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Introduction Summary
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- Nodes in graphs do not have canonical positional information, like
words in sentences. This causes limitations such as the lack of
(global) structural information when MP-GNNs learn on graphs.
- As a result, these models exhibit low representation power due to
their inability to differentiate simple graph symmetries.

In this work, we consider this topic of graph PEs and propose a
framework named LSPE that can be used with any MP-GNNs to
learn positional and structural feature representations at the
same time, thus effectively capturing the two properties and tuning
these w.r.t. to the task.
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Graph Structured Data

• Graphs are universal language to describe complex systems of bodies and their interactions. 
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Chemistry 
- Learn on molecules and 

predict chemical properties
- Use in drug repurposing

Social networks 
- Learn from multi-faceted 

interactions among users
- Use for commercial and 

social applications

Physics 
- Learn from interactions of 

particles in systems
- Accelerate physics research

Transportation 
- Learn from traffic behavior 

across road networks
- Predict time estimates; 

efficient transport 
management

Neuroscience 
- Learn functions of brain 

regions through connectivity
- Accelerate brain-understanding 

and neuro-disease research

Combinatorial Optimization 
- Exploit the fact that most CO 

problems are rep. as graphs
- Develop better approximated 

solutions for NP-hard problems

Numerous such examples of graph data and application areas!                        



• CNNs[1] implicitly encode spatial position[2], RNNs build on sequences[3], Transformers use word PE[4].

Motivation

• Let’s start with some data examples.
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[1] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based learning applied to document recognition.
[2] Islam, M.A., Jia, S. and Bruce, N.D., 2020. How much position information do convolutional neural networks encode?
[3] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory.
[4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need.

Images Text Speech

राउर नाँव का ह?

• What about graphs and how GNNs incorporate node positional information?

Decalin Bicyclopentyl
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Background

1. GNN’s theoretical expressivity
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[1] Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O. and Dahl, G.E., 2017, July. Neural message passing for quantum chemistry.
[2] Xu, K., Hu, W., Leskovec, J. and Jegelka, S., 2018. How powerful are graph neural networks?
[3] Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G. and Grohe, M., 2019, July. Weisfeiler and leman go neural: Higher-order graph neural networks.
[4] Maron, H., Ben-Hamu, H., Serviansky, H. and Lipman, Y., 2019. Provably powerful graph networks.
[5] Chen, Z., Villar, S., Chen, L. and Bruna, J., 2019. On the equivalence between graph isomorphism testing and function approximation with gnns.
[6] Morris, C., Rattan, G. and Mutzel, P., 2019. Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings.
[7] Bodnar, C., Frasca, F., Otter, N., Wang, Y.G., Liò, P., Montufar, G.F. and Bronstein, M., 2021. Weisfeiler and lehman go cellular: Cw networks.

• Weisfeiler Leman GNNs.
-Higher-order GNNs based on the WL test hierarchy
(1/2-WL, 3-WL, …, k-WL) [3,4,5,6]

-Encodes higher-order interactions using k-tuples
-Can distinguish non-isomorphic graphs w.r.t. k-WL
-O(n2)/O(n3) memory/speed complexity

• Scalable and hybrid WL-GNNs developed recently [6,7]

• Message Passing GNNs.
-Based on message-passing between nodes [1]

-Pairwise exchange of information between local 
neighbors
-Expressivity bounded by 1-Weisfeiler Leman [2,3]

-Fail to distinguish simple graphs w.r.t. 1-WL
-O(n) complexity; n: number of nodes



Background

2. Graph Positional Encoding
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PE in Original 
Transformer

LapPE in 
GNNs/GraphTransformer

[1] Murphy, R., Srinivasan, B., Rao, V. and Ribeiro, B., 2019, May. Relational pooling for graph representations.
[2] Loukas, A., 2020. What graph neural networks cannot learn: depth vs width.
[3] Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y. and Bresson, X., 2020. Benchmarking graph neural networks.
[4] Belkin, M. and Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data representation.
[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need.

Laplacian Positional Encoding [3]

• Based on Laplacian Eigenvectors [4] that embed graphs into 
a local coordinate system

• Unique and Distance-aware
• Pre-computed from the factorization of the graph Laplacian

∆ = I − D−1/2 A D−1/2 = UT Λ U
• Generalize the PE used in Transformer [5] to graphs

• PE in GNNs help the network disambiguate node symmetries
• MP-GNNs can be more expressive [1] and universal approximators with 

unique node identifiers [2]

Desired Characteristics:
- Unique, Distance-aware, Permutation-equivariant, Efficient/Scalable



Background

2. Graph Positional Encoding

Although LapPE shows good empirical performance, there are limitations:
• Eigenvectors are defined up to ±1
• When selecting k (<<n) eigenvectors, the number of possibilities is 2k

• During training, the sign of eigenvectors is randomly flipped [1] for uniform sampling 
among the 2k possibilities (less than n! of node indexing)
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[1] Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y. and Bresson, X., 2020. Benchmarking graph neural networks.
[2] Loukas, A., 2020. What graph neural networks cannot learn: depth vs width.
[3] Li, P., Wang, Y., Wang, H. and Leskovec, J., 2020. Distance Encoding--Design Provably More Powerful GNNs for Structural Representation Learning.
[4] Ahmadi, A.H.K., 2020. Memory-based graph networks.

Other PE based works for GNNs:
• Position aware GNNs that use anchor sets and relative distances [2]

• Distance Encoding w.r.t. a node set used at input layer and as aggregation 
controllers [3]

• Random walk with Restart as topological embeddings [4]

• PEs used in Transformers for Graphs (next slides à)
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3. Transformer-based GNNs
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This is a transformer

Attention to 
every other word

Attention only to 
local neighbors

GraphTransformer
• GraphTransformer uses LapPE and local 

attention to generalize original Transformers 
to graphs [3]

• However, being similar to MP-GNNs it is 
susceptible to information bottleneck [4]

• Direct use of full attention without the use of 
appropriate positional and structural 
encodings does not work well [3]

Image from [4]

[1] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks.
[2] Joshi, C., 2020. Transformers are graph neural networks.
[3] Dwivedi, V.P. and Bresson, X., 2020. A generalization of transformer networks to graphs.
[4] Alon, U. and Yahav, E., 2020. On the bottleneck of graph neural networks and its practical implications.

• Attention based GNNs first proposed in GATs [1]

• Transformers can be viewed as a special case of GNNs on fully 
connected graph of words [2]

• This connection of Transformer and GNNs led to several recent 
works!



Background

3. Transformer-based GNNs

• Fully connected Transformer-GNNs recently proposed which perform better thanks to 
PE-focused innovations!
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[1] Kreuzer, D., Beaini, D., Hamilton, W.L., Létourneau, V. and Tossou, P., 2021. Rethinking Graph Transformers with Spectral Attention.
[2] Mialon, G., Chen, D., Selosse, M. and Mairal, J., 2021. GraphiT: Encoding Graph Structure in Transformers.
[3] Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y. and Liu, T.Y., 2021. Do Transformers Really Perform Bad for Graph Representation?
[4] Zhang, J., Zhang, H., Xia, C. and Sun, L., 2020. Graph-bert: Only attention is needed for learning graph representations.

Injecting PE at node 
inputs

Injecting PE with 
attention score

Injecting PE with node 
inputs as well as 
attention score

Spectral Attention Networks (SAN) [1]

• SAN use a Learnable PE module that applies a Transformer encoder on a sequence 
of eigenvalues/vectors to generate a fixed sized PE

• During full-attention in the main Transformer, separate learnable parameters are 
maintained for real and non-real edges

GraphiT [2]

• Use of diffusion geometry to capture short and long-range information 
• The diffusion distance is multiplied with attention score

Graphormer [3]

• Use of centrality, spatial and edge encoding to improve node inputs and attention.

Note: Other previous works such as Graph-BERT [4] use a combination of structural and relative 
encodings after a link-less subgraph batching



Outline of Presentation

q Motivation 

q Background

q Learnable Structural and Positional Encodings (LSPE)

q Numerical Evaluations

q Conclusion

14



Learnable Structural and Positional Encodings

1. Standard MP-GNNs
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2. MP-GNNs with PE injected with the input node features

3. [Proposed] Learning structural and positional representations at every layer

• We decouple positional and structural 
representations and learn each separately

• Initial PE to be chosen (next slide à)
• The proposed modification is generic and 

applies to any model that fits to MP-GNNs
• Additionally, a positional loss can be used 

for tuning final positional representations



Learnable Structural and Positional Encodings

Initial PE
• Choice of initial PE to be used in MP-GNNs-LSPE is critical

16[1] Li, P., Wang, Y., Wang, H. and Leskovec, J., 2020. Distance Encoding--Design Provably More Powerful GNNs for Structural Representation Learning.

Meaningful higher-
order structure 

information!

• We propose RWPE based on the Random Walk diffusion process

• If we use LapPE which can provide unique node representation, it brings the limitations as discussed

• We use RWii from every kth step to construct RWPE of node i
• Thus, RWPE encodes the landing probability of a node to itself in 1 to k steps of 

random walk
• RWPE closely based on Distance Encoding (DE) [1] but we do not consider all 

relative RWij as in DE



Learnable Structural and Positional Encodings

Initial PE: RWPE

Characteristics of  RWPE
• Unique representation for a node “given a distinct k-hop” neighborhood when considering a sufficient k
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ZINC valset: number of nodes vs. number of unique PE
the point intensity is the number of graphs 



Learnable Structural and Positional Encodings

Initial PE: RWPE

Characteristics of  RWPE
• No sign ambiguity as in LapPE
• Can distinguish graph-pairs that failed to be classified correctly by MP-GNNs (1-WL)
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A pair of Circular Skip Link Graphs
Decalin                                                              Bicyclopentyl



Learnable Structural and Positional Encodings

A. Instantiation of LSPE with sparse MP-GNNs

1. GatedGCN [1] -LSPE

19[1] Bresson, X. and Laurent, T., 2017. Residual gated graph convnets.



Learnable Structural and Positional Encodings

A. Instantiation of LSPE with sparse MP-GNNs

2. PNA [1] -LSPE

20[1] Corso, G., Cavalleri, L., Beaini, D., Liò, P. and Veličković, P., 2020. Principal neighbourhood aggregation for graph nets.



Learnable Structural and Positional Encodings

B. Instantiation of LSPE with Transformer-GNNs*

1. SAN [1] -LSPE
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2. GraphiT [2] –LSPE

Here we use SAN based architecture for separate 
parameters for real and non-real edges and modify 
the weight-score using GraphiT as:

Footnote: * with modifications[1] Kreuzer, D., Beaini, D., Hamilton, W.L., Létourneau, V. and Tossou, P., 2021. Rethinking Graph Transformers with Spectral Attention.
[2] Mialon, G., Chen, D., Selosse, M. and Mairal, J., 2021. GraphiT: Encoding Graph Structure in Transformers.
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Numerical Evaluations

Step by step empirical evaluation towards the final GNN-LSPE architecture

Instance: GatedGCN-LSPE      Dataset: ZINC       Metric: MAE (lower is better)
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Insights:
• Adding PE improves performance against 

not using one
• RWPE outperforms LapPE while simply 

injecting these at the input
• Use of PE at the input layer as opposed 

with final learnt representations
1
2
3
4
5
6
7
8

• Simply adding RWPE leads to overfit
• Using LSPE alleviates this overfit and 

improves performance significantly

• At last, using the final layer positional and structural features for the task 
with LSPE gives the best performance



Numerical Evaluations

All experiments on 3 molecular datasets
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Insights:
• LSPE consistently enhances the 

capabilities of existing GNNs on the 4 
instances evaluated

• On these datasets, sparse GNNs show 
better performance compared to fully-
connected Transformer GNNs

• Positional Loss improves test score on 
ZINC slightly while in general it leads to 
overfit on training data



Numerical Evaluations

Comparison with baselines and state-of-the-art GNNs

25



Outline of Presentation

q Motivation 

q Background

q Learnable Structural and Positional Encodings (LSPE)

q Numerical Evaluations

q Conclusion

26



Conclusion

• Decoupling and learning structural and positional representations at every layer improves existing 
GNNs – both sparse and fully-connected.

• The initialization of PE is critical and contributes greatly towards improving a GNN.

• LSPE helps the feature representations to be tuned for the task and improves generalization 
performance.

• Compared to fully-connected Transformer-GNNs, the sparse GNNs perform better on the molecular 
datasets that we considered for evaluation and are efficient at the same time.

• The proposed LSPE architecture is a general framework that can be applied to improve any GNN 
that fits in the message-passing framework.
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Questions?

Thank you!
Vijay Prakash Dwivedi

https://vijaydwivedi.com.np
VIJAYPRA001@e.ntu.edu.sg


