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In this paper, we present two approximation algorithms for the maximum constraint satisfaction

problem with k variables in each constraint (MAX k-CSP).

Given a (1− ε) satisfiable 2CSP our first algorithm finds an assignment of variables satisfying
a 1 − O(

√
ε) fraction of all constraints. The best previously known result, due to Zwick, was

1−O(ε1/3).

The second algorithm finds a ck/2k approximation for the MAX k-CSP problem (where c > 0.44
is an absolute constant). This result improves the previously best known algorithm by Hast, which

had an approximation guarantee of Ω(k/(2k log k)).

Both results are optimal assuming the Unique Games Conjecture and are based on rounding
natural semidefinite programming relaxations. We also believe that our algorithms and their

analysis are simpler than those previously known.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: MAX k-CSP, MAX 2CSP, SDP

1. INTRODUCTION

In this paper we study the maximum constraint satisfaction problem with k variables in each constraint (MAX
k-CSP): Given a set of boolean variables and constraints, where each constraint depends on k variables, our
goal is to find an assignment so as to maximize the number of satisfied constraints.

Several instances of 2CSPs have been well studied in the literature and semidefinite programming ap-
proaches have been very successful for these problems. In their seminal paper, Goemans and Williamson [1995]
gave a semidefinite programming based algorithm for MAX CUT, a special case of MAX 2CSP. If the opti-
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MAX CUT MAX 2CSP

Approximation ratio 0.878 0.874
[Goemans and Williamson 1995] [Lewin et al. 2002]

Almost satisfiable instances

• ε > 1/ log n 1−O(
√
ε) 1−O(ε1/3)

[Goemans and Williamson 1995] [Zwick 1998]

• ε < 1/ log n 1−O(
√
ε log n) 1−O(

√
ε log n)

[Agarwal et al. 2005] [Agarwal et al. 2005]

Table I. Note that the approximation ratios were almost the same for MAX CUT and MAX 2CSP; and in
the case of almost satisfiable instances the approximation guarantees were the same for ε < 1/ log n, but not
for ε > 1/ log n.

mal solution satisfies OPT constraints (in this problem satisfied constraints are cut edges), their algorithm
finds a solution satisfying at least αGW ·OPT constraints, where αGW ≈ 0.878. Given an almost satisfiable
instance (where OPT = 1 − ε), the algorithm finds an assignment of variables that satisfies a (1 − O(

√
ε))

fraction of all constraints.
In the same paper, Goemans and Williamson [1995] also gave a 0.796 approximation algorithm for MAX

DICUT and a 0.878 approximation algorithm for MAX 2SAT. These results were improved in several follow-
up papers: Feige and Goemans [1995], Zwick [2000], Matuura and Matsui [2003], and Lewin, Livnat and
Zwick [2002]. The approximation ratios obtained by Lewin, Livnat and Zwick [2002] are 0.874 for MAX
DICUT and 0.940 for MAX 2SAT. The algorithm of Lewin, Livnat and Zwick [2002] can also be used for
solving MAX 2CSP. Note that their approximation guarantee for an arbitrary MAX 2CSP almost matches
the approximation guarantee of Goemans and Williamson [1995] for MAX CUT.

Khot, Kindler, Mossel, and O’Donnell [2007] recently showed that both results of Goemans and Williamson [1995]
for MAX CUT are optimal and the results of Lewin, Livnat and Zwick [2002] are almost optimal1 assuming
Khot’s Unique Games Conjecture [Khot 2002]. The MAX 2SAT hardness result was further improved by
Austrin [2007a], who showed that the MAX 2SAT algorithm of Lewin, Livnat and Zwick [2002] is optimal
assuming the Unique Games Conjecture.

An interesting gap remained for almost satisfiable instances of MAX 2CSP (i.e. where OPT = 1− ε). On
the positive side, Zwick [1998] developed an approximation algorithm that satisfies a 1−O(ε1/3) fraction of
all constraints2. However the best known hardness result [Khot et al. 2007] (assuming the Unique Games
Conjecture) is that it is hard to satisfy 1 − O(

√
ε) fraction of constraints. In this paper, we close the

gap by presenting a new approximation algorithm that satisfies 1 − O(
√
ε) fraction of all constraints. Our

approximation guarantee for arbitrary MAX 2CSP matches the guarantee of Goemans and Williamson [1995]
for MAX CUT. Table I compares the previous best known results for the two problems.

So far, we have discussed MAX k-CSP for k = 2. The problem becomes much harder for k ≥ 3. In
contrast to the k = 2 case, it is NP-hard to find a satisfying assignment for 3CSP. Moreover, according to
H̊astad’s 3-bit PCP Theorem [H̊astad 2001], if (1 − ε) fraction of all constraints is satisfied in the optimal
solution, we cannot find a solution satisfying more than (1/2 + ε) fraction of constraints.

The approximation factor for MAX k-CSP is of interest in complexity theory since it is closely tied to
the relationship between the completeness and soundness of k-bit PCPs. A trivial algorithm for k-CSP
is to pick a random assignment. It satisfies each constraint with probability at least 1/2k (except those
constraints which cannot be satisfied). Therefore, its approximation ratio is 1/2k. Trevisan [1998] improved
on this slightly by giving an algorithm with approximation ratio 2/2k. Until recently, this was the best
approximation ratio for the problem. Recently, Hast [2005] proposed an algorithm with an asymptotically

1Khot, Kindler, Mossel, and O’Donnell [2007] proved 0.943 hardness result for MAX 2SAT and 0.878 hardness result for MAX
2CSP.
2He developed an algorithm for MAX 2SAT, but it is easy to see that in the case of almost satisfiable instances MAX 2SAT is

equivalent to MAX 2CSP (see Section 2.1 for more details).
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better approximation guarantee Ω
(
k/(2k log k)

)
. Also, Samorodnitsky and Trevisan [2006] proved that it

is NP-hard to approximate MAX k-CSP within 2k/2k for every k ≥ 3, and within (k + 1)/2k for infinitely
many k assuming the Unique Games Conjecture of Khot [2002]. We close the gap between the upper
and lower bounds for k-CSP by giving an algorithm with approximation ratio Ω

(
k/2k

)
. By the results of

[Samorodnitsky and Trevisan 2006], our algorithm is asymptotically optimal within a factor of approximately
1/0.44 ≈ 2.27 (assuming the Unique Games Conjecture).

In our algorithm, we use the approach of Hast [2005]: we first obtain a “preliminary” solution z1, . . . , zn ∈
{−1, 1} and then independently flip the values of zi using a slightly biased distribution (i.e. we keep the old
value of zi with probability slightly larger than 1/2). In this paper, we improve and simplify the first step in
this scheme. Namely, we present a new method of finding z1, . . . , zn, based on solving a certain semidefinite
program (SDP) and then rounding the solution to ±1 using the result of Rietz [1974] and Nesterov [1997].
Note, that Hast obtains z1, . . . , zn by maximizing a quadratic form (which differs from our SDP) over the
domain {−1, 1} using the algorithm of Charikar and Wirth [2004]. The second step of our algorithm is
essentially the same as in Hast’s algorithm.

Our result is also applicable to MAX k-CSP with a larger domain. It gives a Ω
(
k log d/dk

)
approximation

for instances with domain size d. To apply the result to an instance with a larger domain, we just encode
each domain value with log d bits. We describe the details in Section 3.4.

In Section 2, we describe our algorithm for MAX 2CSP and in Section 3, we describe our results for MAX
k-CSP. Both algorithms are based on exploiting information from solutions to natural SDP relaxations for
the problems.

Added in proof. After this paper appeared at SODA 2007, Austrin and Mossel [2008], and Guruswami
and Raghavendra [2008] showed that assuming the Unique Games Conjecture, it is NP-hard to approximate
MAX k-CSP with domain size d within factor Ω(kd2/dk) (see [Austrin and Mossel 2008; Guruswami and
Raghavendra 2008] for more details). Guruswami and Raghavendra [2008] also proposed an alternative
algorithm for MAX k-CSP with non-boolean domain. However, our algorithm for that problem gives a
better approximation guarantee (of Ω

(
k log d/dk

)
).

Austrin [2007b] proved that assuming the Unique Games Conjecture and a certain geometric conjecture
it is NP-hard to approximate any 2CSP problem with the ratio better than the integrality gap of the SDP
relaxation. Raghavendra [2008] proved that statement for arbitrary k-CSP assuming only the Unique Games
Conjecture.

2. APPROXIMATION ALGORITHM FOR MAX 2CSP

2.1 SDP Relaxation

In this section we describe the vector program (SDP) for MAX 2CSP/MAX 2SAT.

Definition 2.1 MAX k-AllEqual Problem. Given a set of variables x1, . . . , xn and a set of constraints
pk(xi, xj), where pk is an arbitrary boolean predicates. The goal is to find an assignment to the variables xi
so as to maximize the number of satisfied constraints.

For convenience we replace each negation x̄i with a new variable x−i that is equal by definition to x̄i. First,
we transform our instance to a MAX 2SAT formula: we replace

—each constraint of the form xi ∧ xj with two clauses xi and xj ;
—each constraint of the form xi ⊕ xj with two clauses xi ∨ xj and x−i ∨ x−j ;
—finally, each constraint xi with xi ∨ xi.

It is easy to see that the fraction of unsatisfied constraints in the formula is equal, up to a factor of 2, to the
number of unsatisfied constraints in the original MAX 2CSP instance. Therefore, if we satisfy 1 − O(

√
ε)

fraction of all constraints in the 2SAT formula, we will also satisfy 1 − O(
√
ε) fraction of all constraints in

MAX 2CSP. In what follows, we will consider only 2SAT formulas. To avoid confusion between 2SAT and
SDP constraints we will refer to them as clauses and constraints respectively. We denote the number of
clauses by m.

We now rewrite all clauses in the form xi → xj , where i, j ∈ {±1,±2, . . . ,±n}. For each xi, we introduce
a vector variable vi in the SDP. We also define a special unit vector v0 that corresponds to the value 1: in
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Figure 1: Approximation Algorithm for MAX 2CSP

(1) Solve the SDP for MAX 2SAT. Denote by OPTSDP the objective value of the solution and by ε the
fraction of the clauses “unsatisfied” by the vector solution, that is,

ε =
SDP

m
,

where m is the total number of clauses.
(2) Pick a random Gaussian vector g with independent components distributed as N (0, 1).
(3) For every i,

(a) Project the vector g to vi:

ξi = 〈g, vi〉.

Note, that ξi is a standard normal random variable, since vi is a unit vector.
(b) Pick a threshold ti as follows:

ti = −〈vi, v0〉
/√

ε .

(c) If ξi ≥ ti, set xi = 1, otherwise set xi = 0.

the intended (integral) solution vi = v0, if xi = 1; and vi = −v0, if xi = 0. The SDP contains the constraints
that all vectors are unit vectors and vi = −v−i.

For each clause xi → xj we add the term

1
8
(
‖vj − vi‖2 − 2〈vj − vi, v0〉

)
to the objective function. In the intended solution this expression equals 1, if the clause is not satisfied; and
0, if it is satisfied. Therefore, our SDP is a relaxation of MAX 2SAT (the objective function measures how
many clauses are not satisfied). Finally, we add constraints that ensure that all terms in the SDP objective
function are non-negative.

We get an SDP relaxation for MAX 2SAT:

minimize
1
8

∑
clauses xi→xj

‖vj − vi‖2 − 2〈vj − vi, v0〉

subject to

‖vj − vi‖2−2〈vj − vi, v0〉 ≥ 0 for all clauses vi → vj

‖vi‖2 = 1 for all i ∈ {0,±1, . . . ,±n}
vi = −v−i for all i ∈ {±1, . . . ,±n}

In a slightly different form, this semidefinite program was introduced by Feige and Goemans [1995]. Later,
Zwick [1998] used this SDP in his algorithm.

2.2 Algorithm and Analysis

The approximation algorithm is shown in Figure 1. We interpret the inner product 〈vi, v0〉 as the bias
towards rounding vi to 1. The algorithm rounds vectors orthogonal to v0 (“unbiased” vectors) using the
random hyperplane technique. If, however, the inner product 〈vi, v0〉 is positive, the algorithm shifts the
random hyperplane; and it is more likely to round vi to 1 than to 0.

It is easy to see that the algorithm always obtains a valid assignment to variables: if xi = 1, then x−i = 0
and vice versa. We will need several facts about normal random variables. Denote the probability that a
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standard normal random variable is greater than t ∈ R by Φ̃(t), in other words

Φ̃(t) ≡ 1− Φ0,1(t) = Φ0,1(−t),

where Φ0,1 is the normal distribution function. The following lemma gives well-known lower and upper
bounds on Φ̃(t).

Lemma 2.2. For every positive t,

t√
2π(t2 + 1)

e−
t2
2 < Φ̃(t) <

1√
2πt

e−
t2
2 .

Proof. Observe, that in the limit t → ∞ all three expressions are equal to 0. Hence the lemma follows
from the following inequality on the derivatives:(

t√
2π(t2 + 1)

e−
t2
2

)′
> − 1√

2π
e−

t2
2 >

(
1√
2πt

e−
t2
2

)′
.

Corollary 2.3. The following inequalities hold for3 t ≥ 0: Φ̃(t) ≤ e− t2
2 ; and Φ̃(t) ≤ 1√

2πt
.

Lemma 2.4. Let η be a random normal variable with variance ∆2 and mean 0; and let t be a positive real
number. Denote

(η − t)+ =

{
η − t, if η − t ≥ 0;
0, otherwise.

Then,

E
[
(η − t)+

]
≤
√

2π∆ Φ̃(t/∆).

Proof. First, we prove this statement for a random normal variable η with variance 1:

E
[
(η − t)+

]
=
∫ ∞
t

Pr (η ≥ s) ds =
∫ ∞
t

Φ̃(s)ds

≤
∫ ∞
t

e−s
2/2ds =

√
2πΦ̃(t).

Now, for arbitrary variance ∆2, we have

E
[
(η − t)+

]
= ∆E

[(
η

∆
− t

∆

)+
]
≤
√

2π∆Φ̃(t/∆).

A clause xi → xj is not satisfied by the algorithm if ξi ≥ ti and ξj ≤ tj (i.e. xi is set to 1; and xj is set
to 0). The following lemma bounds the probability of this event.

Lemma 2.5. Let ξi and ξj be two standard normal random variables with covariance 1 − 2∆2 (where
∆ ≥ 0). For all real numbers ti, tj and δ = (tj − ti)/2 we have (for some absolute constant C)

(1 ) If tj ≤ ti,

Pr (ξi ≥ ti and ξj ≤ tj) ≤ C min(∆2/|δ|,∆).

(2 ) If tj ≥ ti,

Pr (ξi ≥ ti and ξj ≤ tj) ≤ C(∆ + 2δ).

3Observe, that e−
1
2 > 1/2 = Φ̃(0).
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Proof. 1. First note that if ∆ = 0, then the above inequality holds, since ξi = ξj almost surely. If
∆ ≥ 1/2, then the right hand side of the inequality becomes Ω(1)×min(1/|δ|, 1). Since max(ti,−tj) ≥ |δ|/2,
the inequality follows from the bound Φ̃(|δ|/2) ≤ O(1/|δ|). So we assume 0 < ∆ < 1/2.

Let ξ = (ξi + ξj)/2 and η = (ξi − ξj)/2. Then ξ and η are independent normal random variables with
variance 1−∆2 and ∆2 correspondingly. Write

Pr (ξj ≤ tj and ξi ≥ ti) = Pr (ξ − η ≤ tj and ξ + η ≥ ti) = Pr (ti − η ≤ ξ ≤ η + tj) .

The density of the normal distribution with variance 1 −∆2 does not exceed 1/
√

2π(1−∆2) < 1. Hence,
for a fixed η the probability above can be bounded by ((η + tj)− (ti − η))+; and

Pr (ξj ≤ tj and ξi ≥ ti) = E [Pr (ti − η ≤ ξ ≤ η + tj | η)] ≤ E
[
(2η − (ti − tj))+

]
.

By Lemma 2.4 and Corollary 2.3,

Pr (ξj ≤ tj and ξi ≥ ti) ≤ C∆Φ̃(
ti − tj

2∆
) ≤ C∆ min(1,∆/|δ|).

2. We have

Pr (ξj ≤ tj and ξi ≥ ti) ≤ Pr (ξj ≤ tj and ξi ≥ tj) + Pr (ti ≤ ξi ≤ tj)
≤ C(∆ + 2δ).

For estimating the probability Pr (ξj ≤ tj and ξi ≥ tj) we used part 1 with ti = tj .

Theorem 2.6. The approximation algorithm finds an assignment satisfying a 1 − O(
√
ε) fraction of all

constraints, where ε = OPTSDP /m.

Proof. We shall estimate the probability of satisfying a clause xi → xj . Set ∆ij = ‖vj − vi‖/2 (so that
cov(ξi, ξj) = 〈vi, vj〉 = 1− 2∆2

ij) and δij = (tj − ti)/2 ≡ −〈vj − vi, v0〉/(2
√
ε). The contribution of the term

to the SDP is equal to cij = (∆2
ij + δij

√
ε)/2.

Consider the following cases (we use Lemma 2.5 in all of them):

(1) If δij ≥ 0, then the probability that the clause is not satisfied (i.e. ξi ≥ ti and xj ≤ tj) is at most

C(∆ij + 2δij) ≤ C(
√

2cij + 4cij/
√
ε).

(2) If δij < 0 and ∆2
ij ≤ 4cij , then the probability that the clause is not satisfied is at most

C∆ij ≤ 2C
√
cij .

(3) If δij < 0 and ∆2
ij > 4cij , then the probability that the clause is not satisfied is at most

C∆2
ij

|δij |
=

C∆2
ij

(∆2
ij − 2cij)/

√
ε
≤

C
√
ε∆2

ij

∆2
ij −∆2

ij/2
= 2C

√
ε.

Combining these cases we get that the probability that the clause is not satisfied is at most

4C(
√
cij + cij/

√
ε+
√
ε).

The expected fraction of unsatisfied clauses is equal to the average of such probabilities over all clauses.
Recall, that ε is equal, by definition, to the average value of cij . Therefore, the expected number of unsatisfied
constraints is O(

√
ε+ ε/

√
ε+
√
ε) (here we used Jensen’s inequality for the function

√
· ).

Theorem 2.7. The approximation algorithm for MAX 2CSP finds an assignment satisfying a 1−O(
√
ε)

fraction of all constraints, if the optimal solution satisfies 1− ε fraction of all constraints.

This is an immediate corollary of the Theorem 2.6.
6



3. APPROXIMATION ALGORITHM FOR MAX K-CSP

3.1 Reduction to MAX k-AllEqual

We use Hast’s reduction of the MAX k-CSP problem to the MAX k-AllEqual problem.

Definition 3.1 MAX k-AllEqual Problem. Given a set S of clauses of the form l1 ≡ l2 ≡ · · · ≡ lk, where
each literal li is either a boolean variable xj or its negation x̄j . The goal is to find an assignment to the
variables xi so as to maximize the number of satisfied clauses.

The reduction works as follows. First, we write each constraint f(xi1 , xi2 , . . . , xik) as a CNF formula: the
CNF formula has a clause for every satisfying assignment of the constraint. Then we consider each clause in
the CNF formula as a separate constraint; we get an instance of the MAX k-CSP problem, where each clause
is a conjunction. The new problem is equivalent to the original problem: each assignment satisfies exactly
the same number of clauses in the new problem as in the original problem (note that unlike the MAX 2CSP
problem, the objective function is the fraction of satisfied clauses, not the fraction of unsatisfied clauses).
Finally, we replace each conjunction l1 ∧ l2 ∧ . . .∧ lk with the constraint l1 ≡ l2 ≡ · · · ≡ lk. Clearly, the value
of this instance of MAX k-AllEqual is at least the value of the original problem. Moreover, it is at most
two times greater then the value of the original problem: if an assignment {xi} satisfies a constraint in the
new problem, then either the assignment {xi} or the assignment {x̄i} satisfies the corresponding constraint
in the original problem. Therefore, a ρ approximation guarantee for MAX k-AllEqual translates to a ρ/2
approximation guarantee for the MAX k-CSP.

Note that this reduction may increase the number of constraints by a factor of O(2k). However, our
approximation algorithm gives a nontrivial approximation only when k/2k ≥ 1/m where m is the number of
constraints, that is, when 2k ≤ O(m logm) is polynomial in m.

Below we consider only the MAX k-AllEqual problem.

3.2 SDP Relaxation

As before, we denote x̄i by x−i. We think of each clause C as a set of indices: the clause C defines the
constraint “(for all i ∈ C, xi is true) or (for all i ∈ C, xi is false)”. Without loss of generality we assume
that there are no unsatisfiable clauses in S, i.e. there are no clauses that have both literals xi and x̄i.

We consider the following SDP relaxation of the MAX k-AllEqual problem:

maximize
1
k2

∑
C∈S

∥∥∥∥∥∑
i∈C

vi

∥∥∥∥∥
2

subject to

‖vi‖2 = 1 for all i ∈ {±1, . . . ,±n}
vi = −v−i for all i ∈ {±1, . . . ,±n}

This is indeed a relaxation of the problem: in the intended solution vi = v0 if xi is true, and vi = −v0 if xi
is false (where v0 is a fixed unit vector). Then each satisfied clause contributes 1 to the SDP value. Hence
the value of the SDP is greater than or equal to the value of the MAX k-AllEqual problem. We use the
following theorem of Rietz [1974] and Nesterov [1997].

Theorem 3.2 Rietz [1974], Nesterov [1997]. There exists an efficient algorithm that given a positive
semidefinite matrix A = (aij), and a set of unit vectors vi, assigns ±1 to variables zi, s.t.∑

i,j

aij zizj ≥
2
π

∑
i,j

aij 〈vi, vj〉. (1)

Remark 3.3. Rietz proved that for every positive semidefinite matrix A and unit vectors vi there exist
zi ∈ {±1} s.t. inequality (1) holds. Nesterov presented a polynomial time algorithm that finds such values
of zi.
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Figure 2: Approximation Algorithm for the MAX k-AllEqual Problem

(1) Solve the semidefinite relaxation for MAX k-AllEqual. Get vectors vi.
(2) Apply Theorem 3.2 to vectors vi as described above. Get values zi.

(3) Let δ =

√
2
k

.

(4) For each i ≥ 1 assign (independently)

xi =

{
true, with probability 1+δzi

2 ;
false, with probability 1−δzi

2 .

Observe that the quadratic form

1
k2

∑
C∈S

(∑
i∈C

zi

)2

is positive semidefinite (since it is positive for arbitrary values z1, . . . , zn). Therefore we can use the algorithm
from Theorem 3.2. Given vectors vi as in the SDP relaxation, it yields numbers zi s.t.

1
k2

∑
C∈S

(∑
i∈C

zi

)2

≥ 2
π

1
k2

∑
C∈S

∥∥∥∥∥∑
i∈C

vi

∥∥∥∥∥
2

zi ∈ {±1}
zi = −z−i

(Formally, v−i is an abbreviation for −vi; z−i is a shortcut for −zi).
In what follows, we assume that k ≥ 3 — for k = 2 we can use the MAX CUT algorithm by Goemans

and Williamson [1995] to get a better approximation4.
The approximation algorithm is shown in Figure 2.

3.3 Analysis

Theorem 3.4. The approximation algorithm finds an assignment satisfying at least ck/2k ·OPT clauses
(where c > 0.88 is an absolute constant), given that OPT clauses are satisfied in the optimal solution.

Proof. For a constraint C, denote ZC = 1
k

∑
i∈C zi. Then Theorem 3.2 guarantees that

∑
C∈S

Z2
C =

1
k2

∑
C∈S

(∑
i∈C

zi

)2

≥ 2
π

1
k2

∑
C∈S

∥∥∥∥∥∑
i∈C

vi

∥∥∥∥∥
2

=
2
π
OPTSDP ≥

2
π
OPT,

where OPTSDP is the SDP value.
Note that the number of zi ∈ C equal to 1 is 1+ZC

2 k, and the number of zi ∈ C equal to −1 is 1−ZC

2 k.

4Our algorithm works for k = 2 with a slight modification: δ should be less than 1.
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The probability that a constraint C is satisfied equals

Pr(C is satisfied) = Pr (∀i ∈ C xi = 1) + Pr (∀i ∈ C xi = −1)

=
∏
i∈C

1 + δzi
2

+
∏
i∈C

1− δzi
2

=
1
2k
(
(1 + δ)(1+ZC)k/2 · (1− δ)(1−ZC)k/2 + (1− δ)(1+ZC)k/2 · (1 + δ)(1−ZC)k/2

)
=

(1− δ2)k/2

2k

((
1 + δ

1− δ

)ZCk/2

+
(

1− δ
1 + δ

)ZCk/2
)

=
1
2k

(1− δ2)k/2 · 2 cosh
(

1
2

ln
1 + δ

1− δ
· ZCk

)
.

Here, cosh t ≡ (et + e−t)/2. Let α be the minimum of the function cosh t/t2. Numerical computations show
that α > 0.93945. We have,

cosh
(

1
2

ln
1 + δ

1− δ
· ZCk

)
≥ α

(
1
2

ln
1 + δ

1− δ
· ZCk

)2

≥ α (δ · ZCk)2 = 2αZ2
Ck.

Recall that δ =
√

2/k and k ≥ 3. Hence

(1− δ2)k/2 =
(

1− 2
k

)k/2
≥
(

1− 2
k

)
· 1
e
.

Combining these bounds we get,

Pr (C is satisfied) ≥ 4α
e
· k

2k
·
(

1− 2
k

)
· Z2

C .

However, a more careful analysis shows that the factor 1 − 2/k is not necessary, and the following bound
holds (we give a proof in the Appendix):

2α(1− δ2)k/2
(

1
2

ln
1 + δ

1− δ
· ZCk

)2

≥ 4α
e
Z2
Ck. (2)

Therefore,

Pr (C is satisfied) ≥ 4α
e
· k

2k
· Z2

C .

So the expected number of satisfied clauses is∑
C∈S

Pr (C is satisfied) ≥ 4α
e

k

2k
∑
C∈S

Z2
C ≥

4α
e

k

2k
· 2
π
OPT.

We conclude that the algorithm finds an

8α
πe

k

2k
> 0.88

k

2k

approximation with high probability.

3.4 k-CSPs with non-binary domain

We now describe our algorithm for the k-CSP problem with a non-boolean domain. If the domain size d is
a power of 2 i.e. d = 2t, then we just encode every value in the domain by t bits and replace all original
predicates with new predicates depending on t×k boolean variables. The new problem is exactly equivalent
to the original one. Our algorithm for the boolean k-CSP problem gives a

0.44
t× k
2t×k

= 0.44
k log2 d

2k

approximation.
9



We now consider the case when the domain size is not a power of 2. Let D be the domain of the problem;
and let OPT be the optimal value. Fix d′ = 2blog2 dc, and pick random subsets Di ⊂ D of size d′ for every
i = 1, . . . , n. Consider a new problem in which every variable xi may take values only in the set Di. Note
that this restriction may make some constraints unsatisfiable. The domain size of the new problem d′ is a
power of two, thus the previous algorithm finds a solution of cost 0.44(k log d′/d′k)×OPT ′, where OPT ′ is
the cost of the optimal solution of the new problem. We prove below that the expected value of OPT ′ is at
least (d′/d)kOPT . Thus, the expected cost of the solution returned by the algorithm is at least

0.44
k log d′

d′k
× d′k

dk
OPT = 0.44

kblog dc
dk

OPT.

Let x̂1, . . . , x̂n be an optimal solution to the original problem. Consider the following solution to the new
problem

x̃i =

{
x̂i, if x̂i ∈ Di;
arbitrary value in Di, otherwise.

Clearly, x̂i = x̃i with probability d′/d. Hence, every predicate satisfied by {x̂}i is satisfied by {x̃}i with
probability at least (d′/d)k. Thus the new solution satisfies (d′/d)kOPT constraints on average.

We note that this reduction can be easily derandomized using the k-wise δ-dependent distribution of
Azar, Motwani, and Naor [1998]. Assume D = Zd. Instead of sampling sets Di uniformly at random, we let
Di = {ri, ri + 1, . . . , ri + (d′ − 1)}, where ri-s are drawn from a k-wise (ε(d′/d)k)-dependent distribution D
on Znd with polynomial size sample space. For every predicate p satisfied by {x̂}i, we have

Pr
r∈DZn

d

({x̃}i satisfies p) ≥ Pr
r∈UZn

d

({x̃}i satisfies p)− ε(d′/d)k ≥ (1− ε)(d′/d)k.

Therefore, if we run the algorithm on all samples {ri}i in the sample space, we will find a 0.44(1 −
ε)kblog2 dc/dk approximation.
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A. PROOF OF INEQUALITY (2)

In this section, we will prove inequality (2):

2α(1− δ2)k/2
(

1
2

ln
1 + δ

1− δ
· ZCk

)2

≥ 4α
e
Z2
Ck. (2)

Write this inequality as follows.

(1− δ2)k/2
(√

k

2
· ln(1 + δ)− ln(1− δ)

2

)2

≥ e−1.

Note that this inequality holds for 3 ≤ k ≤ 7, which can be verified by direct computation. So assume that
k ≥ 8. Denote t = 2/k; and replace k with 2/t and δ with

√
t. We get

(1− t)1/t
(

1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2

)2

≥ e−1.

Take the logarithm of both sides:

ln(1− t)
t

+ 2 ln
(

1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2

)
≥ −1.

Observe that

1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2
= 1 +

t

3
+
t2

5
+
t3

7
+ · · · ≥ 1 +

t

3
;

and

ln(1− t)
t

= −1− t

2
− t2

3
− · · · ≥ −1− t

2
− t2

3
×
∞∑
i=0

ti

≥ −1− t

2
− 4t2

9
.
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In the last inequality we used our assumption that t ≡ 2/k ≤ 1/4 . Now,

ln(1− t)
t

+ 2 ln
(

1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2

)
≥
(
−1− t

2
− 4t2

9

)
+ 2 ln

(
1 +

t

3

)
≥
(
−1− t

2
− 4t2

9

)
+ 2

(
t

3
− t2

18

)
≥ −1 +

t

6
− 5t2

9
≥ −1.

Here (t/6− 5t2/9) is positive, since t ∈ (0, 1/4]. This concludes the proof.
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