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Abstract

Touch displays are more and more integrated in daily life, as in mobile phones,
vending machines or tablets. Modern touchscreens utilize projected-capacitive
touch technology. It measures changes of capacitance on the surface of the screen.
Touchscreens provide a natural and intuitive interface for interactions. One draw-
back is the missing haptic feedback. Virtual objects yield no feedback disregarding
the visual clues. Therefore eye-free manipulation is hardly feasible on planar touch-
screens. Widgets, physical controls, unite the benefits of touchscreens and haptic
teedback. They are placed on top of the touchscreen and paired with virtual ob-
jects. A manipulation of the physical object results in a modification of the virtual
one, enabling eyes-free interaction. When using acrylic for the widgets, the label-
ing underneath is adapted to match the needs of the currently paired object. One
advantage of capacitive widgets is the hover functionality. A touch on the widget
is detected without changing its physical state. Each widget is identified through
its unique marker pattern underneath. Furthermore, each control embeds a set of
markers to indicate its state to the system. This thesis provides an overview of the
design and construction of widgets, pointing out the constraints and limitations. In
addition a framework implementation for the tracking of widgets on multi-touch
tables is explained in detail. The thesis concludes with an overview of the design
space for capacitive touchscreen widgets.
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Uberblick

Touch Bildschirme sind zunehmend in unserem tédglichen Leben integriert, sei es
in Form von Mobiltelefonen, Verkaufsautomaten oder Tablets. Moderne Touch
Bildschirme verwenden projizierte kapazitive Touch Technologien. Diese messen
Verdnderungen der Kapazitit auf der Oberfliche des Bildschirms. Touch Bild-
schirme bieten eine natiirliche und intuitive Interaktionsumgebung. Ein Nachteil
besteht im fehlenden haptischen Feedback. Virtuelle Objekte bieten ausschlief3lich
visuelle Riickmeldungen. Auf ebenen Touch Oberfldchen ist folglich keine blinde
Benutzung moglich. Widgets, das heifst physische Steuerelemente, vereinen die
Vorteile von Touch Bildschirmen und haptischem Feedback. Sie werden auf
der Bildschirmoberfédlche plaziert und mit virtuellen Objekten in Verbindung ge-
bracht. Eine Manipulation der physischen Objekte bewirkt eine Verdnderung der
Virtuellen, was eine Interaktion ohne Sichtkontakt ermoglicht. Wird Acryl fiir
die Widgets verwendet, werden die Beschriftungen darunter angepasst um die
Bediirfnisse der gegenwartig verbundenen Objekte zu erfiillen. Ein Vorteil von
kapazitiven Widgets besteht in der Hover-Funktion. Die Beriihrung eines Wid-
gets wird erkannt, ohne den physikalischen Zustand zu verdndern. Jedes Widget
ist durch darunterliegende, einzigartige Markermuster eindeutig identifizierbar.
Weiterhin beinhaltet jedes Steuerelement eine Menge von Markern, um dem Sys-
tem seinen Zustand zu iibermitteln. Diese Abhandlung bietet eine Ubersicht iiber
den Entwurf und die Konstruktion von Widgets, wobei Beschrankungen und Gren-
zen herausgestellt werden sollen. Zusitzlich wird eine im Rahmen dieses Projektes
entwickelte Framework-Implementierung zur Erkennung von Widgets auf Multi-
Touch-Tischen detailliert vorgestellt. Diese Masterarbeit wird mit einer Ubersicht
des Design Spaces fiir kapazitive Widgets abgeschlossen.






Acknowledgements

This Work is dedicated to Amaru and Shiva. They supported me during my work
by distracting me from it.







xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:

Excursus are detailed discussions of a particular point in Definition:

a book, usually in an appendix, or digressions in a writ- '
Excursus

ten text.

CONVENTION:
Conventions are conditions that are valid for a part of the
thesis or the whole thesis.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.






Chapter 1

Introduction

Touch displays are more and more integrated into daily
life, for example the ticket machine from Deutsche Bahn,
a smart phone, a car navigation system, a modern phone
booth or tablets. Touch devices are ubiquitous in our daily
life. Traditional mechanical input devices are more and
more replaced through modern touch systems. The tech-
nology evolves parallel to the emerge of touch devices.
The three major technologies are resistive, optical and ca-
pacitive. Resistive touchscreens (Speeter| [1990]) are pres-
sure sensitive and used in PDAs, merchandise systems and
home electronics like coffee machines. The advantage of re-
sistive in comparison to capacitive is that touch is not only
detected from conductive objects. Every object applying
pressure on the screen is detected.

Optical tracking technologies use cameras to track touches
on the surface. These systems are mostly utilized in large
tabletops as Microsoft’s PixelSenseE] and research projects
like SLAP (Weiss et al.| [2009]). SLAP uses Frustrated Total
Internal Reflection (Han|[2005]) and Diffused Illumination
(Matsushita and Rekimoto|[1997]). These techniques limit
the usage of the optical tracking systems in various ways.
A projector that is placed underneath the surface to project
the image requires space. Most optical tracking systems re-
quire a lot of space. If these systems are moved, the pro-
jector and the tracking cameras are moved as well. These

ttp://www.microsoft.com/en-us/pixelsense/

Capacitive
touchscreens are
emerging.

Optical tracking
systems are limited
in portability.


http://www.microsoft.com/en-us/pixelsense/

1 Introduction

Capacitive
touchscreens use
conductivity
measuring sensors
to detect touches.

Widgets allow
eyes-free
interactions through
haptic feedback.

Optical tracking
systems detect
widgets with the help
of markers placed on
the widget.

slight movements destroy the calibration and it has to be
redone. This limits the portability of most optical track-
ing systems. Another drawback of Frustrated Total Internal
Reflection and Diffused Illumination is the vulnerability to
sunlight. Sunlight emits infrared light into the table, dis-
turbing the touch tracking.

Devices implementing a multi-touch interaction commonly
use projected-capacitive touch (Barrett and Omote [2010]).
Most smart phones, tablets and other multimedia devices
belong to this category. Capacitive touchscreens use con-
ductivity measuring sensors to detect touches. One limita-
tion of capacitive touchscreens is the affordance that only
conductive elements are used for input. Graspable User In-
terfaces (Fitzmaurice et al. [1995]) are common in optical
systems (reacTable by [Jorda| [2010]) and advancing on ca-
pacitive touchscreens (TUIC Yu et al.|[2011], Capstones and
ZebraWidgets by |Chan et al.| [2012]).

Graspable user interfaces, referred to as widgets, enrich
the interaction of multi-touch tables by adding haptic feed-
back (Weiss| [2012]). Haptic feedback allows eyes-free in-
teraction on touch devices. Clip-on Gadgets (Chang et al.
[2012]) introduce controls, such as buttons and joysticks,
that are attached to capacitive devices. The device can be
operated without watching the display. Further applica-
tions are found in expensive, large scale simulators. Nowa-
days each machine needs its own simulator when minor
functional differences are present. A simulator can be built
with widgets and large scale multi-touch tabletops. Each
former simulator can be built with a different arrangement
of widgets. This possibility enriches the interaction by pro-
viding additional information underneath the widgets on
the screen. Furthermore, it allows more flexibility in chang-
ing the setup of a simulator. The needed haptic feedback
to operate heavy machinery is conserved through physical
widgets.

Tracking physical objects on optical screens is realized by
marker detection. In SLAP (Weiss et al.|[2009]) the orien-
tation and identification is detected through the orienta-
tion and shape of the markers. This approach is not trans-
ferable to capacitive displays, as these only provide coor-
dinates of touches, merging large areas to one spot. Dif-



1.1 Outline

ferent approaches are presented, such as spatial and fre-
quency markers (Yu et al|[2011]). Each existing work cov-
ers different aspects of capacitive widgets. Some introduce
sample widgets, other discuss different marker types. No
work covers the whole design process including limitations
and constraints. This thesis is the approach to illustrate
the whole widget construction and detection process. Ad-
ditionally the design space for capacitive widgets is intro-
duced.

The hover effect is a design opportunity given by the us-
age of capacitive touchscreens. It is the system reaction to
a touch without changing the physical state of the widget.
Using optical tracking a hover effect is hardly feasible. A
widget has its fixed screen occlusion. Additional markers
are lowered to the surface through mechanical help, other-
wise it is only realizable with the help of glass fibers, ex-
tending the tracked screen to the widget surface. Conduc-
tive materials are embedded into the widgets on capacitive
displays. These materials forward the touch downwards
to the system. A touch is detected by the system, without
changing the widget’s physical state.

1.1 OQOutline

PH"Related work!” covers the fundamentals in this area
and work that has already been done in this field. Capac-
itive touch technology is explained, presenting the basics
to understand the theories in the following chapters. Fur-
thermore, the framework used for the implementation is
briefly introduced. The chapter continues with an intro-
duction to related work in the fields of rapid prototyping,
optical tracking and capacitive tracking. It concludes by
a brief summary about the shown work in relation to this
thesis.

The hover effect on
capacitive widgets is
detected without the
change of the
physical state of the
widget.



1 Introduction

B—Widget Construction|” offers an overview of the design
constraints that limit the design of widgets. A three phase
construction model is introduced, including a set of mate-
rials for widget construction. The chapter ends with exam-
ples of constructed widgets to deepen the understanding of
the former shown theories and constraints.

dl—Framework Implementation|” is separated into two
major parts. On the one hand the algorithm used for the
footprint generation is presented and explained. On the
other hand the method for widget tracking is shown in de-
tail.

In [p}—"{Design Space|’ the mental evolution from touch to

widget is illustrated. Furthermore, the design space is out-
lined and examples are presented.

[6—"Summary and future workl” concludes this thesis by re-
flecting on the content and presenting an overview of pos-
sible future work.




Chapter 2

Related work

“The secret to creativity is knowing how to hide
your sources. ”

— Albert Einstein

The idea of using physical objects to control virtual objects
has been explored on various tracking technologies. Frus-
trated Total Internal Reflection and Diffused Illumination
were used by systems like SLAP (Weiss et al. [2009]) and
the reacTable (Jorda [2010]). Capacitive multi-touch displays
have replaced the optical tracking methods in current re-
search as presented in CapStones and ZebraWidgets by (Chan
et al.|[2012] and TUIC by Yu et al.[[2011]].

This chapter covers the foundations of physical objects
called widgets, the design of capacitive touch display wid-
gets and existing related work. We explain the basics of
projected-capacitive touch displays as described by Barrett
and Omote|[2010]. Thereafter the framework used for the
implementation of the footprint generation, the tracking
and displaying of the widgets is introduced. The chapter
concludes with related work covering different aspects of
widgets and various possibilities to track them.

Research on the
interaction with
physical objects has
moved from optical
tracking to capacitive
multi-touch displays.



2 Related work

Definition:
Widgets

Projected-capacitive
touch became
popular through the
iPhone in 2007.

Capacitive displays
are separated into
coordinate systems
by the sensing
electrodes.

Self-Capacitance
touch technology
detects touches by
capacitance changes
in electrodes.

Alternative
approaches use two
layers of electrodes.

WIDGETS:

Widgets are physical representations of controls, such as
sliders, buttons, knobs and so forth. They are used to
manipulate a software system running on a multi-touch
table with the help of real world objects.

2.1 Capacitive Touch Technology

Projected-capacitive touch detection has become popular
with the release of the first iPhone in 2007. It enhanced the
touch technologies used until then by three main aspects:
high durability, excellent optical performance and unlim-
ited multi-touch sensing, based on the controller operating
it. Projected-capacitive touch is based on capacitive sens-
ing.

Capacitive displays measure the capacitance of a single
electrode in comparison to ground. The electrodes can be
arranged in different ways under the display of a device.
Commonly the electrodes are arranged in a grid, each re-
sponsible for a small area of the surface. Each electrode
represents a specific area in the grid and is directly wired to
the controller.

The electrode measures the capacitance of itself and ob-
serves it for changes. All lanes of the display are measured
simultaneously. If a finger touches the surface the body ca-
pacitance changes the measured value of the electrode. The
electrode sends the changed value to the controller and the
controller detects a touch. This method of touch sensing
is called self-capacitance touch technology by |Barrett and
Omotel|[2010].

A preferred alternative is to arrange lanes of electrodes in
two layers instead of a grid. One layer with horizontal and
the other one with vertical lines. Each intersection repre-
sents a coordination instead of an area in a grid. The con-
troller measures each lane in both layers. If one vertical
and one horizontal lane have a changed measured value,
the controller can compute the position of the touch from
the position of the intersection.
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X2 (03] O

X1 D (09
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YO Y1 Y2

Figure 2.1: The circles mark the touches and the crossed
circles symbolize the falsely detected touches in the self-
capacitance approach.

Self-capacitance has a big drawback when using more than
one finger on the surface. Multiple touches can result in
a false amount of detected touches. For example, if two
touches appear on two different pairs of lanes four touches
would be detected. The touches may occur on the inter-
sections (1,1) and (2,2). The controller would recognize a
touch on lane z;. The y-axis scan returns two active lanes,
namely y; and y2. Computing the intersections with the
three touch points yield two detected touches, (1,1) and
(1,2). For the touch on lane z, the touches on y; and ¥,
would also appear as matches. This adds two more inter-
sections on (2,2) and (2, 1) to the detected touches. Figure
depicts the false touches as crossed circles and the cor-
rect touches as circles. Two of the four detected touches
would be false results.

Interactions with touchscreens make it desirable to use
more than one finger for various operations. Scaling and
rotation is simplified by using more than one finger. Ac-
cordingly the iPhone uses a modified version of the above
mentioned self-capacitive sensing method. It is called
mutual-capacitance by Barrett and Omote| [2010].

Using more than one
finger can result in
false detection of
additional
touch-points.

The iPhone
introduces
mutual-capacitance
touch sensing
technology.
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Mutual-capacitance
monitors
intersections instead
of whole lanes.

Mutual-capacitance
uses a cyclic
scanning mode to
detect touches.

Mutual-capacitance
is a reliable
technology for
multi-touch.

Mutual-capacitance uses the property of conductive ele-
ments that enables them to hold a charge if two objects are
close together. The sensing is done by electrodes. Com-
monly they form a row - column pattern, the rows in one
layer and the columns in another layer. There are different
approaches like diamond patterns described in |Barrett and
Omote| [2010]. Each charge of an intersection is monitored
by the controller. In contrast to self-capacitance the con-
troller differentiates in intersections instead of lanes when
running the detection. A touch changes the charge of an
intersection due to the body capacitance. The change in the
charge is detected by a controller. The result is an identified
touch on the intersection.

The scanning of mutual-capacitance differs from self-
capacitance. In self-capacitance each electrode is directly
connected to the controller. The scanning is serialized and
the controller directly notices if a lane switches its state.
Touches are computed based on the list of active lanes.

Contrary mutual-capacitance uses a cyclic scanning mode.
The controller first checks one column and then iterates
through all rows intersecting the column. It analyzes each
intersection for a change in the charge. This process is re-
peated for every column in the display. After finishing all
columns it starts over from the first column. The touches
are computed by the changed charges of intersections.

Figure depicts the example used for self-capacitance
but this time for mutual capacitance. The process con-
sists of nine different scans. Three column scans with three
scans for the rows each time. This increases the load of the
processing unit and the consumed time compared to self-
capacitance. There this would be one scan of all lanes in
parallel. Nevertheless, this scanning procedure enables a
reliable multi-touch detection without false results. Only
the six important scans are depicted in figure The first
scan checks lane y; and xy. The charge of the intersection
is unchanged. In the second picture the intersection of lane
y1 and z; is examined. The charge of the intersection is
changed due to the body capacitance of the touching fin-
ger. The controller detects the change saving a touch for
this intersection.
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Figure 2.2: (A) shows the scanning of column one and row zero, (B) the scanning
of column one and row one, (C) the scanning of column one and row two. (D)-(F)
shows the same for column two. The black dot indicates that the touch is detected
in this scan, the other one represents that the touch is present but not detected.

Widgets need more than one touch to be detected. With An iPad supports up
only one touch there is no differentiation between widgets to eleven touches
because the footprint would always be the same. There- simultaneously. It is
fore screens that can sense multiple touches without creat- used for our widget
ing false touches are required to use widgets properly. The detection.

detection of the widget will be realized using an iPad ver-
sion one. The iPad utilizes mutual-capacitance. It supports
up to eleven touches at the same time. This is sufficient to
detect widgets.
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2 Related work

A widget system
consists of software
and hardware
components.

The tracking
software detects
learned widgets and
creates screen
representations.

The Multi-Touch
Framework is
partitioned into
different functional
modules.

The MultiScreen
Agent handles the
touch input devices
and configures the
output displays.

2.2 Multi-Touch Framework

An interaction with widgets on a multi-touch table requires
different components. On the one hand there is the hard-
ware and on the other hand the software. The hardware is
represented by the multi-touch table itself and the physical
objects called widgets. The software side is subdivided into
the application and the tracking software.

The tracking software has a set of tasks. First it is responsi-
ble for saving new widgets in the system and learning their
footprints. The second task is to detect the learned widgets
and finally it provides a foundation to visualize the widgets
on screen. To fulfill these tasks it needs the touch input from
the table and a way to draw visualizations on the screen.

The requirements for the tracking software are satisfied by
the Multi-Touch Frameworkﬂ It is actively developed by
the Media Computing Group at the RWTH-Aachen. The
framework is separated into different functional modules,
as depicted in figure

The touch input is gathered by the MultiScreen Agent. It
supports a wide choice of input sources. In the latest ver-
sion it supports camera tracking, used in optical based
tracking systems, mouse emulation, the use of a previous
defined control sequence, iPad emulation and track pad
emulation. The iPad emulation installs a small applica-
tion on the iPad that broadcasts the touches to the net-
work. The MultiScreen Agent listens on the port in the net-
work and collects every incoming touch from the iPad. The
touches are gathered in the agent and collected from the
TableEngine.

Furthermore, the MultiScreen Agent is used to configure
the output displays. The output screen is not necessarily
the same as the input device. It is possible to merge two or
more screens to one big display. The rendering and compu-
tation of the display area is done by the MultiScreen Agent.

"mttp://hci.rwth-aachen.de/multitouchframework


http://hci.rwth-aachen.de/multitouchframework
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Touch Input

Camera Tracking, Mouse
Emulation, iPad emulation or
TrackPad emulation

ﬂ

[ MultiscreenAgent

Configuration of the
output device

Table Engine
Touch Server ]

GLEngine |:>[ Screen Visualization ]

Figure 2.3: The different components of the MultiTouch
framework and how they interact with each other.

The second part of the Multi-Touch Framework is the
TableEngine. It is divided into two different parts: the
touch server and a graphic engine. The touch server gath-
ers the saved touches from the MultiScreen Agent and pro-
vides them for further usage. The standard settings are
configured to display a dot on the display at the correct
position for every touch. Any application integrating the
TableEngine has access to the list of touches. The touch ob-
jects store further information, such as if it is a starting, end-
ing or moving touch.

The graphic engine called GLEngine is a framework to cre-
ate graphical output. It provides basic shapes as rectangles
and circles. The shapes are added to the TableEngine and
then displayed. The touch server uses the GLEngine to dis-
play dots for the touch points.

The TableEngines
touch server
provides the touches
for the application.

The GLEngine is
used to create
graphical output
objects.
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2 Related work

Physical graspable
user interfaces to
control virtual
objects.

Time-multiplexing
provides one control
for all actions.

Space-multiplexing
provides one control
for each action.

2.3 Widgets

The second component of widget interaction on multi-
touch tables is the hardware. The hardware is separated
into physical objects called widgets and displays. This
section introduces the concept and motivation for widgets
by Fitzmaurice et al. [1995]. Additionally it provides an
overview of existing related work in the field of widgets.

2.3.1 Concept of Widgets

In 1995 a new system of user interaction called Bricks was
introduced by Fitzmaurice et al.|[1995]. It is the approach of
introducing graspable user interfaces (GUI) in daily work-
life and show their effectiveness by a proof of concept. The
idea behind it is the control of virtual objects with hard-
ware, that inherently offers haptic feedback and can be at-
tached and detached to virtual objects. The name “Bricks”
is derived from the optical resemblance to bricks.

Fitzmaurice et al. [1995] claim the basic premise that the
affordance of physical objects is richer than that of virtual
handles, through direct manipulation techniques. The ba-
sic concept of Bricks is to overcome the problem of time-
multiplexed systems and combine them with space-multi-
plexing. Time-multiplexing means that there is one con-
trol device which has different controlling functions over
time. Fitzmaurice et al. provide the mouse as an example
for time-multiplexing: the mouse can control only one el-
ement at a time, but can be used for different tasks. For
example, windows can be resized and files or windows
can be opened. This can all be done with one device, the
mouse. Due to physical constraints it is only possible to
perform one action at a time, which is the definition of time-
multiplexing.

Space-multiplexing in contrast offers one device or con-
troller for each function, so that different actions can be per-
formed simultaneously. They explain it using an example
of a car, where you have a steering wheel, brake, clutch and
gear shift, each controlling a different function, but to con-
trol the car a combination of different actions is needed at
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the same time. Bricks is now the attempt to overcome the
time-multiplexing and the resulting interaction sequence
by offering additional control devices for specific purposes.

The idea behind Bricks supports the theory that physical
artifacts on top of the work space offer a specialized con-
trol device. This is tracked by a host computer which reads
information such as position and orientation and redirects
them to underlying programs. Hence the user is able to ma-
nipulate virtual objects with the bricks directly.
Fitzmaurice et al. distinguish between two interaction tech-
niques to manipulate virtual objects, one handle and mul-
tiple handles. The one handle interaction can be used to ro-
tate and move objects. A possible way of achieving this is
the pairing of the virtual object and the brick that is placed
on top of it. The virtual object mimics the behavior of the
brick. If the brick is manipulated in either position or rota-
tion, the virtual object is manipulated the same way:.

Two or more bricks offer a wider variety of functions. A
simple task could be the manipulation of virtual objects,
by attaching two bricks to one object. One functions as an
anchor which defines the base and the other one is used
to manipulate the size of the object. By moving the non
anchor brick the size of a square can be increased or even
the shape can be changed. To manipulate the shape one
brick is moved in a non-linear way. This behavior maps to
the virtual world where the anchor functions as a holding
hand and the second brick can be viewed as a hand pulling
away from the other hand. The result is a manipulation of
the object underneath the bricks.

Bricks provide
specialized control
devices.

One brick can be
used to rotate or
move objects.

Two bricks are used
for complex
operations.

Mimicking real world
operations increases
the intuitiveness of
interactions.
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Prototypes are used
in early development
stages.

Objects are created
from cardboard.

Markers and
connections are
added with a
conductive ink pen.

2.3.2 Construction of Widgets

During a design process different stages are passed
through. The early stages include software tests with low
level prototypes. They are used to explore and test inter-
action concepts implemented in the software system. Two
approaches for prototyping widgets are presented. Sketch
a TUI by Wiethoff et al|[2012] is a technique to easily
draw connections of widgets. Hereafter an approach by
Hincapie-Ramos et al.| [2011] that uses a touch mouse to
sense touch input is presented.

Sketch a TUI

Sketch a TUI by Wiethoff et al. [2012] explains a method for
creating early prototypes without knowledge of electronics
and other fabrication techniques. They separate the design
into two phases.

The first phase is to construct the body of the TUIL They
provide a set of forms to create 3D objects from cardboard.
Currently the library covers 26 different shapes as tem-
plates. A shape is selected and then printed onto a piece
of cardboard. The lines indicate where the shape has to be
cut or folded. The assembling is done by gluing the corre-
sponding latches on the predefined areas. That process cre-
ates a shaped cardboard object. This object alone can not
be used as a widget prototype. Marker and connections are
missing to be sensed by the display.

Phase two adds markers and connections to the widget. A
pen with conductive ink as used in repairing broken cir-
cuits on boards is used to apply the conductive areas onto
the cardboard. Lines and areas of conductive ink can be
applied accordingly to the design of the widget and its pur-
pose. The result is a shape formed with cardboard and en-
riched with conductive areas that can be used for testing
software prototypes or interface concepts.

The benefits of this method are low production costs, only
cardboard and a conductive pen. Furthermore, the con-
struction process is not time consuming or complex and
avoids the use of additional electronically peripheries.
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Rapid Prototyping

Rapid Prototyping of Tangibles with a Capacitive Mouse by
Hincapie-Ramos et al.| [2011] presents and describes a
method of rapid prototyping touch sensitive input devices
with different touch areas. They combine the widget with
the touch input device by using a Microsoft Touch Mouse.
The shape of the widget is modified by altering the shape
of the mouse. The shape shifting is done by adding layers
of cloth to the mouse. The layers can be plain or filled with
cotton to reach a higher variety of shapes.

The surface of the mouse is touch sensible and has a grid
of 13215 areas that can separately be detected. Each area of
the grid can be connected to different capacitive areas em-
bedded in the clothing. This adds touch sensitive areas to
the surface of the clothing, and each touch area is mapped
to a distinct area on the mouse. A one to one mapping can
be achieved with a maximum of 195 different touch sensi-
tive areas on the surface.

In addition to the modification of the touch sensitive mouse
they present their own API, providing access to various
functions of the touch mouse. One function is the extraction
of touched areas from the mouse with unique identifica-
tion. The API extends the basic software from the Microsoft
Touch Mouse. The whole package containing a guide, for
designing and constructing the clothing, and the extended
APl is called the Toki toolkit.

2.3.3 Optical Tracking

Optical tracking systems, as the name indicates, are based
on camera tracking. Before capacitive displays became af-
fordable to the research community, optical systems were
broadly used. The reacTable by |Jordal [2010] is an example
for a successful optical tracking system. Another system is
SLAP by Weiss et al.|[2009]. Both systems use infrared light
and tracking in combination with a beamer hidden under-
neath the surface. Due to the similarity between optical
tracking systems only one is presented as a representative.

A Microsoft Touch
Mouse is modified
with cloth to function
as input device and
widget
simultaneously.

The Microsoft Touch
Mouse offers 195
separated touch
areas that can be
connected to the
clothing.

The Toki toolkit
comprises and
extension of the
basic API for the
touch mouse.

Optical tracking
systems are based
on image recognition
and processing.
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SLAP uses
Frustrated Total
Internal Reflection
and Diffused
lllumination.

Widgets are detected
through white
reflecting markers.

SLAP has a
distinctive marker
system.

SLAP

Silicone Illuminated Active Peripherals (SLAP) by |Weiss et al.
[2009] introduces a set of transparent, flexible widgets for
optical based multi-touch tables. The set includes slid-
ers, knobs, keyboards and buttons. The multi-touch ta-
ble is based on Frustrated Total Internal Reflection (Han
[2005]) and Diffused Illumination (Matsushita and Reki-
moto|[1997]). Infrared light is emitted into the surface and
projected against it from underneath. The light reflected
from objects and fingers is captured by an infrared camera
placed under the surface.

The widgets have markers at their bottom that can be de-
tected by the system and an image recognition algorithm.
The markers encode the position, orientation and ID of the
widget through their size and positioning. The framework
for touch input detection is the MultiTouch Frameworkﬂ
Utilizing these information the system can now render a
screen representation of the object on the table surface. This
is done with a beamer located under the surface. With the
help of this visualization the user can interact with the sys-
tem by using the widget to manipulate the state of the sys-
tem directly.

SLAP is one important related work for this thesis, because
our prototypes will be manufactured in a similar way, us-
ing acrylic and a defined setup of markers for the informa-
tion transmission to the system. Contrary to optical based
tracking, capacitive tracking enhances the possibilities of
interaction even more. It is easier to construct widgets with
complex shapes and add controls to them.

Zhttp://hci.rwth-aachen.de/multitouchframework
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2.3.4 Capacitive Tracking

In the last years capacitive multi-touch displays have be-
come more present in the research community and replaced
most of the optical tracking systems. In this section we
introduce systems that use capacitive touch technology to
construct widgets and communicate with system. CapWid-
gets by Kratz et al. [2011] introduce passive tangible con-
trols. CapStones and ZebraWidgets by Chan et al. [2012] con-
struct widgets similar to SLAP. TUIC by |Yu et al. [2011]
points out various ways of tracking tangibles on capacitive
screens by using different marker types.

Enabling Tangible Interaction

Enabling Tangible Interaction on Capacitive Touch Panels by
Yu et al| [2010] describes and presents two different ap-
proaches to sense tangible objects on capacitive touch
screens. The differentiation is between spatial tags and fre-
quency tags. The first method is the tag design based on
spatial domain. Spatial refers to a unique design pattern of
the markers on the widget. The system can detect the wid-
get by analyzing the pattern formed by the markers.
Frequency tags use the time domain instead of the spa-
tial domain. Only one marker is required to communi-
cate data to the system. The marker is activated and de-
activated electronically to generate a frequency of touches.
The time based pattern can communicate different aspects
of the widget to the system.

The spatial approach is limited through the fixed arrange-
ment of the markers, and the time based approach requires
a fixed amount of time to submit the data at least once. A
combination of both approaches result in a reliable trace-
able widget. The spatial domain is used to provide the posi-
tion and orientation and the frequency markers additional
information.

Optical tracking
systems have been
replaced by
capacitive tracking
systems in most
research areas.

Spatial sensing uses
the position and
arrangement of
markers.

Frequency tags
communicate the
data over a series of
touches on the same
location.

A combination of
both approaches
enriches the
interaction.
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Additional controls
do no always
improve
performance.

Sensing the height of
a stack of blocks
through marker
design.

Touch sensitive
controls to alter
virtual objects.

CapWidgets

CapWidgets by [Kratz et al.|[2011] present widgets specially
designed for small touch displays such as smart phones
or tablets. CapWidgets enrich the multi-touch surfaces by
adding haptic feedback in form of controls. As the user
touches the widget the system detects the widgets mark-
ers. One example widget is a rotary knob made from alu-
minum.

Furthermore they conducted a study to test the relative per-
formance of the prototypes versus touch controls. The ex-
periment has shown that users prefer direct touch instead
of physical controls on small devices and that they do per-
form better with direct touch.

CapStones and ZebraWidgets

CapStones and ZebraWidgets (Chan et al.|[2012]) presents two
types of widgets for capacitive displays. The first one is
called CapStones and consists of blocks that communicate
their position and 3D arrangement to the system. Up to
three blocks in height can be detected. The more blocks
are stacked, the more markers on the bottom CapStone
will be activated. It can show two, three or four marker
and therefore the system can differentiate the various stack-
ing heights. The height of the sensing can be adopted by
adding more markers to the blocks. The blocks are only
visible when they are touched, otherwise they are invisible
to the system.

The second widget type consists of two controls, a slider
and a knob, called Zebra Dial and Zebra Slider. The con-
trols are similar to the ones introduced by [Weiss et al.
[2009], except that they are for capacitive multi-touch dis-
plays. These controls also only work when being touched.

TUIC

TUIC is a technology that enables tangible interaction on
capacitive multi-touch screens without the need to manipu-
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late the underlying hardware. TUIC is the advancement of
Enabling Tangible Interaction by |Yu et al. [2010]. It enhances
and refines the three approaches presented in this paper:
the spatial, frequency and hybrid approach. The spatial
tags consist of three positioning markers and a set of mark-
ers to encode the ID of the tag. The frequency tag has an
active circuit integrated that modulate a touch frequency.
In contrast to spatial tags, frequency tags have a start up
delay based on the fact that the encoding is time based and
itneeds a fixed time to read the whole time encoded ID. The
hybrid approach reduces the number of markers needed to
encode the ID, but has the same start up delay as the fre-
quency marker. Another difference between the spatial and
frequency tag is, that the spatial tag has an orientation, can
be moved and needs no external power supply.

Tangible Drawing Tools

Using tangible drawing tools on a capacitive multi-touch display
by Blagojevic et al. [2012] presents a set of widgets that sup-
ports drawing on capacitive multi-touch displays. The in-
teresting part is not the drawing application itself but the
implementation of the widgets. The detection is separated
into two phases: the learning and the recognition. The first
phase includes the learning of a widget. The markers are ar-
ranged alongside the arbitrary shaped drawing tools. The
learning algorithm measures the distances between each
pair of markers and stores it. The recognition on the other
hand evaluates the present touches and searches for pat-
terns of distances that match a learned widget.

24 Summary

The field of capacitive multi-touch displays is a very active
topic in Human Computer Interaction (HCI) research com-
munities. Important existing works have been presented.
This section establishes an overview of the important char-
acteristics extracted from the previous work and which of
them are enhanced.

TUIC enhances the
spatial and frequency
approach.

Widgets are detected
by a two phased
model.

Phase one is the
learning and phase
two the recognition.
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Spatial markers are
differentiated into
passive and active.

Position and frequency markers are the two different ap-
proaches that are used to identify widgets. We only use
position markers for the whole widget. In addition to all
existing work, we differentiate between to types of position
markers, active and passive ones. The widgets presented in
the papers use active markers only. Therefore the widgets
are not detected if no one is touching them. Adding passive
markers makes the widget traceable even if it is not touched
by a user. This bridges the gap between the virtual repre-
sentation and reality - If a widget is placed on a system, the
system will show the virtual representative, and if there is
no virtual screen representation, than there is no widget.

In contrast to CapStones and ZebraWidgets (Chan et al.
[2012]) we give detailed instructions on how to implement
widgets of different types, widening the range of widgets
from two to an unlimited amount of different widgets. We
provide a tracking and footprint generation algorithm that
can easily be adapted to any widget. Furthermore, we dif-
ferentiate between two types of markers, active and pas-
sive ones. In contrast to the slider or knob introduced by
Chan et al.|[2012] our slider is even detected when no one is
touching the widget. Additionally we provide interaction
concepts of using capacitive touch technology as shown in

chapter§—{Design Spacd

Yu et al. [2011] mention that spatial tags require a lot of
markers to encode lots of different IDs into widgets. In
our approach, instead of coding the ID into a fixed number
of bits, we encode it into distances between a set of deter-
mined markers. That makes our ID encoding much more
flexible and we use less markers for the same amount of in-
formation. Based on the limited number of simultaneous
touches that can be detected by today’s devices, this en-
ables the possibility of placing and using more widgets on
one display at the same time.
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Chapter 3

Widget Construction

“ Everything should be made as simple as
possible, but not simpler. ”

— Albert Einstein

The construction of widgets is a multi-stage process, cover-
ing theoretical and technical aspects. Before a widget can
be built, a model of the widget must be created. Each wid-
get needs to be adapted to specific design constraints and
a design theory. In the first part of this chapter the de-
sign constraints for capacitive multi-touch tables are inves-
tigated. The second part covers the building process, in-
cluding the presentation of suitable materials. Concluding
example builds are presented.

3.1 Constraints of the Widget Design

Before something can be built a plan or blueprint is needed.
Designing widgets raises questions before even starting to
create the blueprints. The first question is the size of the
marker used in the widget. What size can be detected?
Which size is too large to be useful? Which distance is
needed between the markers? Furthermore, what is the
best layout to communicate information to the system? A
widget needs an orientation, position and identification.
All these questions have to be answered before starting

The construction is
separated into a
theoretical and a
practical phase.

Before building a
widget, a design
theory is needed.
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The right marker size
is important during
the design process.

An experiment was

conducted to gather
the optimal marker

size.

The result of the
experiment yielded a
one centimeter
diameter.

to design a widget. This section investigates the different
questions and provides a design theory for widgets on ca-
pacitive multi-touch displays.

3.1.1 Marker Size and Distances

The marker size is an important factor in the design pro-
cess of a widget. If the markers are too big, they will
occupy more space than necessary and therefore occlude
more screen space. On the other hand if the markers are to
small, they will not be reliably tracked by the system. The
optimal marker size is so small that it is the smallest reli-
ably detected one, occluding the smallest, possible screen
space as possible.

To determine the optimal marker size an experiment was
conducted. Screws of different sizes and with different
head shapes were mounted on a piece of wooden card-
board. The flat side of the head functions as the contact area
an the thin side as the connection area. All connection areas
were connected with a wire. Touching one screw activates
all other screws, passing the capacitive change through the
wire. The cardboard was placed on an iPad and the touches
were visualized on a computer screen and logged. Each
screw had a dedicated position on the screen, allowing a
dedicated mapping of a touch and a screw. The screws were
activated multiple times. Thereafter the log files were pro-
cessed by an algorithm to compute the overall percentage
of the touches for each screw. The threshold was a 95% rate
of detection. The result was that a diameter of 1 centimeter
was the smallest fitting size, reaching the threshold. Down
to 8 millimeters the detection was quite good but not as re-
liable as required.

CONVENTION:

All measurements, determinations and tests were per-
formed on an iPad version one. Each capacitive touch
system is designed slightly different, so it may be possi-
ble that the values have to be adapted for other systems.
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The second challenge was to determine the optimal dis-
tance between to markers. If two markers are too close the
system might merge them to one touch or dispose one of
them. Another experiment was conducted to investigate
the optimal distance between two markers. A set of screws
with heads of one centimeter in diameter were placed in
acrylic. They were pairwise placed with different distances
between them. Each distance increased the former distance
by one millimeter. The markers were activated simultane-
ously, logging the appearing touches. An algorithm ana-
lyzed the log files to find the pair closest to the 95% thresh-
old. Under one centimeter of distance the touches were of-
ten merged or one of the two touches changed the posi-
tion a bit every time. In conclusion the optimal distance be-
tween two markers is one centimeter or more. The centime-
ter is measured between the borders of the markers and not
the center.

3.1.2 Marker Types

The interaction of a widget and a multi-touch system re-
quires the communication of specific information. Without
the size or position of a widget the screen representation
can not be created to fit the physical counterpart. Therefore
it is essential that the position of the widget is communi-
cated to the system. The markers represent the only way to
communicate with the software. Furthermore, when inter-
acting with more than one widget the systems has to dif-
ferentiate the widgets. In conclusion, each widget has to
provide the following information: the position, the orien-
tation, the size, and a unique identification.

The markers are divided into three categories, each pro-
viding a different set of information. The position mark-
ers allocate the position, size and orientation of a widget.
The identification marker facilitate the unique ID of a wid-
get. Lastly the state markers provide information about the
state of the control elements on the widget.

A second experiment
was conducted for
the optimal marker
distance.

The widget has to
provide information
such as position and
ID.

The markers are
divided into three
categories: position
marker, identification
marker and state
marker.
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The size is computed
by the distances of
the borders.

The position markers
are sulfficient for the
position and size.

Position Marker

The position of a widget is extracted from the touch points,
if at least one marker is placed at the edge. This marker in-
dicates the origin of the widget. The size can be calculated
by computing the distances between the borders. That re-
sults in placing for markers in each corner of the widget.
One will be the origin marker and the other three are used
to calculate the distances for the size.

'S o "%

Height Height

s 4

Figure 3.1: The first position marker design.

Figure 3.1 depicts a sketch of the design approach. The im-
age illustrates that two distances are available for each size
attribute. Furthermore, the design does not clarify which
marker is placed at the origin. This leads to the elimina-
tion of one marker. All except the origin marker could be
deleted. The top right marker was chosen for various rea-
sons. The remaining three markers, as depicted in figure
create a coordination system with the origin marker as
(0,0).
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9 B (0, Height)

Height and Y-Axis

C (Width, 0)

A (0,0 Width and X-Axis
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Figure 3.2: The position markers A,B and C can communi-
cate the position and size to the system. Furthermore they
create a coordination system in the size of the widget.

The orientation can be computed from the position markers
by calculating the angle between the line formed by mark-
ers A and B and the x-axis of the device, as depicted in fig-
ure

Identification Marker

The widget is now able to communicate position, size and
orientation to the system. This information would be suffi-
cient if only one widget is used at a time. As soon as more
than one widget is placed onto the capacitive multi-touch
display an identification is needed. Otherwise the system
can not distinguish between different widgets. Each identi-
fication has to be unique.

The first approach was the design of an eight bit encoded
number, offering 256 possible IDs for the identification.

Identification markers
provide a unique ID.

An 8-Bit encoding
needs 8 markers.
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rotation angle

X-Axis of the screen

Figure 3.3: The orientation is calculated by the angle between the x-axis of the input
device and the x-axis of the widget. The resulting angle is the degree of rotation that
has been applied to the widget.

Each widget can be
identified by a set of
unique distances.

This approach has the drawback that eight more markers
have to be added to the widget, occluding more screen
space.

Analyzing the widget and the possibilities offered by freely
placeable markers, the approach of unique distances was
chosen. Identification by unique distances works as fol-
lows: each widget has a unique set of distances. They are
computed between the three position markers and addi-
tional identification markers. By varying the position of the
identification marker, new sets of distances can be created.
The widget detection analyzes the the set of touches present
on the surface, computes the distances for each point and
compares the results to the given sets. Figure[3.4]depicts the
usage of one additional identification marker. The unique
ID of the widget is given by the three distances BD, AD and
CD.
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B (0, Height)

Height and Y-Axis

C (Width, 0)

A (0.0)  width and X-Axis

O

Figure 3.4: Marker D is an identification marker and can
uniquely be described by the three distances BD, AD and
CD.

State Marker

Each widget can be enriched with various controls, such as
sliders, buttons and knobs. The existing markers are not
sufficient to transmit information about the state of a con-
trol. A third category of markers is responsible for the infor-
mation providing of controls. They communicate the state
of a widget to the system, therefore the third category is
called state marker.

A button has two states, either pressed or unpressed. One
state marker can provide the information about the two
states, by either being touched or untouched. Depending
on the control it may be necessary to add more than one
state marker for a control. A knob for example needs two
state markers, one at the center of the knob and one for its
current position. With the two markers a line can be com-

State markers
provide information
about the state of a
control.

The number of state
markers for a control
depends on the
functionality of the
control.
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State markers are
identified analogous
to identification
marker.

B (0, Height) O

Figure 3.5: Marker E is a state marker. It can be identified
by the unique distances to the position markers. The top
right marker is just added for stability reasons of the phys-
ical object.

puted. The angle of the line in comparison to the device
x-axis can be calculated, representing the current state of
the knob.

The marker can be identified in the same way as the iden-
tification marker. The distances to the position markers as
depicted in figure [3.5| are calculated and provide a unique
footprint. If an additional touch, besides the position and
identification marker, is present in the coordination space
of the widget, the associated control is found by comparing
distances.
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Active and Passive Markers

Considering the interaction with widgets on a multi-touch
display, widgets are often placed on it and not operated
all the time. If a widget is not touched the markers will
no longer be traceable by the system, due to the fact that
the capacitance is not manipulated by external influences.
To avoid the undesired vanishing of widgets some of the
markers have to be visible all the time.

ACTIVE AND PASSIVE MARKER :

Active marker are the markers, that will be visible to the
system when touched. They are used for buttons and
other two-state functions. Contrary passive markers are
always visible to the system, independent from touch.

Other systems like TUIC by |Yu et al. [2011] use complex cir-
cuits to emulate touches. Since passive markers do not need
to change their states, it is sufficient to have them visible
all the time. Their capacitance relative to ground has to be
changed permanently, ideally without modifying the dis-
play or adding powered circuits. Therefore an additional
wire is attached to the widget connecting it to ground. The
markers connected with ground are always visible to the
system, given that the contact area of the marker is big
enough, as described earlier.

This completes the design theory for our widgets. In the
next section we will introduce an overview of the construc-
tion phases. Additionally a set of materials that are suitable
for building widgets for capacitive multi-touch displays is
discussed.

Unused widgets are
not detected by the
system.

Definition:
Active and Passive
Marker

Grounding a marker
makes it permanently
visible to the system.
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The construction is
divided into three
phases.

The design starts
with setting the
attributes of the
widget.

A widget design
example with two
buttons and one
slider.

3.2 Construction of Widgets

The construction of widgets is separated in three major
phases. The first phase decides the design and function-
ality of a widget. The second phase is about the materials
that are used to build the widget. At last the third phase is
the manufacturing and assembling of the single parts.

3.2.1 Phase One - Design

The construction of a widget starts with phase one. Phase
one is defined as the phase in which the design is decided.
To conceptualize a widget all functionality must be con-
sidered. A few questions that should be answered in this
phase are:

e How large is the widget?

What is the shape of the widget?

How many control elements are embedded?

What functionality will they have?

¢ How many markers are needed for each function?

Which markers are active and which are passive?

This list only gives a hint on the basic facts that need to
be settled before the drawing can be done. Thereafter the
construction plan for the widget is drawn. An example for
phase one is the design of a widget with two buttons and
one slider. The state of the buttons is either on or off. One
marker for each button is sufficient to represent the two
state functionality. The slider on the other hand is always
visible. It needs a passive marker for the sliding element.
The widget will have a rectangular shape. This provides all
information to draw the construction plan of the widget.
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Figure 3.6: These images illustrates the design of a widget
with two buttons and one slider. (A) The position markers
are added, (B) identification marker, (C) button marker, (D)
slider rectangle.

The first things to add are the rectangle for the shape and
the three position markers, as depicted in figure[3.6/(A). The
next elements are the identification markers. One identifi-
cation marker is placed near the origin marker. Only one
identification marker is needed, since this is a prototype
that is not used with many other widgets simultaneously.
The result is depicted in figure 3.6((B).

The two buttons are placed on the right side of the widget at
the same x coordination. They only differ in the y position
(C). This decision is made to provide unique attributes for
the two button markers. Later, in the detection process of
the software, each marker needs a special attribute to iden-
tify it. This is later explained in detail in f—"Framework]
Implementation|”. For now it is sufficient that each marker
needs a unique attribute. The unique attribute for the but-
ton markers is the fact, that they are the rightmost pair of
touches with an identical x position.

The last step is to add a rectangle where the slider marker
is added. The slider is positioned left of the button mark-
ers (D). The unique attribute for the slider marker is that
it is the leftmost marker, after subtracting the position and
identification marker. This example illustrates the theory
behind the design of a widget. First of all it is important

Position and
identification marker
are added first.

Each marker needs a
unique attribute to be
identified.
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The work that is
done before the
construction saves
work later on.

Capacitive widgets
need no offset
between the widget
and the surface.

Some materials are
optimized for high
end prototypes -
others for low cost.

Wood pulp board is
suitable for early
prototypes.

to know every function beforehand. Each control is then
added step by step to the base widget, always thinking
about a unique attribute for every added marker. Ignor-
ing the unique attribute can yield in a lot of implementa-
tion work when writing the dedicated footprint generating
function for the widget. Consider the slider is placed be-
tween the two buttons. If the slider is then moved to a spe-
cific location it would be possible to have three points at
the same x coordination that only differ in their y coordi-
nate. Therefore the unique attribute is essential to identify
the markers later on.

In_contrast _to nph’(‘a] fmc‘king systems like ST.AP_(Weiss
et al.| [2009]) we do not need to include an offset between
the body of the widget and the table. The tracking is not
based on optical perception and therefore the body of the
widget is not detected as a touch, unless it is built out of
conductive material.

3.2.2 Phase Two - Material

During the prototyping phases for widgets we encountered
a few helpful materials that can be used to construct wid-
gets. Some are for high end widgets and some are suited
for low cost prototyping. When choosing the material the
design of the widget should be kept in mind - which con-
straints must be fulfilled when building the widget? This
section will present a set of materials that have been used
to build prototypes. Each material is briefly described and
advantages and drawbacks are pointed out.

Body

Wood pulp board was used for very early prototypes.
The price of the material is very low. Furthermore, wooden
pulp board is sliceable by knifes and a ruler. Design tests
and usability tests that require physical hardware are the
common uses cases for wooden pulp board. Using it in
productive prototypes is not recommended. The wooden
pulp board is quite flexible and therefore not always flat.
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This results in markers not being connected to the surface
if the wooden widget is placed onto the surface.

Acrylic is a good choice to create the body element’s
from. It has various advantages such as its transparency,
durability, stability and it can easily be cut. Furthermore,
it is possible to reshape acrylic when heating it and ap-
plying soft pressure. The transparency is a benefit in con-
trast to non transparent materials. It reduces screen clutter-
ing and allows to show the screen representatives directly
underneath the widget. That assures the correct mapping
of widget and screen representation when using multiple
widgets.

Acrylic can be cut using a basic saw, or if available, a laser
cutter for high precision. Dynamic relabeling (Weiss et al.
[2009])) is possible, this means assigning different functions
to the same button over time, displaying the current func-
tion directly under the button.

ITO is the abbreviation for indium tin oxide, a half-
conductive, mostly transparent chemical substance. This
chemical is used to create transparent and conductive ma-
terials. It is applied to glass or acrylic under high temper-
atures and pressure. The patterns of the indium tin oxide
layer can be chosen as needed to create complex conducting
paths for special purposes. Transparency and conductivity
make this the best material for the markers and wires when
designing a completely transparent widget. Due to the high
costs of this product, it is hardly feasible to buy custom
made glasses with fitting conductive lanes. Therefore a
completely covered sheet will be cut to fit the needs. For
prototypes cheaper alternatives like normal acrylic com-
bined with copper foil were used, and ITO is only used for
high end widgets.

Acrylic is cheap,
fixed, transparent
and bendable when
heated.

ITO is transparent
glass or acrylic with
embedded
transparent
conductive parts.
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Magnets are good to
enlarge touch areas
or connect widgets.

Aluminum foil in
combination with
wood pulp board for
rapid prototyping.

Self adhesive copper
foil is used for
connections.

Wires are used for
rapid prototypes.
They can fastly be
attached and
detached.

Screws are used as
markers.

Marker and Connections

Magnets can be used for early prototypes to enlarge the
touch area on the surface. They are easy to detach and at-
tach. Furthermore, when designing widgets that offer the
possibility to be connected to one large widget, magnets are
perfectly suited as connectors.

Aluminum foil isa very cheap and easy obtainable mate-
rial that can be used in combination with the wooden pulp
board for rapid prototyping. It can be ripped or cut into
the needed shape and it is sufficient for both markers and
connecting lanes.

Copper foil is an improvement to aluminum foil, it is
more durable and has better conductive characteristics.
There is a wide variety of copper foil with glue on one side
that can easily be attached to prototypes. The glue layer is
small enough for not disturbing the conductivity.

Wires are another cheap and broadly available source for
connection lanes. In contrast to copper and aluminum foil,
wires are smaller and therefore do not occupy as much vis-
ible space on the surface as the foils. Attaching and de-
taching is quickly done, which makes remodeling of early
prototypes cheaper and more simple.

Screws  were used as markers during the prototyping
phase. They exist in different sizes and shapes. The ones
with a hexagonal head are the best fitting, they do not have
a hole that can disturb the sensing of the touch due to a
lack of contact. If the hole is too large, the iPad will detect
the touch as a disturbance and will simply ignore it. For
more information about the marker size see section
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3.2.3 Phase Three - Engineering

Phase three is the final phase of each iteration of a widget
prototype. The assembling of the widget is straight forward
to the design made in phase one and the materials picked in
phase two. At first the widget body is cut and all holes and
other cuttings are made according to the construction plan.
The markers are applied and all passive markers will be
connected with conductive material, and one of them gets
a longer connection. That connections is grounded. The
connection of all passive markers makes it obsolete to con-
nect every passive marker to ground.

3.2.4 Overview of the Three Phases

1. Phase - Design

(a) Purpose of the widget

(b) Picking the base shape of the widget
(c) Add position and identification marker
(d) Add shapes for the controls

(e) Divide markers into active and passive
2. Phase - Material

(a) Choose materials for the base

(b) Choose materials for the marker

(c) Choose materials for the connections
)

(d) Choose materials for the controls
3. Phase - Engineering

(a) Prepare the single elements
(b) Assemble the elements

(c) Add the connections

The construction
phase is an
assembling of the
manufactured parts.
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Collecting the basic
facts for the widget in
phase one.

Placing the elements
onto the base shape
in phase one
creating the
construction plan.

3.3 Construction Examples

This section introduces two examples of widget design and
construction. A widget with one button and a slider widget
are presented, including the whole manufacturing process.

3.3.1 Button

The first step contains the design phase. Answering the
questions provides us with the knowledge to create the
construction plans. The widget’s size is eight centimeters
for width and height. Eight centimeters are sufficient to
place the position and identification markers with one ad-
ditional state marker for the button. All markers would fit
on a smaller base shape, but the usability would decrease.
Grabbing and touching distinct parts of a widget is harder
if the widget is small. The widget has only on control ele-
ment, which is a button. The button is a two state button:
pressed or unpressed. Position and identification marker
are passive markers and the state marker is active. All im-
portant facts are gathered, so we can continue to create the
construction plan.

Three position markers and one identification marker are
placed into the quadratic shape of the base. The identifica-
tion marker is located near the origin, as depicted in[3.7)(A).
The button’s state marker is placed in the center of the wid-
get. Its unique attribute is, that it is the last unknown touch
point after position and identification marker are detected
(Figure (B)). Additionally a marker without function is
placed in the top right corner. It’s purpose is to stabilize the
widget when placed onto a surface and prevent dangling.
This concludes the first phase.
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Figure 3.7: A depicts the position and identification marker.
On B the state marker is added and a spot for a stabilization
attachment. C shows the result of the laser cutting and D
finally shows the finished widget.

The body is made of acrylic. This provides a solid but trans-
parent body. The widget representation is displayed under
the widget, therefor transparency is important. The mark-
ers consist of screws with a head of one centimeter of di-
ameter. Connections are made from adhesive copper foil.

The base shape is cut with a laser cutter. A laser cutter of-
fers a high precision and fast cutting. The result is depicted
in figure [3.7| (C). The three position markers and the iden-
tification marker hole are connected with copper foil. The
copper foil is also slightly inserted into the holes. When the
screws are inserted for the markers they establish a direct
contact to the copper foil in the hole. The screws are tight-
ened with nuts. The button marker is not connected to the
other markers, since it is an active marker. The last step
is to attach the grounding wire. The completed widget is
depicted in3.7](D).

Phase two is the
selection of
materials.

Phase three
completes the
construction.
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The second example
is a slider with a
guiding rail and a
track.

This concludes the first construction example of a widget
with a single button.

3.3.2 Slider

The second widget example is a slider. Following the three
construction phases we start with the design of the widget.
The purpose of the widget is a widget with a linear slider
control. A rectangle is selected as base shape for the wid-
get. The position markers will be placed in the three corners
and the identification marker close to the origin marker.
The slider is more complicated to design than the button of
the previous example. We want a slider that is completely
made of acrylic instead of a single screw. The sliding of a
screw on the display could have unwanted side effects like
scratching the display.

The slider needs a guide rail on the widget, limiting the
positions and fixating it on the widget. This results in the
design shown in figure

O O

O
O O

Figure 3.8: The base plate of a slider widget, with a guide
rail for the slider element.
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The unique attributes for the position and identification
markers are the same as introduced in phase one. The slider
marker’s unique attribute is the fact, that it remains the
last element on the widget. The position of the slider can
be calculated by measuring the distances to the three po-
sition markers, this technique is called triangulation. The
slider-knob is fixated to enable a smooth interaction with-
out replacing the slider-knob all the time. The slider-knob
is shaped like a cross, one part reaching down to the dis-
play, the other one up as a handle for the user. The two
arms are fixated in a track, consisting of two elements. One
has the width of the arms and the second one, which will
be placed above, has the width of the guide rail. The three
elements are depicted in figure

=

Figure 3.9: The cross is the slider marker, the two other
elements will be used to fixate the control on the widget.

The next step is to select materials as described in phase
two. The position and identification markers are repre-
sented by short screws, the connection is done via cop-
per foil. The slider control will be completely made out
of acrylic, adding copper foil to ensure the capacitance of
the slider. The assembling result of the acrylic is depicted

in figure m

The next chapter will introduce the software implementa-
tion of the framework that tracks the widgets.

The unique attributes
of each marker are
defined.

The slider-knob is
fixating through a
track on the guiding
rail and its cross
shape.

The materials are
picked considering
the demands of the
widget and elements.
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Figure 3.10: The top picture shows the slider fixation and guide rail. The second
picture shows the whole widget, before attaching the markers and connections.
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Chapter 4

Framework
Implementation

“ If we knew what it was we were doing, it
would not be called research, would it? ”

— Albert Einstein

The interaction between physical objects and a capacitive
multi-touch table involves different parties. On the one
hand there is the hardware and on the other hand there is
the software. The software itself is divided into different
sub-parts. One part is the MultiTouch Framework that pro-
vides the basic functions for touch interaction and graph-
ical visualization. The footprint generation stores
a unique definition for every widget, calculated from the
touch point footprint. The widget detection uses these
definitions to detect the widgets when placed on the sur-
face and call the appropriate functions if controls are used.
The widget object is used as a container inside the soft-
ware to store the widgets. It contains the important at-
tributes of the widget, for example the last position of each
marker. The following chapter presents the different soft-
ware aspects involved in a widget multi-touch table inter-
action.

The widget
multi-touch table
interaction involves a
software and
hardware side.
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The MultiTouch
Framework is
composed out of
three sub
frameworks.

The TouchServer
collects and unifies
touches from
different sources.

The GLEngine
provides predfined
shapes and a
full-screen view.

4.1 MultiTouch Framework

The MultiTouch Framework developed by the media com-
puting groupE] from the RWTH-Aachen University, is the
core component of the implementation. The widget
framework, consisting of the footprint generation and the
widget detection, has been integrated into the Mul-
tiTouch Framework. The core framework comprises three
parts: the TableEngine, the TouchServer and the
GLEngine. The TableEngine includes the other two
frameworks and is the main entry point of the software.

41.1 TouchServer

The TouchServer is used by the TableEngine to com-
municate with different sources of touch input. It can
gather touches from different capacitive displays, mouse
and track-pad emulation, XML files or optical tracking sys-
tems. The TouchServer separates the touches in three dif-
ferent states: touch began, touch moved and touch ended.
The semantic of each source is unified to fit one structure,
independent of the source. Furthermore, it provides a dic-
tionary for each touch state that can be used by other func-
tions to react on touch input. The class TSTrace is used as
representative for touches. It stores information about the
state, position, size if available and historical information
about the touch, like former positions and generation.

4.1.2 GLEngine

The GLEngine is the core of the graphic processing of the
framework. It provides different views that can be used by
the TableEngine. It loads the configuration file from the
MultiScreenAgent and adapts the view to the settings
made there. It provides a canvas, fitting the size of settings,
embedded in a full screen view. Furthermore, it drives the

"mttp://hci.rwth-aachen.de/multitouchframework
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clock that refreshes the views in a specific interval. Addi-
tionally it provides a set of predefined geometries like text,
rectangles, circles and many more. The basic shapes are
used by a call of the shape class. It reduces the OpenGL
code that has to be written.

4.1.3 TableEngine

The TableEngine combines the TouchServer and
GLEngine and adds an event management. It collects
touches from the touch server and distributes them to
classes that are registered as an observer. This is done in
the TableEngine class. Our footprint generation
and widget detection are hooked into this class. The
entry point is chosen to intercept the incoming touches be-
fore they are distributed to virtual objects. Every touch that
can be assigned to a widget is removed from the distributed
touches. Each touch is only used once using this concept.

The TableEngine framework provides a class TEOb ject
which can be considered as a collection of objects that can
be displayed. It consists of various other TEObjects or
basic shapes from the GLEngine. It is basically a con-
tainer object to create more complex objects from simple
ones. Figure 4.1 shows a composition of TEObjects that
form the screen representation of a widget. This example
illustrates the nesting of TEObjects. The outer box is the
parent TEObject, the top bar is another object with a text
texture. The slider consists of two objects, one for the line
and one for the movable slider object, that mimics the real
world slider. Each button is another object with a texture.
Figure [4.1| demonstrates how complex objects can be built
with simple shapes.

This framework offers everything we need to implement
our solution. It provides the touches from different touch
screens in a unified representation, an easily usable struc-
ture to create and manipulate objects and direct access to
the touches. The next section describes the widget object
and what attributes are stored in it.

The TableEngine
distributes touches to
registered objects.

The widget detection
is called in the
TableEngine.

Nesting TEODbjects
can create complex
shapes and views.

The MultiTouch
Framework
integrates all
components needed
to implement a
widget detection.
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The widget class is
the core data
structure of the
widget detection
framework.

The widget object
provides different
attributes.

Brightness Control

M)
N\

Figure 4.1: This example illustrates the nesting of
TEObjects. The outer box is the parent TEObject, the
top bar is another object with a text texture. The slider con-
sists of two objects, one for the line and one for the movable
slider object that mimics the real world slider. Each button
is another object with a texture. This demonstrates how
complex objects can be built with simple shapes.

4.2 The Widget Object

The widget object and therefore the widget class is one of
the core components of the widget detection system. It
stores the data during the footprint generation and supplies
the widget detection with all necessary data to detect and
identify the widgets. It is a highly customizable class to re-
flect the different aspects of the various widget types.
General information about the widget are stored in the wid-
get object, for example the name or the position of all mark-
ers. Furthermore, it offers attributes to store the orientation
and the screen object it is bound to. The orientation is re-
calculated in every execution of the widget detection. To-
gether with the orientation the size of the rectangle is cal-
culated and stored. The bound or paired object is only set if
the widget is being paired to an on screen object, otherwise
it is null.
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In addition to the general information attributes the wid-
get object provides arrays for each kind of marker. For the
minimal functionality it includes the position marker and
the identification marker array. The identification marker
array is an unsorted collection of dictionaries. In contrast
to the identification marker array, the position marker ar-
ray has a logical ordering. The first entry needs to be the
origin position marker, the bottom left corner marker of the
widget. The second entry is reserved for the top left cor-
ner position marker and the third entry is for the bottom
right marker. This ordering is necessary to refer to these
position markers, knowing which one is which, in order to
calculate the orientation and the underlying rectangle with-
out errors. This ordering could be replaced by an algorithm
that checks the position of every marker when calculating
data based on the ordering. It could check the position of
the marker for the same unique attributes as explained later
in chapter 4.3.11—"Position Marker Detection|".

Each entry of a marker array is a dictionary. A dictionary is
a collection of (key, value) pairs. It is a convenient and ef-
ficient way to address data with an arbitrary key. Each key
in a dictionary must be unique, therefore the addressing is
absolute.

The value object type can change for each object and is not
limited to one object type per dictionary. The design of
the dictionaries is the same for position and identification
markers and can differ for other types of markers, depend-
ing on the information for the marker that are important to
store. The dictionary for position and identification marker
consists of two (key, value) pairs. In one pair, namely the
position key, the information about the last trace is stored.
This is done by storing the TSTRace as value. The second
pair consists of the key distances and an array with all dis-
tances to the other markers. The relations are depicted in

figure

The markers are
stored in arrays.

Each marker is a
dictionary.

The position marker,
in contrast to the
other marker arrays
has an ordering.

Each marker is a
dictionary. The
distances are stored
as arrays.
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Figure 4.2: This figure shows the composition of a widget object with the focus on
the marker storage. Every marker category is saved in an array. This array contains
all markers of the specific type. Each marker consists of a dictionary in which the
position and distances are stored. All distance elements in the dictionary are arrays,
holding all distance values.

4.3 Footprint Generation

The footprint is The footprint is the arrangement, including the distances,
created for every of all markers. The footprint generation creates a footprint
widget. for widgets. It is stored in a file that can than be used by

the widget detection. Every widget needs a footprint file,
otherwise the widget detection is not able to detect it.

The widget detection The footprint generation, if enabled, is hooked into the
intercepts the update routine for touches in the TableEngine. Before
touches before they another component of the framework gets the chance to
are passed to virtual handle the touches the routine for the widget detection is
objects. called, including the footprint generation. It ensures that

none of the touches created from a widget is detected as a
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normal touch and side effects are minimized.

The widget detection receives a dictionary with touches in
three states: beginning, moving and ending. Only touches
that are beginning or have been moved are interesting for
the tracing of widgets. The dictionary entries of these
touches are inserted into a list, ignoring the two different
states. The detection does not differentiate between these
two states, only the present touches are used to compute
footprints, independently if the touch has been there before
or not. The important data is the current set of touches.
Touches of the third state, the ending state, are removed
from the list of present touches.

Systems like SLAP (Weiss et al.| [2009]) use the size and
shape of a marker for identification and orientation of the
widget. Since most of the capacitive screens are not able
to detect the size or shape of the touch, we can not rely
on this information. Basically the capacitive screen handles
each touch as a small touch area on the screen, indepen-
dent of size and shape. Capacitive screens detect touches
only on intersections of sensing lanes. If the lanes are close
enough together it is possible to detect shapes by analyz-
ing the touch patterns. As it is now, the touch screens use
grids that are not precise enough to extract shapes. This
means we only receive the information where the touch has
occurred, consequentially we need to take a different ap-
proach. We consider the incoming touches as a point cloud
and extract the different markers with different criteria, as
described in the different subsections.

A footprint can only be generated if all markers are present
and detected on the screen. Otherwise the result of the foot-
print generation would describe another widget. The foot-
print generation waits for the expected number of touches
to appear before it generates an output. The expected
touches can be calculated beforehand for every widget. For
position and identification marker it is one touch for one
marker. They are passive markers, allowing the constant
tracking of the widget. This results in the preliminary for-
mula expectedT ouches = P M ount +1 Mount +x to calculate
the expected touches. X denotes the missing touches from
the state markers.

All current touches
are stored in a list.
Ended touches are
removed from the
list.

Capacitive screens
do not recognize
shapes and
orientation of
markers.

The footprint
generation needs the
number of expected
touches for each
widget.
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The touch count has
to be calculated for
each widget
individually.

A control can be
designed in different
ways.

The markers count is
provided as
arguments to the
constructor of the
footprint generation.

The sum of expected
touches is calculated
with the passed
arguments.

The touches for the state marker can not be generalized for
every control, because each control is designed in a differ-
ent way. A button needs one state marker whereas a rotary
knob needs two state markers. Additionally a button con-
sists of one active marker and the rotary knob of one active
and one passive marker. Furthermore, a control can be de-
signed in different ways. For example, a slider can be re-
alized in at least two different ways. It either has one state
marker and the position is calculated by triangulation from
the coordinate space created by the position markers. Alter-
natively it consists of three markers — one for the slider and
one for the start and end of the range. In the second ap-
proach only the distances between startcurrent_position and
endcurrent_position have to be measured to calculate the posi-
tion of the slider.

It denotes that each state marker type is calculated differ-
ently. The introduction of new control types implies a new
state marker type and the extension of the calculation rou-
tine. The final formula to calculate the expected touches is
expectedTouches = PMeount + I Meount + D, S Meount-

The count of each marker is is passed to the function to
calculate the expected touches. The constructor has to be
adapted every time new state marker types are added. An
example constructor call:

initWithPMCount: (int)pmc IMCount: (int) imc
ButtonCount: (int)bmc SliderCount: (int) smc
DoubleSliderCount: (int)dsc KnobCount: (int) kmc
DemoMarkerCount : (int) demomc widgetName:

(NSStringx)name.

The call provides the number of state markers of the
different categories. If a state marker is not present on the
current widget a zero is passed as argument. However,
position and identification marker may not be zero. The
position marker count is always three and the identification
marker argument always greater or equal than one. The
footprint generation can compute the number of expected
touches from the arguments. A call

—(id) initWithPMCount: 3 IMCount: 2 ButtonCount: 3
SliderCount: 2 DoubleSliderCount: 0 KnobCount:0
DemoMarkerCount: 0 widgetName: @"DemoWidget"

results in expectedT ouches = 3+2+ ((3x 1)+ (2x3)) = 14.
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The algorithm for generating the footprint waits for the cor-
rect number of touches to be in the list of touches. If the
number of touches matches the calculated sum, the single
detection functions are called. A widget file is generated
if every marker has successfully been detected. The algo-
rithm to detect the markers can be simplified as follows:

WHILE no widget is detected DO
IF calculated marker count = touch count
THEN
Position Marker Detection
Identification Marker Detection
State Marker Processing
IF all markers have been detected
THEN
Storing the Widget as XML File
ELSE
do nothing
ELSE
do nothing
END

4.3.1 Position Marker Detection

Before the actual footprint generation starts with the po-
sition marker detection, the number of present touches is
compared to the calculated amount of expected touches. If
the number of touches is greater than expected, more than
one widget or additional touches are present. The algo-
rithm does not continue with the generation. If it continued
it could lead to unpredictable results. Which of the touches
does belong to the widget and which does not? This ques-
tion can not be answered by the program.

On the other hand if the count of touches is smaller, one or
more marker are not working correctly or are not touched
to be visible. If the touches fit the number of expected
touches the algorithm proceeds, otherwise it compares the
counts again when the amount of touches changes.

The algorithm
generates a file when
every marker has
been detected.

The algorithm
continues only if the
right count of
touches is present.

An incorrect number
of detected touches
can indicate a defect
widget.
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Each position marker
is detected by its
unique attribute.

Detected markers
are added to the
dictionary of the
widget.

CONVENTION:

A widget is always placed onto the surface for the foot-
print generation in its original orientation. The origin
marker is placed in the bottom left corner.

The first step of the footprint generation is the extraction
of the position markers from the list of touches. Position
markers, as described before, are in three corners: top left,
bottom left and bottom right. They have unique attributes
that are used to identify each position marker as depicted in
figure The marker in the top left corner has the unique
attribute that its y coordinate is the maximum of all touches
that belong to the widget. The bottom right position marker
has the maximum of all x coordinates and the marker in the
bottom left corner has the minimum of all x and y coordi-
nates.

A successfully detected touch is removed from the list of
touches as every touch can only be assigned to one marker.
Each point is stored in a TSTrace inside a dictionary and
added to the widget object. Hereafter, if all position mark-
ers are identified and the corresponding touches have been
deleted, the algorithm continues with the identification
marker detection.

Max Y coordinate

® o

O,
O,

® O ®

Min X,Y coordinate Max X coordinate

Figure 4.3: Each Position Marker has a unique attribute in
terms of a maximum or minimum coordinate.
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4.3.2 Identification Marker Detection

The point cloud from figure is reduced from seven
(3PM + 3IM + 1SM) to four touch points as depicted in
figure 4.4 by the grayed out markers. The next step in the
footprint generation algorithm is the identification marker
detection.

A distinct area near the origin marker is reserved for the
identification markers. As presented in figure 4.4{ the three
identification markers have the touch points with the small-
est x and y coordinates. An intuitive approach is the search
for the smallest x and y coordinate within the point cloud.
This may lead to different results, depending on the order
of the search. One marker can have a smaller y coordinate
and another marker has a smaller x coordinate. Depend-
ing on the search order they would be found in a different
sorting. If only the identification markers are found, the ar-
rangement is meaningless, but in a few cases it would be
possible to find elements that are no IM. Placing a control
element to the far left side of a widget and all identification
markers right would yield the state marker as a IM when
searching for the smallest x coordinate first.

Instead of searching for a marker with the smallest coordi-
nates on each axis a geometrical aspect is used to determine
the identification marker. The area of the widget can be di-
vided into two areas A and B as depicted in figure One
area contains the identification marker and the other area
all state markers.

Each sum of the x and y coordinate in area B is now larger
than every sum of area A. Based on the fact that area A
has the form of a triangle with a right angle and equal side
lengths. Each point on the dividing line has the same sum
of the x and y coordinate. Starting from (0, 100 = 100) over
(20,80) = 100 to (60,40) = 100 ending in (100,0) = 100.
The numbers are only chosen to demonstrate the concept.
They may vary depending on the widget, but the basic idea
is the same. Every point below the line in area A has a
smaller sum than 100, otherwise it would be in area B.

IM can not be
searched by either
looking for the
smallest x or y value.

The widget area is
divided into two
areas.

Instead of taking
single coordinates
the sum of x and y is
used.
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Each IM is detected
by its sum and stored
within the widget
object.

Unique distances are
used to identify a
widget.
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Figure 4.4: The markers that have been detected so far are
grayed out. The widget space is separated into two areas.
(A) is the area with the identification markers and (B) holds
the state markers.

The algorithm iterates as often as IMs were specified
through the remaining points in the cloud to find the
touches with the smallest x and y sum. The order of the
points is irrelevant, since they are only used to calculate
distances between each other and the position markers to
uniquely identify the widget. Each identification marker is
stored in a TSTrace and added to the widget object.

The widget is identified by calculating the distances for
each position marker compared to all identification mark-
ers and other position markers. In the given example this
would resultin 3 * 5 = 15 distances, three position markers
compared to five other markers. The distances are stored
in a dictionary with names describing which distance they
describe as depicted in figure Table [4.1] summarizes
the unique attributes of each position and identification
marker.
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Marker Name ‘ Unique Attribute
PM 2 Maximum Y Coordinate
PM 3 Maximum X Coordinate
PM1 Minimum Y AND X Coordinate
M Smallest Sum of X and Y Coordinate

Table 4.1: Unique attributes of each PM and IM.

4.3.3 State Marker Processing

State markers, in comparison to position and identification
markers, differ from widget to widget, depending on their
function. The process of identifying state markers can not
be unified with one specific algorithm. Instead we intro-
duce the main concept and present an example.

The tracking should already be considered during the de-
sign phase. Each state marker needs a unique or semi-
unique attribute to be identified. Semi-unique means that
the attribute of the marker becomes unique when process-
ing other markers, reducing the number of points within
the cloud. This is similar to detection of identification
markers. They can only be detected in a reliable way after
processing the position marker. The attributes of the identi-
fication marker are only unique when the position marker
points are removed from the cloud. Otherwise the origin
position marker has the same attribute as a identification
marker.

An example is a button which is a one state control. One
state marker is added to represent the button on the wid-
get. The buttons semi-unique attribute is, that it is the last
remaining point within the cloud. This attribute becomes
unique in terms of fitting points in the cloud, when all posi-
tion and identification markers are detected and removed.
Thereafter only and exactly one point fits the semi-unique
attribute, making it unique.

Following the example of the button widget, the distances
between the state, position and identification markers are
computed. The distances are stored within the widget ob-
ject in the button marker array. If a new touch appears dur-

State marker
detection can not be
unified.

Semi unique
attributes become
unique after
removing touches in
previous stages.

The unique attribute
of a button is actually
semi-unique.

State markers are
identified by unique
distances.
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The state marker
detection is divided
into three phases.

A rotary knob is
much more complex
to detect.

The second example
illustrates that the
algorithm can not be
standardized.

ing a widget is placed on a capacitive display, the distances
between the new touch and the detected PM and IM is cal-
culated and then compared to every state marker of the
widget. Each state marker is identified with unique dis-
tances — two state markers on one position can not exist.

The detection of the state markers is summarized in three
steps. The first step is the definition of unique or semi-
unique attributes for every state marker during the design
phase. The second phase includes the implementation of a
function that searches for the unique attributes of the newly
added state marker type. A function for the example with
the button is a function that returns the last point in the list
of touches. Complex unique attributes afford more effort
to implement a search function. The final step is the cal-
culation of the distances between the state marker and the
position and identification marker.

A more complex example is a rotary knob. It consists of two
markers: one is the center of the knob and the other one
is the position of the rotary arm. Both markers are passive
and therefore visible all the time. Passive markers allow the
system to read the initial state of a widget when it is placed
on the surface and every time the value is needed. Dur-
ing the detection the knob has to be rotated to differentiate
between the knob and the rotary arm marker. The knob
marker is fixed whereas the rotary arm marker changes its
position. The unique attribute of the knob marker is the
fixation to one position. Two touches remain in the point
cloud and the one not changing its position is the knob
marker. The rotary arm marker is the last remaining touch
within the point cloud.

Another approach to generate a footprint for a knob is the
usage of fixed positions. The knob has to be placed on the
display in the same position every time a footprint is gener-
ated. For example, the arm is always left of the center. The
unique attributes depend on the position of the touches.
The knob is always the rightmost remaining marker and
the rotary arm is always the leftmost. This illustrates the
diversity in implementing the footprint generation for state
marker and amplifies the non standardization of the algo-
rithm.
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4.3.4 Storing the Widget

The data gathered in the footprint generation is used by the
widget detection. If the program is shut down the tempo-
rary saved data from the widget object is lost. A permanent
way to store the footprint of a widget is the storage in a file
in a nonvolatile memory.

The data hold in a widget object consists predominantly of
markers. Each marker has a type and an array with dis-
tances. We choose the XML-File format to save the foot-
print. The structure of the file is closely related to the
footprint generation. A node structure is created for each
marker type. Listing presents an example of a fully
generated footprint of a widget with one identification and
state marker. The node trees are visible within the file. One
for each position, identification and state marker. Each tree
has sub entries for every marker of this category. For ex-
ample, there are entries PMO01 to PM03 and each one rep-
resents one position marker. Inside of each specific marker
there are the unique distances to each position and identi-
fication marker. The name of the widget is provided in the
file name. Further information such as size and orientation
are computed from the position markers during runtime.

<Widget>
<PositionMarkerList>

<PMO>
<distance>115.663307</distance>
<distance>0.000000</distance>
<distance>374.386169</distance>
<distance>366.267670</distance>

</PMO>

<PM1>
<distance>288.321014</distance>
<distance>374.386169</distance>
<distance>0.000000</distance>
<distance>525.632019</distance>

</PM1I>

<PM2>

<distance>314.162384</distance>
<distance>366.267670</distance>
<distance>525.632019</distance>
<distance>0.000000</distance>
</PM2>
</PositionMarkerList>
<ButtonMarkerList>

Footprints are stored
in files on the hard
disk.

A XML-File holds the
widget data in a tree
structure.
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The widget detection
loads footprints and
searches for a widget
within the point
cloud.

The search algorithm
stops if not all
position markers are
found.

<BMO>
<distance>242.297333</distance>
<distance>341.646027</distance>
<distance>364.539429</distance>
<distance>181.245697</distance>
</BMO>
</ButtonMarkerList>
<IdentificationMarkerList>
<IMO>
<distance>0.000000</distance>
<distance>115.663307</distance>
<distance>288.321014</distance>
<distance>314.162384</distance>
</IM0>
</IdentificationMarkerList>
</Widget>
Listing 4.1: The XML File for a Widget with one button and

one identification marker

This concludes the footprint generation, we have shown
how the design constraints are integrated into the footprint
generation. An algorithm for the marker extraction and
identification has been presented, followed by a file struc-
ture for widget data.

4.4 Widget Detection

The widget detection loads a list of widget footprints, spec-
ified by the user. These widgets are constantly searched
among the incoming touches. If a pattern matches a foot-
print the corresponding widget object is updated. The
current position for each marker is inserted, the orienta-
tion and size are calculated. For each loaded footprint a
TEODb ject is created that represents the virtual representa-
tion. The size and position are updated each time a widget
is detected. The widget detection loads the specified foot-
prints. For every footprint the whole point cloud of incom-
ing touches is analyzed to find a match for the origin po-
sition marker. If the origin marker is found the other two
position markers are searched. Only if all position mark-
ers are detected the algorithm continues to search for the
remaining markers. If less than three position markers are
found, the algorithm continues with the next footprint.
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The algorithm in pseudo code:

LOAD footprints
receive point cloud
WHILE touches exists DO
ITERATE over loaded footprints
search for the origin marker
IF a candidate is found
THEN
search for second and third PM
IF all PMs are found
THEN
search IM
search SM
compute Size, Orientation
update virtual representation
update widget object
ELSE
do nothing
END

4.4.1 Loading the Footprint

The stored footprint is read by the WidgetManager. The
position and identification markers are processed. Every
footprint file has three position marker elements and at
least one identification marker element. The information
provided by the footprint file are converted into arrays
and dictionaries and added to a widget object. Thereafter
the footprint file is analyzed for other state marker types.
Through the tree structure of the XML-file the top nodes
can directly be accessed, identifying the marker type. The
state markers are processed depending on the type. If the
structure is the same as the basic type-distance structure
it is processed analogous to the position markers. Cus-
tomized types can require additional functions to parse the
footprint data. Each marker is added to a corresponding
marker list within the widget object. Finally the name of
the widget object is set to the file name of the footprint. On
a successful load the WidgetManager returns a widget ob-
ject, containing all markers in the associated arrays.

Each marker type is
processed
independently.
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A widget is
considered as
detected if all passive
markers are present.

The origin marker is
searched by iterating
over all touches and
comparing the
measured to the
footprint distances.

4.4.2 Position and Identification Marker Detection

The WidgetManager passes each loaded footprint as a
widget object to the widget detection. Receiving an up-
dated touch point cloud triggers the detection algorithm.
Each loaded footprint is compared to the current point
cloud, searching a candidate for the origin marker. When
no origin marker is found, no widget can be found. A wid-
get needs all three position markers. The origin markers
servers as a first criteria if it is possible that a widget can be
detected within the point cloud. The other position mark-
ers are searched one by one, if the origin marker is detected.
As soon as one position marker is not found, the current
widget is skipped and the next one is analyzed. If all three
position markers are present the algorithm continues with
the identification markers. If no state marker is a passive
marker, the widget is flagged as found if all identification
markers are found. Thereafter the widget object is updated.
If some state markers are passive markers, than they are
added to the minimum marker that must be found for a
successful detection. An unsuccessful run flags the object
as undetected.

The origin marker search starts with the first touch in the
point cloud and computes the distances to every other
point in the cloud. Based on the loaded footprint a set of
distances for the origin marker exists. Every new computed
distance is compared to the set of required distances. If a
distance is a match, the distance is deleted from the given
set. If all distances are deleted from the current set, the
point is considered as the origin marker. A match is based
on the difference between the measured and the stored one.
Since the measurements appear not to be as accurate as
needed we have added an offset of three percent. The off-
set of the comparison adds a range to the compared values.
If one distance is in the range of the other distance +- 3%
it is a match (distance; < distances * 1.03 A distance; >
distances/1.03). If the distance array is not empty after
comparing all points, the next point is set as starting point.
This procedure is repeated until a widget is found or every
point has been checked.
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Figure 4.5: Approximation of the center of a touch affecting the calculated distance
between the two markers. The distance in each case differs from the others. The
center is depicted by the cross inside of a circle, the large circle represents the whole

marker size.

The accuracy is influenced by the capacitive multi-touch
display controller. Depending on the part of the marker
that is connecting to the intersection of the grid the dis-
tances may vary. If a set of two markers with a fixed dis-
tance is placed onto a capacitive screen multiple times, the
difference differs from time to time. This behaviour is de-

picted in figure

4.4.3 State Marker Detection

The state marker detection can extract a list of possible
state markers of the widget object. If a new touch appears
the distances to the position and identification markers are
compared to the distances of each state marker. A match in-
dicates which state marker is activated and the system can
call the implemented function for that control. The detec-
tion itself is split into the different control element types.
Each type of state marker has a proper function, since it is
not possible to generalize the detection. Even the distinc-
tion between active and passive markers can not be gener-
alized, because it is different for every design.

The state marker detection iterates through the different
kinds of state markers. Empty state marker arrays are ig-
nored, only if a marker is present it is processed. The pro-
cessing of a state marker calls the corresponding detection
method for that marker type. The method analyzes the

The accuracy of the
distances depends
on the fineness of the
display sensor grid.

State marker are
identified by their
unigue distances.

Each state maker
type is detected by a
proper function.
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A button widgets
point cloud has either
one or zero
remaining touches.

The common
approach uses
unique distances.

Some marker require
different approaches.

The widget detection
creates a foundation
for the screen
representations.

point cloud to find the state marker. The detection func-
tion differs from type to type. They can be identical, most
commonly the control elements differ too much to be uni-
tied.

If a widget has an embedded button, the point cloud, af-
ter removing the points from the position and identification
markers, is either empty or has exactly one point within the
coordination space of the widget. An empty point cloud
indicates that the button is not pressed. Contrary if one
point remains within the point cloud, the detection algo-
rithm computes the unique distances to each position and
identification marker. Thereafter the result is compared to
the stored distance set of the button state marker. A match

indicates a pressed button and the corresponding action is
called.

The common approach to find state markers is the compari-
son of the distances from the remainders in the cloud to the
given distance sets for each marker category. One excep-
tion that we encountered is the position of the slider marker
or the position of the rotary knob marker. For these two
kinds of state markers exists no predefined set of distances
to the position and identification markers. A set can only
be precomputed if the marker has a fixed position, but the
two markers can be moved according to the design. These
markers are detected through a different approach. The
slider state marker is placed between two passive markers
and the distances between the border markers and an ex-
isting point between is measured. The point between the
slider markers is the slider knob and the distances are used
to compute the absolute position of the slider.

4.4.4 Screen Representation

The screen representation is only partially integrated into
the widget detection. The actual screen representation dif-
fers from application to application. The widget detection
only provides a foundation for it. Each attribute for a screen
representation is computed and stored within the widget
object. For each loaded widget a screen object is created.
An example representation is depicted in figure This
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object is a TEObject composition. The object is flagged
as visible if the widget is detected and if it is not detected,
the visibility is set to hidden. This means if the widget is
detected the object is shown on screen. If it is not altered
there is a plain rectangle in the size and orientation of the
widget. The application itself is responsible for decorating
the object to the needs of the program and the controls of
the widget. The implementation may vary among different
applications.

Figure 4.6: The widget detection provides a draft screen
representation for each loaded footprint. This model repre-
sents a widget with an underlying menu. The hidden menu
is depicted by the circle below the rectangle. The dots rep-
resent the detected markers of the widget.

The final layout is
done by the
application using the
framework.
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Chapter 5

Design Space

"7

Facts, facts, facts,” cries the scientist if he
wants to emphasize the necessity of a firm
foundation for science. What is a fact? A fact is a
thought that is true. But the scientist will surely
not recognize something which depends on men’s
varying states of mind to be the firm foundation of
science. ”

— Gottlob Frege

Capacitive touch screens provide new interaction concepts.
The range of sensors is extended by conductive materi-
als offering new possibilities. A user can “touch” a dis-
play with the help of a conductive wire from a distance.
This principle is used when creating widgets for capacitive
screens. A user does not need to touch the table directly, he
can touch it through other objects. These objects called wid-
gets can limit the number of actions or enforce specific ones
by applying physical constraints and affordances. Widgets
can be used to utilize different functions. The interaction
with widgets is divided into explicit and implicit touch on
one or multiple touch area controls.
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Traditional
touchscreen
interaction uses a
finger to create
touches.

A screw can extend
the range of the
display sensors.

5.1 From Touch to Widget

Capacitive multi-touch displays allow the detection of a hu-
man body touch. A user touch is the connection of the
skin and the surface of the capacitive display. The body
part, commonly a finger, changes the charge of the capaci-
tance at a specific point on the surface as explained in2.T}—
“Capacitive Touch Technology(’. The traditional touch-
screen interaction is performed with one or more fingers
on the surface of a multi-touch table directly as depicted in

multi-touch display

Figure 5.1: The traditional touchscreen interaction is per-
formed with one or multiple fingers directly on the display.

The concept of capacitive multi-touch displays allows us to
extend the range of a finger touch by adding conductive
elements. The capacitive change that is caused by a finger
can be transported through conductive materials. A screw
for example is similar to a finger in its shape. Conductivity
and resemblance in shape is not enough to generate a touch.
If a screw is placed on a capacitive display, the display does
not detect a touch. Neither is the charge of the intersection
at this position changed. The screw alone is only extending
the range of the sensors at the contact area. When a finger
touches the screw the charge of the sensors is changed. The
capacitive change is passed through the screw downwards
to the display. This sensor range extension is true for all
conductive materials.

The next step is the combination of two conductive materi-
als. A screw is placed on the surface and a wire is attached
to the screw. A user touching the screw or the wire creates
a touch. The position where the user touches the wire does
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screw

.

multi-touch display

Figure 5.2: A touch is detected at every position the hand touches the surface, screw
or wire. The wire and screw are conductive and forward the touch, extending the

reach of the finger.

not matter. Even if the wire is two meter long and a user
touches the far end of the wire, a touch is detected at the
position of the screw. The wire transports the change to the
screw, which passes it to the display, as depicted in[5.2] This
scenario can be advanced with a series of conductive mate-
rials. The conductive materials can be embedded into other
non conductive materials such as plastic. The embedding
in other non conductive materials does not change the ca-
pacitive change when touching the conductive parts of the
construction.

The advantage is the removal of direct touch interaction
through the user. Instead of touching the display itself a
user touches an object that passes the touch downwards to
the display. A new concept of user interaction on multi-
ple touch screen is given through the use of physical ob-
jects. These objects are called widgets. Widgets facilitate
new possibilities in the interaction space. Touchscreens try
to limit user actions by providing only a few visible ele-
ments on the screen or ignoring touches within specific ar-
eas. With the help of widgets, these constraints are directly
integrated into the physical appearance. Users are forced to
perform specific actions through physical affordances (Nor-
man [2002]) or some actions are blocked through physical

Combining
conductive elements
increases the range
extension of the
sensors.

A user touches a
widget instead of the
screen to interact
with the system.



66

5 Design Space

condu

ctive area with a

connection to a marker

widget A

capacitive multi-touch display

Figure 5.3: A user can only touch one specific area of the touchscreen through the
widget. The remaining screen is protected by the widget’s non-conductive body,
limiting the actions a user can perform.

Affordances guide
the user to specific
actions.

Physical constraints
limit the number of
possible actions.

Widgets provide
haptic feedback.

constraints. Figure|5.3|depicts an example where a user can
only touch one specific area of a touchscreen through a wid-

get.

Physical affordances utilize the shape of an object to indi-
cate functions or interactions. If an object with a round han-
dle on top is provided, it affords an interaction with the
handle. A rotary handle affords rotating it and a button af-
fords a press. Using affordances a user is guided through
the interaction with the system.

Physical constraints limit the number of interactions. In fig-
ure 5.3| the user can only touch one area of the widget and
that area is mapped to a dedicated area on the touchscreen.
The rest of the screen underneath the widget is blocked by
the widget’s non-conductive body.

Furthermore, widgets provide haptic feedback. A physi-
cal rotary knob provides the chance to operate it without
watching. Through the haptic feedback the user knows in
which state the control is, and turning the knob provides
the haptic feedback that it is actually rotated. A virtual
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screen object provides visual feedback only. Without look-
ing at the screen a user does now know if his action has
altered the state of the control.

Our design space of a widget is divided into the distinction
between one area and multiple area controls and explicit
and implicit touch. After providing two examples of wid-
get interactions on touchscreens we introduce the concept
of explicit and implicit touches.

5.2 Scenarios for Widget Interactions

Every multi-touch system using widgets has to deal with
two major usability challenges. On the one hand there is
the limited screen estate, that is even further occluded by
the widgets. The second challenge is the pairing of physi-
cal objects to virtual counterparts. We introduce a solution
approach for each of that challenges for capacitive multi-
touch screens.

5.2.1 Screen Occlusion

One of the main challenges when working on a multi-
touch screen is the limited screen estate. We only have a
limited amount of available pixels to display information.
This problem is boosted if we need additional space to dis-
play the screen representations of the widgets and their
menus. The first step to reduce the screen estate occupied
by graphical representations is the transparency of the wid-
gets. This enables the display of the widgets representation
directly underneath the widget instead of occluding addi-
tional space around it.

In SLAP by Weiss et al. [2009] the menus are always visi-
ble around a paired widget. This reduces the visible screen
space used to display information or system based objects.
The widgets screen representation should always be visible
to give a feedback if the widget is detected. Furthermore,
the space under a widget, even if this is transparent, can

Transparency of
widgets reduces
screen occlusion.

Screen
representations of
widgets are
displayed
underneath the
widget.
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Screen occlusion can
be reduced by
adapting the menus
of a widget.

On screen menus
are mandatory.

Dynamic relabeling
adapts the labeling to
changing
functionality.

hardly be used for anything else. It will always be covered
by the widget reducing the visibility of the screen space be-
neath it. Based on feedback and visibility agree, that the
space beneath a widget is reserved for screen representa-
tion. That leaves the display of the menus of a widget as a
starting point to reduce the screen occlusion. To illustrate
the amount of screen estate that can be covered by menus,
we designed a mock-up of a possible multi-touch table dis-
play, shown in figure This example clarifies the need to
reduce the screen occlusion resulting from the widgets.

On the one hand, we want to reduce the screen space oc-
cupied by the menus. On the other hand we need the
menus to operate the different controls of a widget, since
the functionality can change based on the object the widget
is paired with. This changing functionality can be repre-
sented by dynamic relabeling, as introduced by |Weiss et al.
[2009].

Dynamic relabeling describes the possibility to display
different menus and even widget representations based on
the functions the widget can offer. For example if we have
a knob widget we can pair it to a video object, than the ro-
tation of the knob could change the volume of the system.
The menu around the widget should display a graphical
hint that the volume is being controlled and at which level
it currently is. This could be done by a static rendering of
the menu for exactly that widget. But what happens if we
pair this knob with a picture? We would still have the fixed
rendered screen menu that displays a volume control. It
would make no sense to change the volume of a picture.
This is where the dynamic relabeling comes into play. In-
stead of displaying the volume control change the menu on
the fly, showing a menu that is suitable to the paired ob-
ject. In our example this could be a control to change the
brightness of the paired picture object.
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Figure 5.4: Figure A shows the surface of a table with widgets and their active
menus around them. Depending on how they are placed, these three widgets al-
ready occlude a lot of screen estate. Figure B shows the same table with the same
widgets but without the menus to illustrate the difference in occluded screen space.

Three State Model for Widgets

We introduce a solution by presenting a three state model
for widgets. The three state model differentiates between
the three possible states of a detected widget. Figure
provides an overview of the three states and the transitions
between them and figure 5.6 visualizes the different states.
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( State One J

A

—— Widget is paired———— —The control on the widget is tuuchedj
A 4

( State Two J ( State Three J

A

Widget is unpaired Touch ended

Figure 5.5: This diagram depicts how the states can interchange and which action
is required to achieve the change.

In state one a widget
is not paired and has
no visible menu.

In state two the
widget is paired and
the menu is partly
hidden providing a
visual clue.

State One is defined as the state in which a widget is after
initially placing it on the multi-touch display. In this state
the widget is not paired with any object. The widget only
requires its screen representation directly underneath the
widget. Presenting the menu would be redundant because
there is no information that could be displayed in it due
to the fact that it is not paired with an object. Therefore
the screen occlusion is limited to the space occupied by the
real-world representation on the table itself and the virtual
representation underneath it.

State Two is reached after pairing the widget with an on-
screen object. The pairing gives the widget itself a meaning.
In contrast to earlier states the widget now has an object on
which it can perform actions, based on the type of the ob-
ject. How the pairing can be done and how it is visualized is
shown in section [5.2.2—"Pairing{’. To give feedback on the
state of the widget, additionally to its screen representation
and to show the possible functions the menu will be acti-
vated. Since noone is interacting with the widget anymore
the menu can be hidden. It is not hidden completely, so that
there still is a visible clue that something is present in addi-
tion to the widget object to avoid surprises when reaching
state three. Therefore a small border part of the menu is still
visible and the rest is hidden “under” the widget. If a user
touches the control state three is reached.
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State One State Two

State Three

Figure 5.6: The three states of our three state model. State one is the unpaired
widget, not showing any menu. State two is a paired widget with a hint that there is
more under the widget, depicted by a small visible area of the widgets menu. State
three is the quasimode state in which the menu becomes visible. The quasimode is
triggered by a user touching the controls of the widget or other predefined areas.

State Three is the final state of our three state model. It
reflects the state in which a widget is paired and a user
is touching the control, indicating an interaction. This
touching of the control has been defined by Raskin| [2000]
as quasimode. The quasimode is a mode in which the user
constantly has to perform a physical action to maintain the
active state. In this case the action is touching the control,
entering a quasimode in which the full menu is be shown.
The quasimode in this case is used to indicate the system
that a user is most likely going to interact with the widget.
Therefore it is mandatory that the user gets sufficient feed-
back about his actions, reflected by the widget’s menu. The
third state is only valid as long as the user touches the con-
trol of the widget. If the touch is revoked the user no longer
needs the visual feedback of the widget, since he finished
his actions. Therefore ending the touch results in the tran-
sition to state two again.

This concludes our three state model. We have shown that
the screen occlusion can be reduced by using the three state
model.

In state three the
menu of the paired
widget is displayed.
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Physical objects can
be paired with virtual
ones, establishing a

link between the two.

The widget marker in
the top right corner is
the dedicated pairing
button.

5.2.2 Pairing

The interaction of physical widgets with virtual objects af-
fords a link between these two objects. Without a link it
can not be differentiated which object is currently being
manipulated by a widget. To establish the link a pairing
action is needed. Weiss et al. [2009] present a pairing ges-
ture where the the border of a widget and an object are si-
multaneously tapped. The border has a width of about two
centimeters, making it easy to tap it. This pairs and unpairs
the two objects. Unpaired objects and widgets are tagged
with a colored border. This border is the pairing area for
the widget. It implies a loss of screen space for the space
of the colored area. Two paired objects are linked with a
colored line to indicate the connection.

The colored border of the widget is used to pair the wid-
get with a virtual object. In optical tracking the border
adds a significant area to the widget which can directly be
touched. Touching the widget itself has no effect using vi-
sual tracking technologies. A dedicated button that can lift
a marker from the surface is necessary. Otherwise a touch
can not be communicated to the surface without technical
controls. Therefore it is necessary to enlarge the area of the
widget with a part that is touch sensitive. This limitation is
omitted with capacitive touch. There it is possible to have a
marker that is constantly connected to the surface and can
switch states. The marker is not detected if it is not touched.
Therefore it is possible to dedicate a small area of the wid-
get that needs to be touched to initialize the pairing gesture.

To avoid additional markers and occupying additional
space on the widget the marker in the top right corner is
chosen as pairing button. The advantage is that the marker
is already there to stabilize the widget and that it is placed
in a corner. The controls of a widget are placed in the center
region of the widget. This minimizes the amount of acci-
dental touches of the pairing button. However, depending
on the widget design an additional marker is possible. It
can be placed anywhere on the widget. Even the border of
the widget is a possible position for a touch area.
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A meaningful pairing gesture is simple in terms of execu-
tion and memorizing. Additionally it needs to be designed
in a way that makes it difficult to accidentally pair objects.
The pairing gesture of SLAP (Weiss et al. [2009]) is a time
based operation. The user touches the colored border of a
widget and the virtual object itself at the same time. The
touch has to be maintained for a predefined time interval.
A successful pairing is indicated by a color change of the
border and an additional line that connects the two paired
objects.

We developed a pairing gesture that is based on the idea
of SLAP (Weiss et al.| [2009]) — a synchronous bimanual
gesture that interacts with both participants. The widget
is touched at the dedicated touch area. This indicates the
wish to pair this widget with another object. To avoid unin-
tended pairings a time based component is added. The user
has to move his finger over the object for a small amount of
time to confirm the pairing. The movement is added to re-
move false pairing. If a widget is close to a virtual object
and the user is holding the widget at the border, it may oc-
cur that one finger is touching the surface. This accidental
touch could be on a virtual object. Triggering the pairing
button on the widget would then pair the widget with the
object close to it because it is constantly touched. There-
fore an intentional interaction component was added to the
pairing gesture. Figure [5.8|illustrates the sliding gesture,
whereas figure|5.7|shows the initial setup.

O O

virtual

object
widget

virtual
O O O object

Figure 5.7: A widget with two virtual objects, all are un-
paired and placed on a multi-touch display.

A pairing gesture is
easy to remember
but protects from
accidental use.

Two objects are
paired by touching
the pairing marker
and sliding over the
virtual object.



74

5 Design Space

Colored borders
indicate affiliations.

Touching the pairing
area highlights all
connected virtual
objects.

O ;
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) —iie!
widget
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Figure 5.8: The pairing gesture performed on the widget
and the object on the right side. The gesture includes touch-
ing the dedicated area on the widget and sliding over the
object. If both is done simultaneously the objects will be
paired.

It is important to provide feedback after establishing a con-
nection between two objects. If paired, both objects receive
a colored and very small border in the same color. Each pair
has a unique color. This indicates the link between exactly
these two objects. If more than one object is paired with a
widget, all paired objects receive the same color scheme. A
successful pairing is depicted in figure

virtual
object

Figure 5.9: A successful pairing creates a small colored bor-
der around the widget and the object. This indicates a pair-
ing and the correlation.

On a table with a few widgets and 20 or more virtual objects
it is natural to lose track of the paired combinations. To
get a highlight of the objects that are paired to a widget, a
function was added. When the pairing area of the widget
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is touched the connections are visualized by a glowing line
in the current color scheme. The line connects all virtual
objects with the widget, as depicted in figure

virtual
object

Figure 5.10: Touching only the pairing area on the wid-
get highlights every connected object and creates a glowing
connection line between them.

5.3 Explicit and Implicit Touches

Touching a touch sensitive area on a widget is categorized
into explicit and implicit touches. Explicit touches are se-
lective interactions with a control or area. The intention
is to touch the area to trigger a function of the control or
widget. Explicit touches can be enforced by physical af-
fordances like shapes or highlighted areas. If a control is
recognizable as such, a user can deliberately interact with
it.

Implicit touches on the other hand are touches that happen
unknowingly. A widget might have an area that is not rec-
ognizable as a touch sensitive area. A user interacts with
the widget and touches the area unconsciously. That kind
of touch is an implicit touch. However, accidental touches
and implicit touches are not the same. Accidental touches
are unwanted touches with no deeper meaning. Implicit
touches are obscured user interactions with the system.

Explicit touches are
deliberate
interactions.

Implicit touches are
unconscious user
interactions with the
system.



76

5 Design Space

Pressing a button is
an explicit touch.

Removing a widget
can cause problems

on the software side.

Anticipating the
removal avoids
errors.

An additional touch
area can predict the
removal.

5.3.1 Explicit Touch Example - Pressing a Button

An explicit touch example is almost every interaction with
a control on a widget. The user decides to touch a con-
trol on the widget, resulting in an explicit touch. For ex-
ample a one button widget is paired with a virtual object
and the user wants to call a function for that virtual object.
He deliberately touches the button on the widget. Acciden-
tal touches of the button are not considered as an explicit
touch. An explicit touch requires an intention of the user.

5.3.2 Implicit Touch Example - Detect Removal of a
Widget

The interaction with large scale multi-touch tabletops re-
quires different operations. Actions like removing a widget
from the table have a specific action sequence. The user
grabs the object and lifts it from the table. Depending on
the object the widget is paired with, a removal can have an
immense impact on the system. To evade unwanted behav-
ior that can result from removing a widget or performing
other operations, touch areas on the widget can be used to
anticipate the action. For example, if a user is manipulat-
ing an object, the widget detection tracks the state of the
widget. Grabbing the object results in additional touches
on the screen. Lifting the object removes the touch-points
from the surface. The touch-points created from the hand
grabbing the object and the missing points from the wid-
get could cause unwanted errors. These errors are avoided
if the system is informed about the removal of the widget
before it is executed.

Detecting the incoming action can be done by applying ad-
ditional touch areas with markers to the widget. Consider-
ing the example of removing a widget from the display a
user grabs the object before he can lift it. The grabbing can
be detected if the border of the widget can sense the touch.
One additional layer of a conductive material around the
border can detect this action.

Figure depicts how such a widget might look like. The
black bar is the additional conductive layer that is con-
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nected to a dedicated marker on the widget. If this marker
becomes active, the system can anticipate that the widget
is most likely being removed in the soon. Therefore it can
stop tracking the object or calling the dedicated functions
as long as the button is active.

Figure 5.11: A knob widget with an additional layer of
conductive material around the border, depicted by the
black bar. This bar is connected to a dedicated marker. If
this marker is active the system detects that the border is
touched.

5.4 Controls with Multiple Touch Areas

All of the previous widget examples provide controls with
exactly one touch area per control. Capacitive touch tech-
nology facilitates the use of multiple touch ares for one con-
trol. The sensing areas have to be separated through a thin
non-conductive layer. Each area is connected to its own
marker at the bottom side of the widget. Multiple areas en-
hance the functionality of a control element. Furthermore,
multiple control areas can be used to replace mechanical
control elements. A rotary knob can be replaced by a circle
of independent touch areas.

The following two examples illustrate the use of multiple
touch areas on a control and as a replacement for controls.

Multiple
touch-sensitive areas
can be embedded
into a control handle.
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Traditional rotary
knobs provide only
one granularity.

Two toothed touch
areas provide two
granularities.

The additional touch
area mimics a mode
button.

5.4.1 Rotary Knob with Two Granularities

A traditional rotary knob provides a linear control element.
By rotating the knob values can be changed. However, a
knob has one important drawback. The granularity is fixed
to one value. To change the granularity additional buttons
can be added, or a second knob can be stacked on top of the
first one as presented in CapStones and ZebraWidgets (Chan
et al. [2012]). We present a knob that offers two granularity
modes without additional knobs or buttons.

Figure 5.12: The black area is a conductive area separated
from the white conductive area. This pattern enables a two
mode interaction on a control.

The two mode rotary knob has two touch sensitive areas
embedded in the handle, as depicted in figure[5.12] Both ar-
eas are separated through a thin non-conductive area. This
avoids activating both areas when one is touched. Each
area is connected to a marker, the white area to the base
marker, indicating the center of the knob. The black area
is connected to an additional marker close to the center
marker. If a user operates the knob by holding it at the
lower end of the handle only the white touch area is acti-
vated. The normal granularity is applied to the rotary oper-
ations of the knob. The granularity can be changed by hold-
ing the upper area of the handle. Touching the upper end
activates the black and the white touch area. Both markers
are activated and the rotary operations are performed with
a different granularity than before.

The additional touch area works analogous to a mode but-
ton that can be pressed during a rotation. The advantage
is that the user is not aware of pressing additional buttons
and does not need to use more fingers to perform the oper-
ation. The widget can be extended to more than two modes
by adding more toothed areas. They can also be placed in
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different alignments to activate different mode switches de-
pending on the touched region.

5.4.2 Four State Slider

The second application of multiple touch sensitive areas is
the replacement of mechanical controls. This example ex-
plains how a traditional slider can be replaced by an ar-
rangement of different touch sensitive areas.

A four state slider requires four markers. Each state is en-
coded by a combination of active markers. State one uses
the first marker, state two the first two markers, state three
the first three and state four uses all markers. In depen-
dency to the active markers the system detects the state of
the slider. The hardware arrangement is depicted in [5.13}
The lanes are shifted, adding a new lane in every area for a
state.

Figure 5.13: A slider design without any mechanics. The
sliding works through different and independent touch ar-
eas. It has four states combined through the four touch ar-
eas. In this example all four marker below the slider are
inactive.

When a user touches the first part of the slider, the first
marker is activated as depicted in (A). It is important
that the lanes are small enough, so that all lanes of the area
are touched, regardless of the touching position. If the lanes
are too big, a user might touch area three but only hitting

A combination of
different touch areas
can replace
hardware controls.

A four state slider
requires four
markers.

The size of the lanes
is important.



80 5 Design Space

@
O
O
o
@
@
o
O

:

N N N 0000

Figure 5.14: (A) A user is touching the first part of the slider. Only one touch area
is present in this area. Therefore only one marker is active. (B) The touch moved
to part two of the slider with two different touch areas. The touch activates two
markers. (C) Three different areas are touched, activating three markers. (D) All
four markers are touched at the same time. Therefore all four markers are active.

two of the three lanes. As the finger slides from area one to
two the second lane is touched, activating marker two (B).
When the user reaches area four all four lanes and markers
are active.

The four state slider can be extended to as much states as
The lane height limits technical realizable. A size of half a millimeter for a lane
the number of states. extends a slider with one centimeter height to around 16-18

states, depending on the isolation size between the lanes.
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5.5 Limitations

Just like any technology capacitive multi-touch sensing has
its limitations. One basic limitation is the state model of ca-
pacitive widgets. A marker has only two states. Either it
is detected or it is not touched and undetected by the sys-
tem. There is no state between these two. A marker can
not be half activated or deactivated. Touching a marker ac-
tivates it completely. Furthermore, if two markers are con-
nected both are activated if one is touched. Without me-
chanical components it is not possible to activate only one
of the two, or in alternating order. Connections are static
and continuously alter the behavior of the connected ele-
ments. Passive markers can not change their type to active
without remodeling the widget or implementing a mechan-
ical switch that interrupts the connection. However, linking
the switch to a button press or other controls may offer new
challenges.

The second limitation arises from the connection problem
of two markers. If two markers are placed close to each
other and a finger is slid from one marker to the other, both
markers are activated due to the connection through the
finger. When designing the four state slider marker we
thought about different approaches. The first design in-
cluded a bit wise encoding of the state with three markers
for three bit encoding. The seven different states are illus-
trated through table

State \ Marker A \ Marker B \ Marker C

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Table 5.1: 3-Bit encoding of different states

The technical realization is directly derived from table
Seven areas are required to encode the seven states. Area

A marker has two
fixed states: on or
off.

Connections are
static.

A finger acts as a
connection between
markers.
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The transition is
falsely detected as
another state.

The current state is
ambiguous.

Every additional bit
doubles the number

of transition markers.

one implements marker C, area two only marker B and area
three both markers and so forth. Examining the transition
of state one to state two a finger connects marker B and
C. Therefore, the transition is detected as state three of the
slider. The same error occurs in the transition of state six
and seven.

Additional markers are required to mark the transitions be-
tween the states. We identified two approaches. The first
approach is to use one marker for the transitions. Inde-
pendent of the selected state, if the transition marker is de-
tected the state does not change. It works well if the last
state is saved and used during the active phase of the tran-
sition marker. The only error that may occur is if a user
initially touches the slider on a transition. Which state is
being touched? If the sequence 0 1 1 and active transition
marker is received two states are possible. The first state is
the transition from one to two where both areas in addition
to the transition are touched, so either state one or two is ac-
tive. The second state is the transition before or after state
three when only the third state in addition to the transition
marker is touched. This happens shortly after the transi-
tion to three or shortly before the transition to state four.
This problem is handled by the second approach.

The second approach uses a separate marker for every at
risk transition. The three bit encoded slider has two at risk
states, between states one and two as well as between six
and seven. The extra markers identify the current transition
and a current state is estimated from the transition marker.
A new problem arises from the extra markers. Each addi-
tional bit doubles the number of transition markers. How-
ever, this method requires less markers than the four state
slider.

Wires were introduced as material for connections between
markers. One important aspect when using wires or other
long materials is that at some point the material starts to
generate a touch, even if it is not grounded or physically
touched. We formed the hypothesis that a long wire starts
to function as an antenna. However, long connections are
not suited for active markers.
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The last limitation is the limited physical space. A common
widget has the size of eight to ten centimeters in square.
Each marker has the size of one centimeter and has a dis-
tance between markers of one centimeter. If a widget is
filled with markers an eight centimeter widget can hold up
to 16 markers, four rows and four columns. The number
is sufficient for simple constructions, but the position and
identification markers require at least four of the 16 avail-
able markers.

The widget size limits
the amount of usable
markers.
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Chapter 6

Summary and future
work

“There are truths which are not for all men, nor
for all times.”

— Voltaire

This work contributes to the field by introducing design
constraints and limitations for capacitive touchscreen wid-
gets during the construction phase. Furthermore, algo-
rithms for the footprint generation and widget detection
have been presented. None of the currently existing works
covered the aspects of design constraints and algorithms
for the detection. At last we described and explained a de-
sign space for capacitive touchscreen widgets.

In this chapter we summarize the thesis and point out areas
for future work.
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The marker size and
distance are design
constraints.

Detection, position
and identification is
realized with three
marker categories.

The three phase
model divides the
construction process
into three phases.

Unique attributes are
used to differentiate
between the
markers.

6.1 Summary

We have shown which design constraints must be ful-
filled when designing physical objects for capacitive touch-
screens. The marker size and distance of one centimeter
were gathered by conducting experiments on an iPad ver-
sion one. Smaller sizes reduce the accuracy of touch detec-
tion. Larger markers reduce the usable space on a widget.

Three types of markers were introduced: Position mark-
ers communicate the position and size of a widget to the
touchscreen. They are located on three corners of a widget.
Identification markers add a unique ID to each widget. The
unique ID is constructed by the unique distances between
the identification markers and the position markers. The
last type describes the state markers which are responsi-
ble for the tracking of control elements placed on a widget.
State markers are divided into different subcategories, de-
pending on the used controls. Furthermore, a distinction
between active and passive markers has been made. Ac-
tive markers are touch activated and passive markers are
grounded, to be detected at all times.

The next section presented an overview of the physical con-
struction of a widget and a set of suitable materials, used
for different stages of a widget. The three phase model di-
vided the construction cycle into the design, material pick-
ing and engineering phase. Two examples, a button and
a slider have been presented, illustrating the three phase
model.

A highly adaptable algorithm for the footprint generation
creates a storable file for every widget. The unique and
semi-unique attributes have been introduced in this con-
text. The markers are processed and divided into the ap-
propriate categories and saved in the XML file format. The
widget detection loads these files and tracks widgets on a
capacitive touchscreen.
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The overview of the design space indicates the benefits of
widgets in contrast to normal touch input. We have shown
how widgets facilitate physical constraints by limiting the
touchable area that is reachable for a user. The widget
blocks the occupied touch sensitive area, and only selected
areas are connected to the surface. Single and multiple
touch areas have been introduced. They allow more com-
plex control elements and the division of a widget in dif-
ferent areas. A control element can utilize different touch
areas, implementing various modes. Furthermore, we pre-
sented the difference between explicit and implicit touch.
Explicit touch is an unconscious user interaction with the
system, whereas implicit touch is goal-oriented. Explicit
and implicit touches are enforced through physical affor-
dances and constraints in the widget’s design. Finally we
divided the markers of a widget into two categories: active
and passive markers. Active markers are activated when a
user touches them — passives marker are permanently de-
tected. Table|6.1|summarizes the different design space as-
pects.

Category ‘ Subcategory

Touch Area Single Area
Multiple Area
Touch Modes Explicit
Implicit
Marker Types Active
Passive

Table 6.1: Overview of the design space for physical wid-
gets

Widgets limit the
reachable area on
the surface.

Markers are divided
into active and
passive markers.
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The touchscreen is a
blackbox.

Extracting the
touches directly from
the controller can
yield more precise
results.

6.2 Future Work

During the work on this thesis we encountered different as-
pects that are out of scope. This section offers an overview
of the future work that can be done in the field of capacitive
touchscreen widgets.

6.2.1 Data Extraction from the Hardware

The touch input data we used to track and detect our wid-
gets was provided from the iPad’s operating system. Dur-
ing the single steps of the implementation we noticed that
the iPad is a black box to us. We place a widget on top and
receive some touch locations. How the positions are com-
puted, or how disturbances are filtered out is completely
unknown to us. The controller might provide different
touch information than the operating system. The stages
in which larger touch spots are merged to smaller ones,
at which thresholds touches are ignored or even the fact
that sometimes touches disappeared after a time are non-
transparent.

Therefore, a possible work for future systems implement-
ing capacitive touchscreen widgets is the direct touch point
extraction from the controller. The controller should yield
high resolution point clouds of the touches instead of merg-
ing them to one touch at the calculated center. Sensors are
placed tight enough, allowing the computation of marker
shapes if all sensor results are present. The shape can be
used to identify widgets or to calculate the orientation, sav-
ing widget space by using less markers. Additionally much
smaller markers could be detected and the distance be-
tween to markers can be decreased with more precise raw
data.

Experiments have to be conducted to validate that the con-
troller yields more precise data, or if the controller is the
one applying the restrictions for the widget design.
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6.2.2 Further Application Areas

Up till now we have only considered the technical realiza-
tion and design of a widget system. Operating a widget on
a multi-touch table affords a meaningful screen represen-
tation. An intuitive mapping between the physical object
and the virtual screen representation is essential. The con-
tent under the widget is not limited to traditional images or
graphics. Everything can be visualized on the virtual space.
Therefore a set of appropriate screen representations can be
invented and tested with the help of a user study. Typi-
cally the representation depends on the application using
the widget system. Nevertheless a guideline for the design
is essential for a successful user interaction.

Design guidelines for
screen
representations are
essential.
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