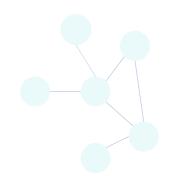
Graph Neural Networks with Learnable Structural and Positional Representations

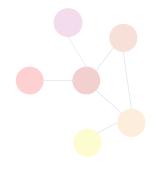
Vijay Prakash Dwivedi PhD Student, NTU Singapore

with

Anh Tuan Luu (NTU), Thomas Laurent (LMU), Yoshua Bengio (Mila) and Xavier Bresson (NUS)



LoGaG: Learning on Graphs and Geometry Reading Group



Introduction Summary

!! Problem Nodes in graphs do not have canonical positional information, like words in sentences. This causes limitations such as the lack of (global) structural information when MP-GNNs learn on graphs.
As a result, these models exhibit low representation power due to their inability to differentiate simple graph symmetries.

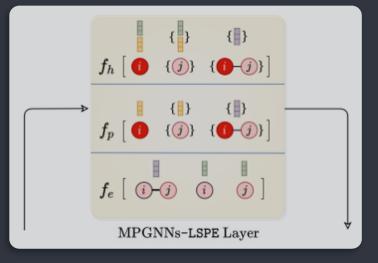
In this work, we consider this topic of graph PEs and propose a framework named LSPE that can be used with any MP-GNNs to **learn positional and structural feature representations** at the same time, thus effectively capturing the two properties and tuning these w.r.t. to the task.

□ Motivation

Background

□ Learnable Structural and Positional Encodings (LSPE)

□ Numerical Evaluations

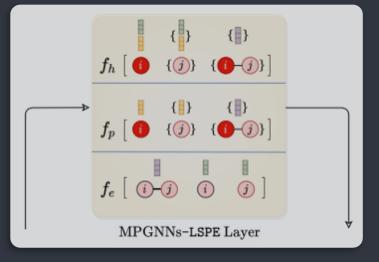


□ Motivation

Background

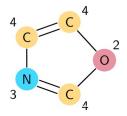
□ Learnable Structural and Positional Encodings (LSPE)

□ Numerical Evaluations



Graph Structured Data

• Graphs are universal language to describe complex systems of bodies and their interactions.



Chemistry

- Learn on molecules and predict chemical properties
- Use in drug repurposing

Social networks

- Learn from multi-faceted interactions among users
- Use for commercial and social applications

Simple Particles

Physics

- Learn from interactions of particles in systems
- Accelerate physics research

Transportation

- Learn from traffic behavior across road networks
- Predict time estimates; efficient transport management

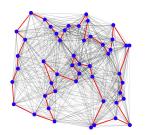
Combinatorial Optimization

- Exploit the fact that most CO problems are rep. as graphs
- Develop better approximated solutions for NP-hard problems

Neuroscience

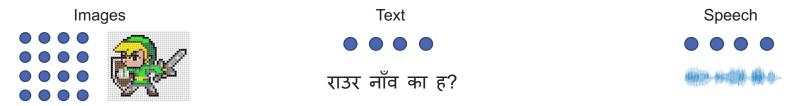
- Learn functions of brain regions through connectivity
- Accelerate brain-understanding and neuro-disease research

Numerous such examples of graph data and application areas!

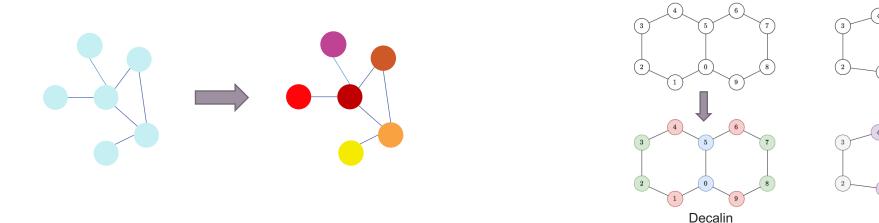


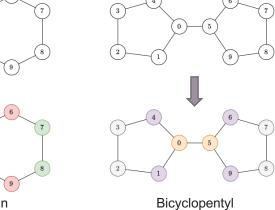
Motivation

Let's start with some data examples. •



- CNNs^[1] implicitly encode spatial position^[2], RNNs build on sequences^[3], Transformers use word PE^[4].
- What about graphs and how GNNs incorporate node positional information? ٠





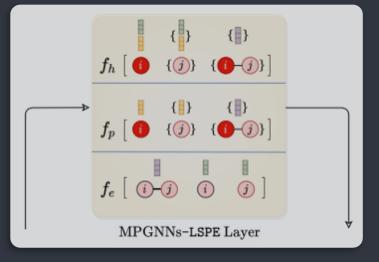
[1] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based learning applied to document recognition. [2] Islam, M.A., Jia, S. and Bruce, N.D., 2020. How much position information do convolutional neural networks encode? [3] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. [4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need.

□ Motivation

□ Background

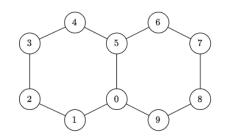
Learnable Structural and Positional Encodings (LSPE)

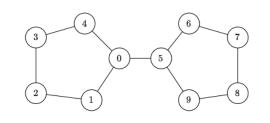
□ Numerical Evaluations

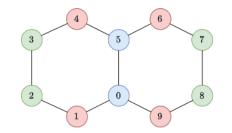


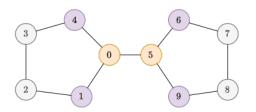
1. GNN's theoretical **expressivity**

2. Graph Positional Encoding









3. Transformer-based GNNs

1. GNN's theoretical **expressivity**

• Message Passing GNNs.

-Based on message-passing between nodes ^[1] -Pairwise exchange of information between local neighbors

-Expressivity bounded by 1-Weisfeiler Leman^[2,3]

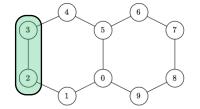
-Fail to distinguish simple graphs w.r.t. 1-WL

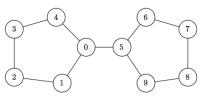
-O(n) complexity; n: number of nodes

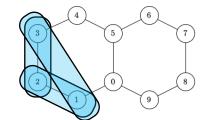
• Weisfeiler Leman GNNs.

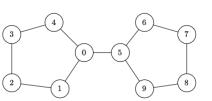
-Higher-order GNNs based on the WL test hierarchy (1/2-WL, 3-WL, ..., k-WL) ^[3,4,5,6]
-Encodes higher-order interactions using k-tuples
-Can distinguish non-isomorphic graphs w.r.t. k-WL
-O(n²)/O(n³) memory/speed complexity

• Scalable and hybrid WL-GNNs developed recently ^[6,7]









Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O. and Dahl, G.E., 2017, July. Neural message passing for quantum chemistry.
 Xu, K., Hu, W., Leskovec, J. and Jegelka, S., 2018. How powerful are graph neural networks?
 Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G. and Grohe, M., 2019, July. Weisfeiler and leman go neural: Higher-order graph neural networks.
 Maron, H., Ben-Hamu, H., Serviansky, H. and Lipman, Y., 2019. Provably powerful graph networks.
 Chen, Z., Villar, S., Chen, L. and Bruna, J., 2019. On the equivalence between graph isomorphism testing and function approximation with gnns.
 Morris, C., Rattan, G. and Mutzel, P., 2019. Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings.
 Bodnar, C., Frasca, F., Otter, N., Wang, Y.G., Liò, P., Montufar, G.F. and Bronstein, M., 2021. Weisfeiler and lehman go cellular: Cw networks.

2. Graph Positional Encoding

- PE in GNNs help the network disambiguate node symmetries
- MP-GNNs can be more expressive^[1] and universal approximators with unique node identifiers^[2]

Desired Characteristics:

- Unique, Distance-aware, Permutation-equivariant, Efficient/Scalable

Laplacian Positional Encoding ^[3]

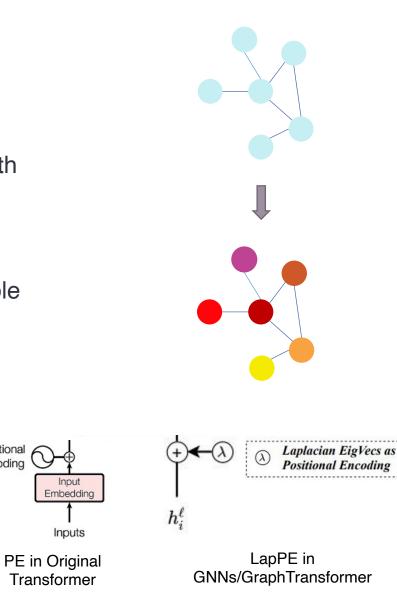
- Based on Laplacian Eigenvectors ^[4] that embed graphs into a local coordinate system
- Unique and Distance-aware
- Pre-computed from the factorization of the graph Laplacian

[1] Murphy, R., Srinivasan, B., Rao, V. and Ribeiro, B., 2019, May. Relational pooling for graph representations.

 $\Delta = I - D^{-1/2} A D^{-1/2} = U^T \Lambda U$

• Generalize the PE used in Transformer^[5] to graphs

[2] Loukas, A., 2020. What graph neural networks cannot learn: depth vs width.
[3] Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y. and Bresson, X., 2020. Benchmarking graph neural networks.
[4] Belkin, M. and Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data representation.
[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need.



Positional

Encoding

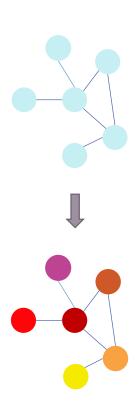
2. Graph Positional Encoding

Although LapPE shows good empirical performance, there are limitations:

- Eigenvectors are defined up to ±1
- When selecting k (<<n) eigenvectors, the number of possibilities is 2^k
- During training, the sign of eigenvectors is randomly flipped^[1] for uniform sampling among the 2^k possibilities (less than n! of node indexing)

Other PE based works for GNNs:

- Position aware GNNs that use anchor sets and relative distances^[2]
- Distance Encoding w.r.t. a node set used at input layer and as aggregation controllers ^[3]
- Random walk with Restart as topological embeddings [4]
- PEs used in Transformers for Graphs (next slides \rightarrow)



lavers

 $\times H$ heads

A-0

Laplacian EigVecs as

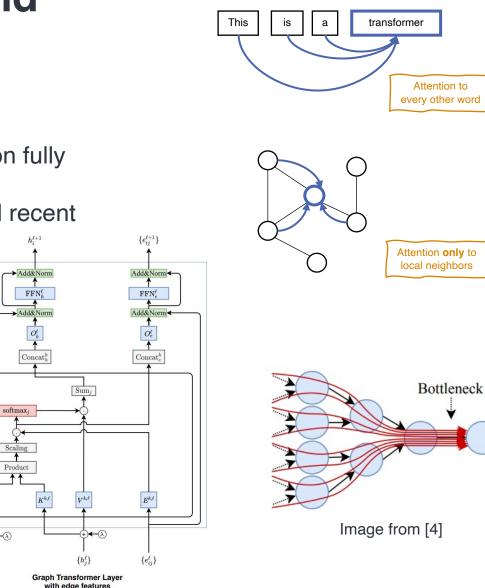
Positional Encoding

3. Transformer-based GNNs

- Attention based GNNs first proposed in GATs ^[1]
- Transformers can be viewed as a special case of GNNs on fully connected graph of words [2]
- This **connection** of Transformer and GNNs led to several recent works!

GraphTransformer

- GraphTransformer uses LapPE and local attention to generalize original Transformers to graphs ^[3]
- However, being similar to MP-GNNs it is susceptible to information bottleneck ^[4]
- Direct use of full attention without the use of appropriate positional and structural encodings does not work well ^[3]



[1] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks. [2] Joshi, C., 2020. Transformers are graph neural networks. [3] Dwivedi, V.P. and Bresson, X., 2020. A generalization of transformer networks to graphs. [4] Alon, U. and Yahav, E., 2020. On the bottleneck of graph neural networks and its practical implications.

3. Transformer-based GNNs

 Fully connected Transformer-GNNs recently proposed which perform better thanks to PE-focused innovations!

Spectral Attention Networks (SAN) ^[1]

- SAN use a Learnable PE module that applies a Transformer encoder on a sequence of eigenvalues/vectors to generate a fixed sized PE
- During full-attention in the main Transformer, separate learnable parameters are maintained for real and non-real edges

GraphiT^[2]

- Use of diffusion geometry to capture short and long-range information
- The diffusion distance is multiplied with attention score

Graphormer ^[3]

Use of centrality, spatial and edge encoding to improve node inputs and attention.

Note: Other previous works such as Graph-BERT^[4] use a combination of structural and relative encodings after a link-less subgraph batching

Kreuzer, D., Beaini, D., Hamilton, W.L., Létourneau, V. and Tossou, P., 2021. Rethinking Graph Transformers with Spectral Attention.
 Mialon, G., Chen, D., Selosse, M. and Mairal, J., 2021. GraphiT: Encoding Graph Structure in Transformers.
 Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y. and Liu, T.Y., 2021. Do Transformers Really Perform Bad for Graph Representation?
 Zhang, J., Zhang, H., Xia, C. and Sun, L., 2020. Graph-bert: Only attention is needed for learning graph representations.

Injecting PE at node inputs

Injecting PE with attention score

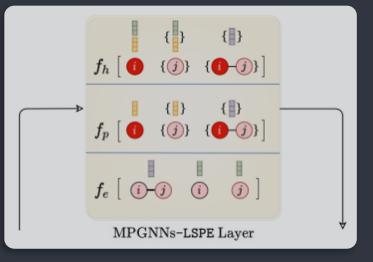
Injecting PE with node inputs as well as attention score

□ Motivation

Background

□ Learnable Structural and Positional Encodings (LSPE)

□ Numerical Evaluations



1. Standard MP-GNNs

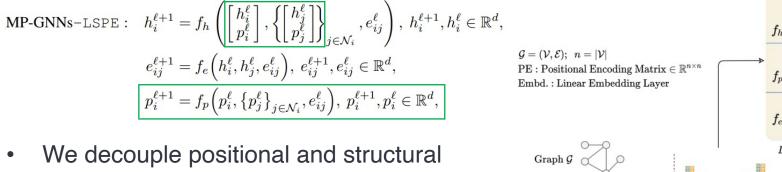
$$\begin{aligned} \text{MP-GNNs}: \quad h_i^{\ell+1} &= f_h \Big(h_i^{\ell}, \big\{ h_j^{\ell} \big\}_{j \in \mathcal{N}_i}, e_{ij}^{\ell} \Big), \ h_i^{\ell+1}, h_i^{\ell} \in \mathbb{R}^d, \\ e_{ij}^{\ell+1} &= f_e \Big(h_i^{\ell}, h_j^{\ell}, e_{ij}^{\ell} \Big), \ e_{ij}^{\ell+1}, e_{ij}^{\ell} \in \mathbb{R}^d, \end{aligned}$$

2. MP-GNNs with PE injected with the input node features

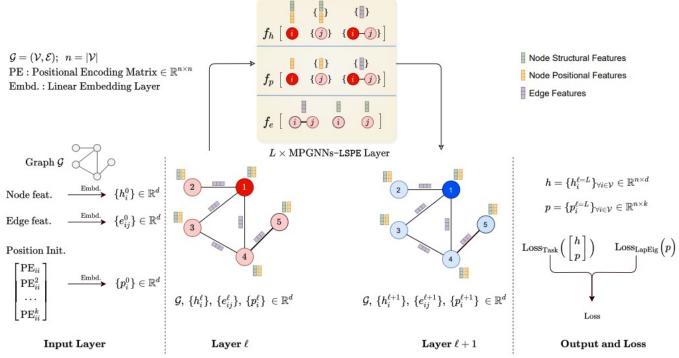
with initial
$$h_i^{\ell=0} = \operatorname{LL}_h \left(\begin{bmatrix} h_i^{\text{in}} \\ p_i^{\text{in}} \end{bmatrix} \right) = D^0 \begin{bmatrix} h_i^{\text{in}} \\ p_i^{\text{in}} \end{bmatrix} + d^0 \in \mathbb{R}^d,$$

and $e_{ij}^{\ell=0} = \operatorname{LL}_e(e_{ij}^{\text{in}}) = B^0 e_{ij}^{\text{in}} + b^0 \in \mathbb{R}^d,$

3. [Proposed] Learning structural and positional representations at every layer



- representations and learn each separately
- Initial PE to be chosen (next slide \rightarrow)
- The proposed modification is generic and applies to any model that fits to MP-GNNs
- Additionally, a positional loss can be used for tuning final positional representations



Initial PE

- Choice of initial PE to be used in MP-GNNs-LSPE is critical
- If we use LapPE which can provide unique node representation, it brings the limitations as discussed

 $p_i^{\text{LapPE}} = [U_{i1}, U_{i2}, \cdots, U_{ik}] \in \mathbb{R}^k$

• We propose **RWPE** based on the Random Walk diffusion process

 $p_i^{\text{RWPE}} = [\text{RW}_{ii}, \text{RW}_{ii}^2, \cdots, \text{RW}_{ii}^k] \in \mathbb{R}^k$

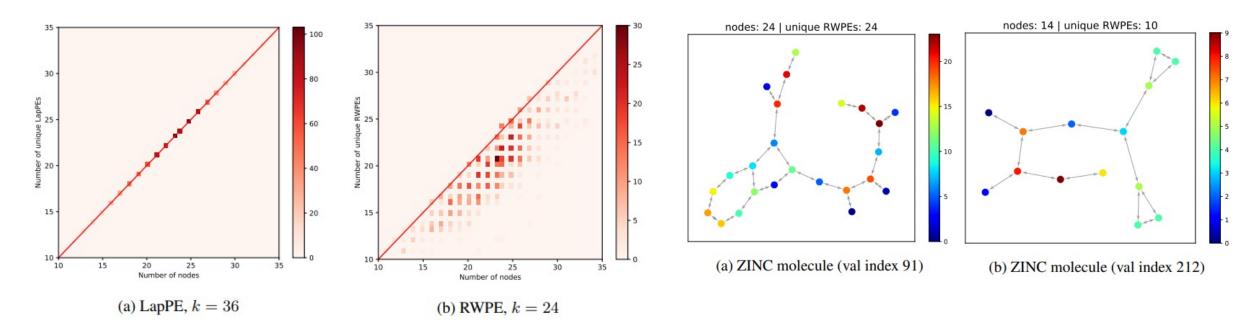
- We use RW_{ii} from every kth step to construct RWPE of node i
- Thus, RWPE encodes the landing probability of a node to itself in 1 to k steps of random walk
- RWPE closely based on Distance Encoding (DE) ^[1] but we do not consider all relative RW_{ij} as in DE

Meaningful higherorder structure information!

Initial PE: RWPE

Characteristics of RWPE

• Unique representation for a node "given a distinct k-hop" neighborhood when considering a sufficient k

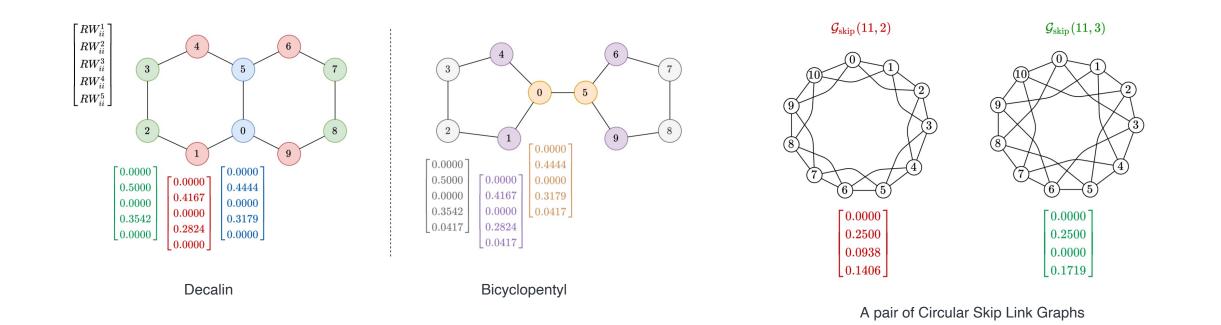


ZINC valset: number of nodes vs. number of unique PE the point intensity is the number of graphs

Initial PE: RWPE

Characteristics of RWPE

- No sign ambiguity as in LapPE
- Can distinguish graph-pairs that failed to be classified correctly by MP-GNNs (1-WL)



NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

,

A. Instantiation of LSPE with sparse MP-GNNs

1. GatedGCN^[1]-LSPE

$$\begin{split} \text{MP-GNNs-LSPE}: \quad h_i^{\ell+1} &= f_h \left(\boxed{ \begin{bmatrix} h_i^\ell \\ p_i^\ell \end{bmatrix}, \left\{ \begin{bmatrix} h_j^\ell \\ p_j^\ell \end{bmatrix} \right\}}_{j \in \mathcal{N}_i}, e_{ij}^\ell \right), \ h_i^{\ell+1}, h_i^\ell \in \mathbb{R}^d, \\ e_{ij}^{\ell+1} &= f_e \left(h_i^\ell, h_j^\ell, e_{ij}^\ell \right), \ e_{ij}^{\ell+1}, e_{ij}^\ell \in \mathbb{R}^d, \\ \hline p_i^{\ell+1} &= f_p \left(p_i^\ell, \left\{ p_j^\ell \right\}_{j \in \mathcal{N}_i}, e_{ij}^\ell \right), \ p_i^{\ell+1}, p_i^\ell \in \mathbb{R}^d, \end{split}$$

$$\begin{split} h^{\ell+1}, e^{\ell+1}, p^{\ell+1} &= \mathsf{GatedGCN-LSPE}\left(h^{\ell}, e^{\ell}, p^{\ell}\right), \ h \in \mathbb{R}^{n \times d}, e \in \mathbb{R}^{E \times d}, p \in \mathbb{R}^{n \times d}, \\ \text{with } h_i^{\ell+1} &= h_i^{\ell} + \mathsf{ReLU}\left(\mathsf{BN}\left(A_1^{\ell}\left[\begin{bmatrix}h_i^{\ell}\\p_i^{\ell}\end{bmatrix}\right] + \sum_{j \in \mathcal{N}(i)} \eta_{ij}^{\ell} \odot A_2^{\ell}\left[\begin{bmatrix}h_j^{\ell}\\p_j^{\ell}\end{bmatrix}\right]\right)\right), \\ e_{ij}^{\ell+1} &= e_{ij}^{\ell} + \mathsf{ReLU}(\mathsf{BN}(\hat{\eta}_{ij}^{\ell})), \\ p_i^{\ell+1} &= p_i^{\ell} + \tanh\left(C_1^{\ell} p_i^{\ell} + \sum_{j \in \mathcal{N}(i)} \eta_{ij}^{\ell} \odot C_2^{\ell} p_j^{\ell}\right), \\ \text{and } \eta_{ij}^{\ell} &= \frac{\sigma(\hat{\eta}_{ij}^{\ell})}{\sum_{j' \in \mathcal{N}(i)} \sigma(\hat{\eta}_{ij'}^{\ell}) + \epsilon}, \\ \hat{\eta}_{ij}^{\ell} &= B_1^{\ell} h_i^{\ell} + B_2^{\ell} h_j^{\ell} + B_3^{\ell} e_{ij}^{\ell}, \end{split}$$

A. Instantiation of LSPE with sparse MP-GNNs

2. PNA^[1]-LSPE

$$\begin{split} \text{MP-GNNs-LSPE}: \quad h_i^{\ell+1} &= f_h \left(\boxed{ \begin{bmatrix} h_i^\ell \\ p_i^\ell \end{bmatrix}, \left\{ \begin{bmatrix} h_j^\ell \\ p_j^\ell \end{bmatrix} \right\}}_{j \in \mathcal{N}_i}, e_{ij}^\ell \right), \ h_i^{\ell+1}, h_i^\ell \in \mathbb{R}^d, \\ e_{ij}^{\ell+1} &= f_e \left(h_i^\ell, h_j^\ell, e_{ij}^\ell \right), \ e_{ij}^{\ell+1}, e_{ij}^\ell \in \mathbb{R}^d, \\ \hline p_i^{\ell+1} &= f_p \left(p_i^\ell, \left\{ p_j^\ell \right\}_{j \in \mathcal{N}_i}, e_{ij}^\ell \right), \ p_i^{\ell+1}, p_i^\ell \in \mathbb{R}^d, \end{split}$$

$$\begin{split} h^{\ell+1}, p^{\ell+1} &= \mathsf{PNA-LSPE}\left(h^{\ell}, e^{0}, p^{\ell}\right), \ h \in \mathbb{R}^{n \times d}, e^{0} \in \mathbb{R}^{E \times d}, p \in \mathbb{R}^{n \times d}, \\ \text{with } h_{i}^{\ell+1} &= h_{i}^{\ell} + \mathsf{LReLU}\left(\mathsf{BN}\left(U_{h}^{\ell}\left(\left[\begin{matrix} h_{i}^{\ell} \\ p_{i}^{\ell} \end{matrix}\right], \bigoplus_{j \in \mathcal{N}(i)} M_{h}^{\ell}\left(\left[\begin{matrix} h_{i}^{\ell} \\ p_{i}^{\ell} \end{matrix}\right], e_{ij}^{0}, \left[\begin{matrix} h_{j}^{\ell} \\ p_{j}^{\ell} \end{matrix}\right]\right)\right)\right)), \\ \\ p_{i}^{\ell+1} &= p_{i}^{\ell} + \tanh\left(U_{p}^{\ell}\left(p_{i}^{\ell}, \bigoplus_{j \in \mathcal{N}(i)} M_{p}^{\ell}\left(p_{i}^{\ell}, e_{ij}^{0}, p_{j}^{\ell}\right)\right)\right), \\ \\ \text{and } \bigoplus = \left[\begin{matrix} I \\ S(D, \alpha = 1) \\ S(D, \alpha = -1) \end{matrix}\right] \otimes \left[\begin{matrix} \mu \\ \sigma \\ \max \\ \min \end{matrix}\right], \end{split}$$

B. Instantiation of LSPE with Transformer-GNNs*

1. SAN^[1]-LSPE $h^{\ell+1}, p^{\ell+1} = \mathsf{SAN-LSPE}\left(h^{\ell}, e^0, p^{\ell}\right), \ h \in \mathbb{R}^{n \times d}, e^0 \in \mathbb{R}^{n \times n \times d}, p \in \mathbb{R}^{n \times d},$ with $h_i^{\ell+1} = \text{BN}\left(\bar{h}_i^{\ell+1} + W_2^{\ell} \text{ReLU}\left(W_1^{\ell} \bar{h}_i^{\ell+1}\right)\right) \in \mathbb{R}^d$ $\bar{h}_i^{\ell+1} = \mathrm{BN}\left(h_i^\ell + \hat{h}_i^{\ell+1}\right) \in \mathbb{R}^d,$ $\hat{h}_i^{\ell+1} = O^\ell \Big(\prod_{k=1}^H \sum_{i \in \mathcal{V}} \frac{w_{ij}^{k,\ell}}{\sum_{i' \in \mathcal{V}} w_{ii'}^{k,\ell}} v_j^{k,\ell} \Big) \in \mathbb{R}^d,$ $w_{ij}^{k,\ell} = \begin{cases} \frac{1}{1+\gamma} \cdot \exp(A_{ij}^{k,\ell}) & \text{if } ij \in E\\ \frac{\gamma}{1+\gamma} \cdot \exp(\bar{A}_{ii}^{k,\ell}) & \text{if } ij \notin E \end{cases},$ $\begin{cases} A_{ij}^{k,\ell} = q_i^{k,\ell} diag(c_{ij}^{k,\ell}) k_j^{k,\ell} / \sqrt{d_k} \in \mathbb{R} & \text{if } ij \in E \\ \bar{A}_{ij}^{k,\ell} = \bar{q}_i^{k,\ell} diag(\bar{c}_{ij}^{k,\ell}) \bar{k}_j^{k,\ell} / \sqrt{d_k} \in \mathbb{R} & \text{if } ij \notin E \end{cases}$ $\begin{aligned} Q^{k,\ell} &= \begin{bmatrix} h^{\ell} \\ p^{\ell} \end{bmatrix} W_Q^{k,\ell}, \ K^{k,\ell} = \begin{bmatrix} h^{\ell} \\ p^{\ell} \end{bmatrix} W_K^{k,\ell}, \ V^{k,\ell} = \begin{bmatrix} h^{\ell} \\ p^{\ell} \end{bmatrix} W_V^{k,\ell} \in \mathbb{R}^{n \times d_k} \\ \bar{Q}^{k,\ell} &= \begin{bmatrix} h^{\ell} \\ p^{\ell} \end{bmatrix} \bar{W}_Q^{k,\ell}, \ \bar{K}^{k,\ell} = \begin{bmatrix} h^{\ell} \\ p^{\ell} \end{bmatrix} \bar{W}_K^{k,\ell}, \ \bar{V}^{k,\ell} = \begin{bmatrix} h^{\ell} \\ p^{\ell} \end{bmatrix} \bar{W}_V^{k,\ell} \in \mathbb{R}^{n \times d_k} \end{aligned}$ $C^{k,0} = e^0 W^k_e, \ \bar{C}^{k,0} = e^0 \bar{W}^k_e \in \mathbb{R}^{n \times n \times d_k}$ and $p_i^{\ell+1} = p_i^{\ell} + \tanh\left(O_p^{\ell}\left(\prod_{k=1}^{H}\sum_{i\in\mathcal{V}}\frac{w_{p,ij}^{k,\ell}}{\sum_{i'\in\mathcal{V}}w_{p,ij'}^{k,\ell}}v_{p,j}^{k,\ell}\right)\right) \in \mathbb{R}^d,$

2. GraphiT^[2]–LSPE

Here we use SAN based architecture for separate parameters for real and non-real edges and modify the weight-score using GraphiT as:

$$w_{ij}^{k,\ell} = \left\{ \begin{array}{ll} K_{ij} \cdot \exp(A_{ij}^{k,\ell}) & \text{ if } ij \in E \\ K_{ij} \cdot \exp(\bar{A}_{ij}^{k,\ell}) & \text{ if } ij \not\in E \end{array} \right.$$

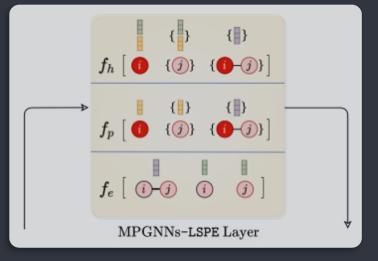
[1] Kreuzer, D., Beaini, D., Hamilton, W.L., Létourneau, V. and Tossou, P., 2021. Rethinking Graph Transformers with Spectral Attention. [2] Mialon, G., Chen, D., Selosse, M. and Mairal, J., 2021. GraphiT: Encoding Graph Structure in Transformers.

□ Motivation

Background

□ Learnable Structural and Positional Encodings (LSPE)

□ Numerical Evaluations



Numerical Evaluations

Step by step empirical evaluation towards the final GNN-LSPE architecture

Instance: GatedGCN-LSPE Dataset: ZINC Metric: MAE (lower is better)

Insights:

- Adding PE improves performance against not using one
- RWPE outperforms LapPE while simply injecting these at the input
- Use of PE at the input layer as opposed with final learnt representations
- Simply adding RWPE leads to overfit
- Using LSPE alleviates this overfit and improves performance significantly

	Model	Init PE	LSPE	Final h		#Param	Test MAE±s.d.	Train MAE±s.d.	#Epochs	Epoch/Total
1	GatedGCN	X	x	h^L	16	504309	0.251 ± 0.009 0.202 ± 0.006	0.025 ± 0.005 0.033 ± 0.003	440.25	8.76s/1.08hr
2	GatedGCN	LapPE	X	h^L	16	505011	0.202±0.006	0.035±0.005	426.00	8.91s/1.22hr
3	GatedGCN	RWPE	х	h^L	16	505947	0.122 ± 0.003	0.013 ± 0.003	436.25	9.14s/1.28hr
4	GatedGCN	X	X	$[h^L, \mathbf{RWPE}]$	16	515249	0.249±0.012	0.024 ± 0.002	437.50	10.05s/1.55hr
5	GatedGCN	LapPE	~	h^L	16	516722	$0.202 {\pm} 0.008$	0.032 ± 0.005	405.25	15.10s/1.84hr
6	GatedGCN	LapPE	~	$[h^L, p^L]$	16	520734	0.196±0.008	0.023 ± 0.004	454.00	15.22s/2.06hr
7	GatedGCN	RWPE	1	h^L	16	518150	$0.100 {\pm} 0.006$	$0.018 {\pm} 0.012$	395.00	15.09s/1.73hr
8	GatedGCN	RWPE	~	$[h^L, p^L]$	16	522870	0.093 ± 0.003	0.014 ± 0.003	440.75	15.17s/1.99hr

• At last, using the final layer positional and structural features for the task with LSPE gives the best performance

Numerical Evaluations

All experiments on 3 molecular datasets

Insights:

- LSPE consistently enhances the capabilities of existing GNNs on the 4 instances evaluated
- On these datasets, sparse GNNs show better performance compared to fully-connected Transformer GNNs
- Positional Loss improves test score on ZINC slightly while in general it leads to overfit on training data

	Model	Init PE	LSPE	PosLoss	L	#Param	TestMAE±s.d.	TrainMAE±s.d.	Epochs	Epoch/Total
	GatedGCN	х	x	x	16	504309	$0.251 {\pm} 0.009$	0.025 ± 0.005	440.25	8.76s/1.08hr
	GatedGCN	LapPE	х	X	16	505011	0.202 ± 0.006	0.033 ± 0.003	426.00	8.91s/1.22hr
	GatedGCN	RWPE	~	х	16	522870	0.093 ± 0.003	0.014 ± 0.003	440.75	15.17s/1.99hr
	GatedGCN	RWPE	~	~	16	522870	$\textbf{0.090}{\pm}\textbf{0.001}$	0.013 ± 0.004	460.50	33.06s/4.39hr
ZINC	PNA	х	х	x	16	369235	$0.141 {\pm} 0.004$	0.020 ± 0.003	451.25	79.67s/10.03hr
Z	PNA	RWPE	~	х	16	503061	$0.101 {\pm} 0.003$	$0.026 {\pm} 0.012$	443.75	126.06s/15.77hr
	SAN	X	х	х	10	501314	$0.181 {\pm} 0.004$	0.017±0.004	433.50	74.33s/9.23hr
	SAN	RWPE	~	x	10	588066	$0.104 {\pm} 0.004$	$0.016 {\pm} 0.002$	462.50	134.74s/17.23hr
	GraphiT	X	X	X	10	501313	$0.181 {\pm} 0.006$	0.021 ± 0.003	493.25	63.54s/9.37hr
	GraphiT	RWPE	~	х	10	588065	$0.106{\pm}0.002$	$0.028 {\pm} 0.002$	420.50	125.39s/14.84hr
	Model	Init PE	LSPE	PosLoss	$\mid L$	#Param	TestAUC±s.d.	TrainAUC±s.d.	Epochs	Epoch/Total
	GatedGCN	x	x	x	8	1003739	0.772 ± 0.006	$0.933 {\pm} 0.010$	304.25	5.12s/0.46hr
	GatedGCN	LapPE	х	х	8	1004355	0.774 ± 0.007	0.921 ± 0.006	275.50	5.23s/0.48hr
	GatedGCN	RWPE	~	х	8	1063821	$0.775 {\pm} 0.003$	0.906 ± 0.003	246.50	5.99s/0.63hr
MOLTOX21	PNA	х	х	х	8	5244849	$0.755 {\pm} 0.008$	$0.876 {\pm} 0.014$	214.75	6.25s/0.38hr
10	PNA	RWPE	~	х	8	5357393	$0.781 {\pm} 0.013$	0.901 ± 0.013	249.75	9.87s/0.73hr
OL	PNA	RWPE	~	~	8	5357393	$0.778 {\pm} 0.006$	0.906 ± 0.012	245.00	24.09s/1.70hr
Z.	SAN	x	x	х	10	957871	$0.744 {\pm} 0.007$	0.915 ± 0.015	279.75	18.06s/1.44hr
	SAN	RWPE	~	х	10	1051017	$0.744 {\pm} 0.008$	$0.918 {\pm} 0.018$	281.75	30.82s/2.84hr
	GraphiT	X	х	X	10	957870	0.743 ± 0.003	0.919 ± 0.023	276.50	16.73s/1.36hr
	GraphiT	RWPE	~	X	10	1051788	$\textbf{0.746}{\pm 0.010}$	$0.934 {\pm} 0.016$	279.75	27.92s/2.57hr
MOLPCBA	Model	Init PE	LSPE	PosLoss	$\mid L$	#Param	TestAP±s.d.	TrainAP±s.d.	Epochs	Epoch/Total
	GatedGCN	х	x	х	8	1008263	$0.262 {\pm} 0.001$	$0.401 {\pm} 0.057$	190.50	149.10s/7.91hr
	GatedGCN	LapPE	x	х	8	1008879	0.266 ± 0.002	0.391 ± 0.003	177.00	152.94s/8.29hr
	GatedGCN	RWPE	~	х	8	1068721	$0.267 {\pm} 0.002$	$0.403 {\pm} 0.006$	181.00	206.43s/11.64hr
	PNA	х	х	х	4	6550839	0.279 ± 0.003	0.448 ± 0.004	129.25	174.75s/6.34hr
	PNA	RWPE	~	х	4	6521029	$0.287 {\pm} 0.003$	$0.392 {\pm} 0.002$	334.50	202.59s/23.68hr

Numerical Evaluations

Comparison with baselines and state-of-the-art GNNs

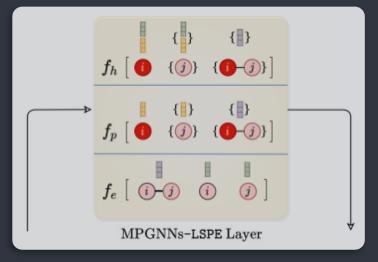
(a) ZIN	C	(b) OGBG-M	IOLTOX21	(c) OGBG-MOLPCBA		
Model	Test MAE	Model	Test ROC-AUC	Model	Test AP	
GCN GAT GatedGCN-LapPE GT SAN Graphormer	$\begin{array}{c} 0.367 {\pm} 0.011 \\ 0.384 {\pm} 0.007 \\ 0.202 {\pm} 0.006 \\ 0.226 {\pm} 0.014 \\ 0.139 {\pm} 0.006 \\ 0.122 {\pm} 0.006 \end{array}$	GCN GCN-VN GIN GIN-VN GatedGCN-LapPE	0.7529 ± 0.0069 0.7746 ± 0.0086 0.7491 ± 0.0051 0.7757 ± 0.0062 0.7743 ± 0.0073	GIN GIN-VN DeeperGCN-VN PNA DGN PHC-GNN	0.2266±0.0028 0.2703±0.0023 0.2781±0.0038 0.2838±0.0035 0.2885±0.0030 0.2947±0.0026	
GatedGCN-LSPE	0.090±0.001	PNA-LSPE	0.7808±0.0130	PNA-LSPE	0.2873±0.0027	

□ Motivation

□ Background

□ Learnable Structural and Positional Encodings (LSPE)

□ Numerical Evaluations



- Decoupling and learning structural and positional representations at every layer improves existing GNNs – both sparse and fully-connected.
- The initialization of PE is critical and contributes greatly towards improving a GNN.
- LSPE helps the feature representations to be tuned for the task and improves generalization performance.
- Compared to fully-connected Transformer-GNNs, the sparse GNNs perform better on the molecular datasets that we considered for evaluation and are efficient at the same time.
- The proposed LSPE architecture is a general framework that can be applied to improve any GNN that fits in the message-passing framework.

Questions?

Thank you!

Vijay Prakash Dwivedi

https://vijaydwivedi.com.np VIJAYPRA001@e.ntu.edu.sg

