρ(u, v)− S(u, v)| ≤ 1

2k
,

then (Y, ρ) is isometrically embeddable into `1.
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Proof. Every finite subset of `2 is isometrically embeddable into `1.

Remark 3.12. The condition in this corollary cannot be significantly strengthened: there
exists a metric space (Y, ρ) such that |ρ(u, v)− S(u, v)| = O(1/k), however, the space (Y, d)
is not isometrically embeddable into `1.

Proof of Theorem 3.8. Denote the minimal distance between two distinct vertices of X by
δ. Define a new metric ρ̂ on X as follows:

ρ̂(u, v) = ρ(u, v) + δS(u, v).

First, the metric ρ̂ is 2-Lipschitz equivalent to the metric ρ. Indeed, for u 6= v we have
ρ(u, v) ≤ ρ̂(u, v) = ρ(u, v) + δ ≤ 2ρ(u, v). Now let Y be a subset of X of size k. By the
condition, there is an embedding ϕ : Y ↪→ `1 with distortion at most 1 + 1/(2kM). Without
loss of generality we may assume that

ρ(u, v) ≤ ‖ϕ(u)− ϕ(v)‖1 ≤ (1 + 1/(2kM))ρ(u, v).

Since the distance ρ(u, v) is at most Mδ (by the definition of M), we have

0 ≤ ‖ϕ(u)− ϕ(v)‖1 − ρ(u, v) ≤ δ/(2k).

This bound and Corollary 3.11 imply that the set Y equipped with the metric

(u, v) 7→ S(u, v)− (‖ϕ(u)− ϕ(v)‖1 − ρ(u, v))/δ

embeds into `1 isometrically. Denote the embedding by ψ. We have

ρ̂(u, v) = ‖ϕ(u)− ϕ(v)‖1 + δ (S(u, v)− (‖ϕ(u)− ϕ(v)‖1 − ρ(u, v))/δ)

= ‖ϕ(u)− ϕ(v)‖1 + δ ‖ψ(u)− ψ(v)‖1.

Therefore, ϕ⊕ δψ is an isometric embedding of (Y, ρ̂) into `1 ⊕ `1
∼= `1.

Theorem 3.13. For every n and k < n, there exists a metric space (X, ρ) on n points such
that

• every embedding of (X, ρ) into `1 requires distortion Ω
(

logn
log k+log logn

)
;

• every subset of X of size k embeds isometrically into `1.

Proof. Let δ = c
k logn

(where c is sufficiently small). By Theorem 3.7, there exists a metric

space (X, ρ) such that X embeds into `1 with distortion at least Ω( log(n/k)
log(1/δ)

) = Ω( logn
log k+log logn

);
every subset of X of size k embeds into `1 with distortion 1 + δ; the aspect ratio of X is
O(log n). Applying Theorem 3.8 to (X, ρ), we get that there exists a 2-Lipschitz equivalent
metric ρ̂ on X such that every subspace of (X, ρ̂) of size k embeds into `1 isometrically. Since
(X, ρ̂) is 2-Lipschitz equivalent to (X, ρ), every its embedding into `1 has distortion at least
Ω( logn

log k+log logn
). This concludes the proof.
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3.4 Lower Bounds for Spaces `p

In this section, we present analogs of the results from Sections 3.2 and 3.3 for spaces `p.
First we establish lower bounds for metric spaces that locally embed into `p isometrically

or almost isometrically. This result is a simple corollary of our results for embedding into `1.
Notice that if a metric space (X, ρ) embeds isometrically into `1, then the metric space

(X, ρ1/p) embeds isometrically into `p. Therefore, if (X, ρ) embeds into `1 with distortion
D then (X, ρ1/p) embeds into `p with distortion D1/p. We can upper bound the (global)
distortion of an embedding (X, ρ1/p) into `p using a theorem by Matoušek [19], which states
that every embedding of an expander into `p has distortion Ω(1/p× average distance

length of edge
).

This observation allows us to generalize Theorems 3.7 and 3.13 for `p spaces.

Theorem 3.14.
I. For every n, k < n, p ≥ 1 and δ ∈ (0, 1/2], there exists a metric space (X, ρ) on n points

such that

• every embedding of (X, ρ) into `1 requires distortion Ω
(

log(n/k)
log 1/δ

)1/p

;

• every embedding of (X, ρ) into `p requires distortion 1
p
· Ω
(
· log(n/k)

log 1/δ

)1/p

;

• every subset of X of size k embeds into `p with distortion 1 + δ.

II. For every n, k < n and p ≥ 1, there exists a metric space (X, ρ) on n points such that

• every embedding of (X, ρ) into `1 requires distortion Ω
(

logn
log k+log logn

)1/p

;

• every embedding of (X, ρ) into `p requires distortion 1
p
· Ω
(

logn
log k+log logn

)1/p

;

• every subset of X of size k embeds isometrically into `p.

We now construct a metric space that locally embeds into `p with a small distortion
but whose global distortion is almost log(n/k). Our proof relies on ideas from papers of
Bourgain [9] and Matoušek [20] that study low distortion tree embeddings. The authors
would like to thank Assaf Naor who suggested how to generalize our preliminary result
(which was stated in the conference version of this paper), and who pointed to a relevant
paper of Lee, Mendel, and Naor [17].

Theorem 3.15. For every n, k < n, p ≥ 1 and D ≥ 2 there exists a metric space (X, ρ)
on n points such that

• every embedding of (X, ρ) into `1 requires distortion Ω(log(n/k)1−1/Dmax(p,2)
);

• every embedding of (X, ρ) into `p requires distortion 1
p
· Ω(log(n/k)1−1/Dmax(p,2)

);

• every subset of X of size k embeds into `p with distortion O(D).
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In particular, there exists a metric space (X, ρ) such that

• every embedding of (X, ρ) into `1 requires distortion Ω(log(n/k));

• every embedding of (X, ρ) into `p requires distortion 1
p
· Ω(log(n/k));

• every subset of X of size k embeds into `p with distortion O((log log(n/k))min(1/2,1/p)).

Proof. Since every finite subset of `2 embeds isometrically into `p when p ∈ [1, 2], the metric
space for p = 2 works for all p ∈ [1, 2]. Thus we may assume below that p ≥ 2.

We consider the expander graph from Section 3.2 equipped with the metric

ρ(u, v) = min(d(u, v), c log(n/k))1−ε,

where d(·, ·) is the shortest path metric, ε = 1/Dp, and c is a sufficiently small constant.
It is immediate that the metric requires distortion at least Ω(log(n/k)1−1/Dp

) for embed-
ding into `1. In Theorem 3.7, we proved that every k points of the expander graph equipped
with a different metric embed into `1 with distortion at most 1 + δ. The proof was based
on Corollary 3.5. We can use exactly the same proof to show that every k points in the
expander embed with distortion O(D) into `p. The only thing we need to establish is an
analog of Corollary 3.5 for our new metric ρ. We prove it in Theorem 3.16.

Theorem 3.16. Let G = (V,E) be a (20L + 5)-path decomposable graph with girth at least
4L, p ≥ 2, and ε ∈ (0, 1/2) be a parameter. Define the distance function

ρ(u, v) = min(d(u, v), L)1−ε.

Then the metric space (V, ρ) embeds into `p with distortion O(D), where

D =
1

ε1/p
.

Below we consider orientations of graph edges in which every edge (u, v) is directed either
from u to v, from v to u or not directed at all (but it cannot be directed both from u to v
and from v to u). If the edge is directed from u to v or from v to u, we say that the edge is
regular ; if it is not directed, we say that the edge is special. We say that a vertex is a sink
if it has no regular outgoing edges.

Definition 3.17. We denote the shortest path between u and v by π(u, v). We denote the
concatenation of two paths P (1) and P (2) by P (1) → P (2). The distance between two edges is
the distance between the sets of their endpoints. Similarly, the distance between a vertex u
and an edge e = (v1, v2) is d(u, e) = d(u, {v1, v2}).

Lemma 3.18. Let G be an l-path decomposable graph; R = b(l − 1)/4c. There exists an
orientation of its edges such that

1. at most one edge leaves every vertex;
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2. the distance between every two special edges is at least R.

Proof. We will prove the theorem by induction. In fact, we will prove that given a ver-
tex s there exists an orientation with the required properties that satisfies two additional
conditions: (A) s is a sink vertex, and (B) the distance from s to every special edge is at
least R.

If G is a vertex, the statement holds trivially. If G is an edge (s, u), we orient (s, u) from
u to s. If the graph is not connected, we orient each connected component separately.

Now we verify the induction step. Since G is l-path decomposable, there are two possi-
bilities:

1. G has a cut vertex c;

2. G is the union of a graph H and a path P of length at least l, which do not have
common vertices except for the endpoints of P .

Consider the first case. Then G is union of components Ci whose only common vertex is c.
Assume without loss of generality that s ∈ C1. We recursively orient edges in each Ci so
that

• s is a sink in C1;

• c is a sink in every Ci for i ≥ 2.

Let us check that the obtained orientation satisfies the required conditions. Since c is a sink
in all components {Ci}i≥2, at most one edge leaves c. Every other vertex u belongs to exactly
one component Ci, thus also at most one edge leaves u. The distance between every two
special edges in one component is at least R. The distance between two special edges e1 and
e2 in distinct components equals d(e1, c) + d(c, e2). One of the summands is at least R by
condition (B). The same argument shows that d(s, e) ≥ R for every special edge e. Finally,
s is clearly a sink vertex in G (either it belongs only to C1 and it is a sink in C1; or s = c
and it is a sink in every Ci).

Now we consider the other case, G is a union of a subgraph H and a path P . Denote
the endpoints of P by x and y. First, assume that s lies in H. Then recursively orient
vertices in H. Pick an edge e in the middle of P at distance at least b(l − 1)/2c > R from
the endpoints of P . Let e be a special edge. Orient all edges between x and e toward x; all
edges between y and e toward y. The distance from e to any other special edge or s is at
least R. This orientation clearly satisfies all the required properties. Finally, assume that s
lies on P . Without loss of generality, we assume that d(x, s) ≤ d(y, s). Note that the graph
is a union of a subgraph H ′ ≡ H ∪ π(x, s) and a path P ′ ≡ π(s, y). Since s lies in H ′, we
can apply the previous argument to the union of H ′ and P ′. Since b(dl/2e − 1)/2c ≥ R, the
distance between any two special edges is also greater than R.

Proof of Theorem 3.16. First, we apply Lemma 3.18 (with l = 20L + 5). We get an orien-
tation of edges such that the distance between every two special edges is greater then 5L.
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Then we add extra vertices to G: we attach a path of length L to every sink in G, and orient
the edges of this path from the sink. We obtain a new graph G̃ = (Ṽ , Ẽ). For every vertex
u in G, there exists a unique directed path Pu in G̃ of length L that starts at u and in which
all edges have the same orientation as in G̃.

Let α = p − 1 − εp. Define f(i) = min(i + 1, L + 1 − i)α. Note that for every integer k
between 0 and L+ 1,

k∑
i=0

f(i) = Θ(k + 1)α+1.

We now define a map ϕ from V to (RṼ , ‖ · ‖p) as follows, the v-coordinate of the image
of u equals

ϕv(u) =

{
f(d(u, v))1/p, if v ∈ Pu;
0, otherwise .

Note that

‖ϕ(u)‖p =

(∑
v∈Pu

f(d(u, v))

)1/p

=

(
L∑
k=0

f(k)

)1/p

= Θ(L(α+1)/p) = Θ(L1−ε).

We will now prove a lemma, which bounds the distortion of the map ϕ for some pairs of
vertices.

Lemma 3.19. Consider two vertices u and v. If all edges on the path π(u, v) are regular
then

cρ(u, v) ≤ ‖ϕ(u)− ϕ(v)‖p ≤ CDρ(u, v).

Here c and C are some absolute constants.

Proof. There is a vertex b in π(u, v) such that all edges on π(u, b) are directed from u to
b; all edges on π(v, b) are directed from v to b (b can coincide with u or v). Then Pu is a
subpath of length L of the path π(u, b) → Pb; and Pv is a subpath of length L of the path
π(v, b) → Pb. Denote d1 = min(d(u, b), L + 1), d2 = min(d(v, b), L + 1). Without loss of
generality we assume that d1 ≤ d2. We now describe how the paths Pu and Pv intersect.

• The first d1 vertices on Pu (which lie on the path π(u, b)) do not belong to Pv; the first
d2 vertices on Pv do not belong to Pu.

• The first L+ 1− d2 vertices on Pb belong to both Pu and Pv.

• The next d2 − d1 vertices on Pb belong only to Pu.

• Pu and Pv contain no vertices other than listed above.
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We have

‖ϕ(u)−ϕ(v)‖pp =

d1−1∑
k=0

f(k)+

d2−1∑
k=0

f(k)+

L−d2∑
k=0

∣∣f(k + d1)1/p − f(k + d2)1/p
∣∣p+ L−d1∑

k=L+1−d2

f(k+d1).

The first term equals Θ(d1)(1−ε)p, the second term equals Θ(d2)(1−ε)p. Since f(L−k) = f(k),
the last term equals

d2−d1−1∑
k=0

f(k) = O(d2 − d1)(1−ε)p.

Finally, let us estimate the third term.

L−d2∑
k=0

|f(k + d1)1/p − f(k + d2)1/p|p ≤ 2
∞∑
k=0

∣∣(k + (d2 − d1))α/p − kα/p
∣∣p

≤ 2

d2−d1∑
k=0

(k + (d2 − d1))α + 2
∞∑

k=d2−d1+q

kα

((
1 +

d2 − d1

k

)α/p
− 1

)p

≤ O

(
(2(d2 − d1))α+1 +

(
α(d2 − d1)

p

)p ∞∑
k=d2−d1+1

kα−p

)

≤ O

(
(2(d2 − d1))α+1 +

(
α(d2 − d1)

p

)p
(d2 − d1)α+1−p

p− α− 1

)
= (d2 − d1)α+1 ×O

(
1 +

α

p(p− α− 1)1/p

)p
.

Combining all our estimates, we get that (for some positive constants c1 and C1),

c1d
(α+1)/p
2 ≤ ‖ϕ(u)− ϕ(v)‖p ≤ C2d

(α+1)/p
2

(
1 +

1

(p− α− 1)1/p

)
.

Taking into the account that min(d(u, v), L + 1)/2 ≤ d2 ≤ min(d(u, v), L + 1) we get the
statement of the lemma.

If there are no special edges in G, we are done. So we assume that there is at least one
special edge in the graph.

Given a special edge e and a vertex u, let eu be the endpoint of e that is further away
from u (or an arbitrary endpoint if both endpoints are at the same distance from u). Notice
that the shortest path between u and eu always contains the edge e. In other words, the
shortest path first visits the other endpoint of e and then goes to eu along the edge e. Define
a potential function pe(u) with respect to a special edge e as follows:

pe(u) = 1− ρ(u, ue)

L1−ε =

1−
(
d(u,eu)
L

)1−ε
, if d(u, eu) < L;

0, otherwise.
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Note that |pe(u) − pe(v)| ≤ (ρ(u, v) + 1)/L1−ε. Since the distance between any two special
edges is greater then 5L, the potential of a given point u is positive with respect to at most
one special edge.

Now we define the desired embedding of G into (RṼ , ‖ · ‖p).

ψ(u) =

{
ϕ(u) + pe(u)ϕ(eu), if there is a special edge e s.t. pe(u) > 0;

ϕ(u), otherwise.

We show that the paths Pu and Peu do not intersect, and thus the supports of ϕ(u) and
ϕ(eu) are disjoint. If Pu and Peu intersect, then there exists a path between u and Peu of
length at most 2L whose edges are regular. Since the girth of the graph is at least 4L, this
path must be the shortest path. But the shortest path between u and eu goes through the
special edge e by the definition of eu.

We get ‖ψ(u)‖p = Θ(L1−ε). Now we show that the distortion of ψ is O(D). First we
prove that if d(u, v) > 3L then the supports of ψ(u) and ψ(v) do not intersect:

• Paths Pu and Pv do not intersect since length(Pu) + length(Pv) = 2L < d(u, v). That
is, supports of ϕ(u) and ϕ(u) do not intersect.

• Assume pe(v) > 0 for some special edge e. Then d(v, ev) < L and d(u, ev) ≥ d(u, v)−
d(v, ev) > 2L. Thus paths Pu and Pev do not intersect. That is, supports of ϕ(u) and
pe(v)ϕ(ev) do not intersect.

• Similarly, supports of ϕ(v) and pe(u)ϕ(eu) do not intersect.

• Assume pe1(u) > 0 and pe2(v) > 0 for special edges e1 and e2. Note that e1 6= e2 as
otherwise we would have d(u, v) ≤ d(u, e1

u)+d(v, e2
v)+1 ≤ 3L. Then since the distance

between every two special edges is at least 5L, paths Pe1u and Pe2v do not intersect.
That is, supports of pe1(u)ϕ(e1

u) and pe2(v)ϕ(e2
v) do not intersect.

Therefore,

‖ψ(u)− ψ(v)‖p = Θ(‖ψ(u)‖p + ‖ψ(v)‖p) = Θ(L1−ε) = Θ(ρ(u, v)).

Below we assume that d(u, v) ≤ 3L. Since the distance between any two special edges is
greater than 5L, the path π(u, v) can contain at most one special edge. Moreover, if u is
within distance L from a special edge e, and v is within distance L from a special edge e′

then e = e′. Therefore, there exists a special edge e such that the distance from u to any
other special edge is more than L, and the distance from v to any other special edge is more
than L. Thus

ψ(u) = ϕ(u) + pe(u)ϕ(eu),

ψ(v) = ϕ(v) + pe(v)ϕ(ev).
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e eu = ev

u

v

Pv

Pu

e eveu

u

v

π(v, eu)

PuPv

Figure 2: The figure shows the arrangement of vertices u, v, eu, ev and paths π(u, eu), π(v, ev)
(shown by dotted lines), Pu and Pv (shown by dashed lines) in Case I and Case III.

I. Assume that all edges on π(u, v) are regular edges and eu = ev. Then

‖ψ(u)− ψ(v)‖p =
(
‖ϕ(u)− ϕ(v)‖pp + |pe(u)− pe(v)|p‖ψ(eu)‖pp

)1/p

= Θ(‖ϕ(u)− ϕ(v)‖p + ρ(u, v)).

From Lemma 3.19, we get

cρ(u, v) ≤ ‖ψ(u)− ψ(v)‖p ≤ CDρ(u, v)

for some positive constants c and C.
II. Assume that all edges on π(u, v) are regular edges but eu 6= ev. Both the shortest

path from u to eu and the shortest path from v to ev contain the edge e, but these paths go
along e in different directions. Thus their union is a simple path from u to v containing the
edge e. Since it contains a special edge, it cannot be the shortest path (i.e. π(u, v)); and
therefore d(u, eu) > L or d(v, ev) > L. Then either pe(u) = 0 or pe(v) = 0. The analysis
reduces to the previous case.

III. Assume that there is exactly one special edge on π(u, v); and this edge is e. Then
eu 6= ev. The paths Pu and Pv do not intersect; and the supports of vectors ϕ(u)−pe(v)ϕ(ev)
and ϕ(v)− pe(u)ϕ(eu) are disjoint. Thus

‖ψ(u)− ψ(v)‖p = Θ (‖ϕ(u)− pe(v)ϕ(ev)‖p + ‖ϕ(v)− pe(u)ϕ(eu)‖p) .
Since all edges on π(u, ev) and π(v, eu) are regular, ‖ϕ(u) − ϕ(ev)‖p = Θ(ρ(v, eu)) and
‖ϕ(v)− ϕ(eu)‖p = Θ(ρ(v, eu)). We have

‖ψ(u)− ψ(v)‖p ≤ O
(
‖ϕ(u)− ϕ(ev)‖p + (1− pe(v))‖ϕ(ev)‖p

+ ‖ϕ(v)− ϕ(eu)‖p + (1− pe(u))‖ϕ(eu)‖p
)

= O

(
ρ(u, ev) + ρ(v, eu) +

ρ(v, ev) + ρ(u, eu)

L1−ε × L1−ε
)

≤ O(Dρ(u, v)).
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On the other hand,

‖ψ(u)− ψ(v)‖p ≥ Ω (‖ϕ(u)‖p − pe(u)‖ϕ(eu)‖p + ‖ϕ(v)‖p − pe(v)‖ϕ(ev)‖p)
= Ω(‖ψ(u)‖p × ((1− pe(u)) + (1− pe(v))))

= Ω(ρ(v, ev) + ρ(u, eu)) = Ω(ρ(u, v)).

IV. Finally, assume that there is a special edge e′ 6= e on π(u, v). Since d(u, v) < 3L,
we have d(u, e′u) < 3L, d(v, e′v) < 3L. Hence d(u, e) > L, d(v, e) > L. We can apply the
reasoning from item III with e = e′ to get the desired bounds on the distortion.
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