

Corrigendum to "Remote land-use impacts on river flows through atmospheric teleconnections" published in Hydrol. Earth Syst. Sci., 22, 4311–4328, 2018

Lan Wang-Erlandsson^{1,2,3}, Ingo Fetzer¹, Patrick W. Keys^{1,4}, Ruud J. van der Ent^{2,5}, Hubert H. G. Savenije², and Line J. Gordon¹

 ¹Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 104 05, Stockholm, Sweden
²Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
³Research Institute for Humanity and Nature (RIHN), 457-4 Motoyama, Kamigamo, Kita-ku, 603-8047 Kyoto, Japan
⁴School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO 80523, USA
⁵Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80 115,

3508 TC Utrecht, the Netherlands

Correspondence: Lan Wang-Erlandsson (lan.wang@su.se)

Published: 17 December 2018

The following funding information was missing from the acknowledgements:

Lan Wang-Erlandsson and Ingo Fetzer also acknowledge funding from the European Research Council under EU H2020 (grant no. ERC-2016-ADG 743080).

Apart from that, this corrigendum corrects the colourscale bar units for Fig. 4a and c in the mentioned paper. The correct units are as follows.

Figure 4. Land-use change-induced changes in hydrological flows (current land-use-potential vegetation scenario): (**a**) absolute change in evaporation, (**b**) relative change in evaporation, (**c**) absolute change in precipitation, (**d**) relative change in precipitation, (**e**) absolute change in continental precipitation recycling ratio (i.e. precipitation with terrestrial origin divided by total precipitation P_{tracked}/P and converted to the unit of percent), (**f**) relative change in continental precipitation recycling ratio (**a**) absolute change in river flows at outlet, and (**h**) relative change in river flows at outlet.