Article Dans Une Revue
Journal of Mathematical Analysis and Applications
Année : 2019
Résumé
In this article, we study a class of conditionally convergent alternating series including, as a special case, the famous series $\sum_{n\geq 2}(−1)^n \frac{ζ(n}{n}$ which links Euler’s constant $\gamma$ to special values of the Riemann zeta function at positive integers. We give several new relations of the same kind. Among other things, we show the existence of a similar relation for the Apostol-Vu harmonic zeta function which have never been noticed before. We also highlight a deep connection with the Ramanujan summation of certain divergent series which originally motivated this work.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Marc-Antoine Coppo : Connectez-vous pour contacter le contributeur
https://univ-cotedazur.hal.science/hal-01735381
Soumis le : mercredi 29 mai 2024-12:06:54
Dernière modification le : samedi 1 juin 2024-03:13:49
Dates et versions
- HAL Id : hal-01735381 , version 8
- DOI : 10.1016/j.jmaa.2019.03.057
Citer
Marc-Antoine Coppo. A note on some alternating series involving zeta and multiple zeta values. Journal of Mathematical Analysis and Applications, 2019, 475, pp.1831-1841. ⟨10.1016/j.jmaa.2019.03.057⟩. ⟨hal-01735381v8⟩
Collections
582
Consultations
410
Téléchargements