
Techniques for Interactive Video Cubism

Sidney Fels
Dept. of Electrical and
Computer Engineering

University of British Columbia
Vancouver, BC, Canada

ssfels@ece.ubc.ca

Eric Lee
Dept. of Electrical and
Computer Engineering

University of British Columbia
Vancouver, BC, Canada

elee@ece.ubc.ca

Kenji Mase
ATR M.I & C. Research

Laboratories
Seika-cho, Soraku-gun

Kyoto, Japan

mase@mic.atr.co.jp

ABSTRACT
This paper presents an interactive video visualization tech-
nique called video cubism. With this technique, video data
is considered to be a block of three dimensional data where
frames of video data comprise the third dimension. The
user can observe and manipulate a cut plane or cut sphere
through the video data. An external real-time video source
may also be attached to the video cube. The visualization
leads to images that are aesthetically interesting as well as
being useful for image analysis.

1. INTRODUCTION
We introduce a new technique for visualizing video data. In
this novel scheme, video data is considered to be a volume
of data. The dimensions of width and height are the usual
X and Y axes of a frame of video data. The third dimension
is derived from layering frames of video data sequentially
in time as shown in the diagram (figure 1). Normal video
viewing can be considered a cut plane that is parallel to the
X-Y plane and advancing from the first frame to the last
frame along the T axis as shown in figure 2 .

Now, imagine rotating the cut plane to a different location
and moving it. For example, consider moving the cut plane
so that it is parallel to the X-T axis and advancing it along
the Y dimension. At each cut you are seeing all of the X
dimension values for all the frames at a given position in the
Y dimension as shown in the diagram in figure 3. Figure 4
shows an arbitrary rotation and positioning of the cut plane.
Next, imagine a cut sphere instead of a plane as shown in
figure 5. Here, we get a non-linear cut through the video
data. We have implemented both a cut plane and a cut
sphere which can be manipulated in real-time. Additionally,
real-time video data can be streamed into the video cube.

2. RELATED WORK
Viewing video data along the X-T axis and Y-T axis has ap-
peared in several forms in the literature. Most recently, [4]
has developed a technique, called the tx-transform, for use
with film. In their work, the different cut planes are always
aligned with the basis axis and are used for creating aes-

Figure 1: Video frames are stacked together to form
a volume. The right figure shows a video cube with
7 seconds of data (210 frames; 212X160 pixels). The
scene is a room with camera panning and zooming.

Figure 2: Cutting the video cube parallel to the X-
Y plane shows a single video frame at some point
in time. Animating along the T axis in this manner
displays normal video. The image on the right is the
cut plane viewed head-on.

thetically interesting dynamic viewpoints of film data. The
work, The Invisible Shape of Things Past [5] also represents
video as a three dimensional object where the topology is de-
termined by the characteristics of the video camera. In [1],
they describe epipolar-plane analysis for tracking objects in
motion. In this work, the cut plane images through the video
cube are are analysed for straight lines or hyberbolic curves
to track objects during camera motion on a mobile robot.
In their work, they consider the effect of moving a camera
in straight lines relative to a fixed scene. In video cubism,
the camera and the objects are free to move. The complex
patterns that form are due to the plane or sphere cutting



Figure 3: Cutting the video cube parallel to the X-
Z plane. Stationary objects leave a smooth “trail”
due to camera movement.

Figure 4: An arbitrary cut through the video
cube. Camera movement translates to an interest-
ing “bending” effect on the door.

Figure 5: A spherical cut applied to the cube. The
image on the right is the texture map applied to the
surface of the sphere. Two “doors” appear in the
image; one from front of the original cube and the
other from the back.

through the epipolar lines allowing multiple representations
of the spatiotemporal data.

The main distinctions this work has are that the cut plane
or sphere used to view the video data can be manipulated
in real-time and that real-time video data can be streamed
into the video cube. This provides an opportunity to inter-
actively explore the video cube from many different angles
to get both aesthetically interesting static images as well as
motion effects.

3. VIDEO CUBISM
Video cubism has three main parts, the video data buffer,
the virtual cube and the cut surfaces. The video data buffer
is formed from frames of video data. The virtual cube is
the representation of the video data in virtual coordinates.
Finally, the cut surface cuts through the virtual video cube
which in turn displays the corresponding video data.

3.1 The Video Data Buffer
The first component of the system is the video data buffer.
The complete video data is stored in memory as a 3D ar-
ray consisting of a sequence of frames of video data. Cur-
rently, we are using RGB values for video frames that are
212x160pixels. Using the full 3D array representation made
addressing individual video data (vixels) that are on the cut
plane simple. In contrast to [3], the video buffer may also
dynamically receive data either from a video capture card
instead of a file.

The video data is used to form textures which are mapped
onto appropriate faces of the video cube and cut surface.

3.2 The Video Cube
The video cube is an abstract representation of the video
buffer discussed in section 3.1. The appropriate vixel data
from the video buffer is texture mapped onto the six faces,
with the most recent frame mapped to the front of the cube
and the oldest frame at the back. Note that the dimensions
of the cube can be selected arbitrarily; the texture map will
stretch the vixel data to fit accordingly. This is similar to the
technique used by [2]. In this implementation, we use a video
cube centred at the origin, with dimensions 1.0x0.75x1.0.
The dimensions were chosen to preserve the 4:3 aspect ratio
of the video frames.

The video cube is represented as an unordered set of twelve
line segments, one for each edge of the cube. The faces
of the cube are divided into triangles, with each triangle
texture mapped separately. Tessellating the faces simplifies
the implementation and makes it consistent with the texture
mapping process for the cut plane’s intersection polygon,
discussed in section 3.3.1. The cube can also be arbitrarily
rotated around the origin in the world coordinate system.
We use a single composite matrix, composed from rotation,
scaling, and translation matrices to convert from video cube
(x,y,z) coordinates to video buffer (X,Y,T) coordinates.

3.3 The Cut Surfaces
Two cut surfaces have been implemented: the cut plane and
the cut sphere. The techniques used for these cuts can be
extended to other cut surfaces.

3.3.1 The Cut Plane
The cut plane allows the user to move a planar window inside
the video cube and examine the corresponding imagery (see
figure 6). Every time the cube or the plane is moved, an
intersection polygon must be calculated and a texture map
computed.

The vertices of the intersection polygon can be computed by
finding the points of intersection between each line segment
representing the edges of the cube with the cut plane.

The intersection points are sorted into an ordered list of ver-
tices for a convex polygon. Coordinates of the intersecting



Figure 6: The cut plane and sphere. The intersec-
tion of the cut plane and cube is a polygon. This
polygon can have three to six sides, depending on
the orientation of the cut plane and cube. Shown is
a wire frame cut sphere divided into 10 stacks and
20 slices.

Figure 7: Computing the video buffer coordinates,
p, of a point in the texture map, q, using a weighting
function based on the four corners of a bounding
box.

polygon are used to determine the texture map vixels.

In contrast to [3], we tessellate the intersection polygon into
triangles and texture map each triangle separately. Using
this procedure, we iterate over the pixels inside each trian-
gle directly, eliminating any per-pixel bounds check. Fur-
thermore, instead of rotating each pixel from texture map
coordinates to video buffer coordinates, we rotate only the
four corners of the bounding box of the triangle we are map-
ping. Then, we interpolate the interior texels based on the
coordinates of the four corners of the bounding box to de-
termine their video buffer coordinates. Figure 7 illustrates
this process.

Given the texture map coordinates qab and qdc for a partic-
ular row of the texture map, the corresponding values pab

and pdc in video buffer coordinates can be calculated. Then
p is calculated using the following equation:

p = (pdc−pab)(̇q−qab)
qdc−qab

+ pab = C(q − qab) + pab

Note that the values C, qab and pab are constant for each
row; thus, the number of operations has been reduced to
only three multiplications and six additions/subtractions for
each texel.

Profiling on a 650MHz PentiumIII processor, we found that
the computation time for a triangle takes from 7 to 11 mil-
liseconds, depending on the size of the triangle. From this,
we estimate that the largest intersection polygon requires 36

milliseconds to calculate the texture.

3.3.2 The Cut Sphere
We have also implemented a cut sphere. In this scheme, a
sphere is placed in the centre of the cube, and data outside of
the sphere is removed. The cut sphere is interesting because,
unlike the cut plane, the image on the surface of the sphere
is a non-linear distortion of space and time. We use a single
texture map wrapped around the surface of the sphere to
display the video data. Figure 5 shows an example of the
cut sphere.

4. INTERACTION CONTROLS
Using the mouse as a virtual trackball, the user is able to
rotate or translate the entire scene, the video cube, or the cut
plane. Alternatively, the rotations and translations may be
specified absolutely using the keyboard, or by manipulating
sliders on a control panel. Note that since we assume the cut
plane to have an infinite width and height, only translations
along the plane normal have any effect.

For the cut plane, the user may animation the cut plane to
move along its normal. For the cut sphere, animation dy-
namically change the size of the sphere which has a “zoom-
ing” effect. If the cut plane is aligned along the normal, ani-
mating the plane will result in each frame being displayed in
its normal or reverse sequence. Rotating the plane slightly
induces temporal effects. One interesting temporal effect is
that solid objects can be made to appear to bend by rotating
the cut plane along the z axis while rotating the object.

5. CONCLUSIONS
With video cubism it is possible to interactively explore
video data in all three dimensions simultaneously. The main
purpose is to explore some of the aesthetics of looking at
video data from a variety of perspectives. The images can
be abstract or concrete depending upon the orientation and
position of the cut surface as well as the movement of the
camera and the object in the video data. We also plan to
continue investigating ways to explore the dynamic imagery
possible with the video cube.

Acknowledgments
The authors thank Ivan Poupyrev for helpful discussions.

6. REFERENCES
[1] Robert C. Bolles, H. Harlyn Baker, and David H.

Marimont. Epipolar-plane image analysis: An approach
to determining structure from motion. International
Journal of Computer Vision, 1(1):7–55, 1987.

[2] S. S. Fels and K. Mase. Iamascope: A graphical musical
instrument. Computers and Graphics, 2:277–286, 1999.

[3] S. S. Fels and K. Mase. Interactive video cubism. In
Proceedings of the Workshop on New Paradigms for
Interactive Visualization and Manipulation (NPIVM),
pages 78–82, Nov 1999.

[4] Martin Reinhart. tx-transform.
http://www.tx-transform.com/frame e.htm , 1998.

[5] Joachim Sauter and Dirk Lusebrink. The invisible
shape of things past. Available from:

http://www.artcom.de/projects/invisible shape/welcome.en,
1997.


