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Abstract
The field of information access is of vital importance in our modern societies, since most of

the information is now accessible in a digital form and is increasing in volume at a fast pace.
Techniques from this domain allow to query this information and to access it in an appropriate
form (e.g. summary, list of documents, etc).

Data representation for many different entities, such as a query from a user, the text of
a document, an image, is key to the success of information access models based on machine
learning techniques. Throughout the years, there has been a shift from hand-crafted models
of data to automated methods for learning such an appropriate representation of data. The
latter, i.e. the problem of how to represent raw data, has undergone a revolution in the last ten
years, driven by deep learning. Such works have developed a series of models and techniques to
represent complex data as vectors in a vector space, empowering the notion of distance/angle
in such spaces to represent semantic relationships between the entities.

The work I present in this manuscript focuses on the problem of data representation in the
context of information access. In particular, I present works dealing with (1) probabilistic rep-
resentations of textual and graph data; and (2) the problem of grounding textual representation
in the “real” world.

Le domaine de l’accès à l’information est d’une importance vitale dans nos sociétés modernes
où la majeure partie de l’information est accessible sous forme digitale. La représentation de don-
nées (question d’un utilisateur, texte d’un document) est une clef du succès de l’ensemble des
modèles basés sur des techniques d’apprentissage automatique. Le problème de la représentation
de données brutes a subi une révolution ces dix dernières années, sous l’impulsion de l’apprentis-
sage profond, en développant une série de modèles et techniques permettant de représenter des
données complexes sous la forme d’éléments d’un espace vectoriel, se reposant sur le lien entre
distances/angles dans l’espace vectoriel et les relations sémantiques qu’entretiennent les entités
représentées. Ce manuscrit présente mes travaux dans le cadre de la représentation de données.
En particulier,

1. La représentation de données, en utilisant des formalismes tels que les probabilités quan-
tiques ou les distributions gaussiennes ;

2. L’ancrage du texte dans la réalité (ou tout du moins dans une réalité moins biaisée).

Résumé
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Chapter 1

Introduction and organization

Given the ever increasing amount of stored digital information, techniques and models allowing
users to access and/or query this information are of tremendous importance. The informa-
tion Access research field precisely deal with models and techniques that can help a user to
access/query digital information.

There exist many Information Access tasks. Among those, we can cite the following repre-
sentative ones (those tackled in this manuscript are written in bold):

• Information Retrieval – retrieve information by finding the subset of documents relevant
to a user information need (this includes interactive/discussion-based retrieval systems).

• Question Answering – Answer to specific questions, such as “What is the height of the
Eiffel tower?”, by retrieving the document containing the answer (optional), and then
locating the answer within the document.

• Recommendation – Recommend items (e.g. movies) to users given their implicit or
explicit past preferences.

• Document filtering – Filter a stream of documents that match a pre-specified criterion, to
tame the incoming information flow (e.g. Twitter and Facebook are offering a personal
view over the flow of produced information).

• Document Clustering – Cluster documents to explore the information space. While this
task is not a main research topic nowadays, since the systems so far have not been adopted
by end users, it might regain attention if the quality of the results and presentation im-
proves, especially to support complex searches.

• Document Classification – Classify documents into a pre-defined topics, e.g. predict which
inbox a mail should go in or which node in a classification ontology a web page should be
placed in.

• User Modeling – User models allowing to predict their actions. This has many applica-
tions both for prognostic and diagnostic. For instance, with a prognostic view, web search
users can be modeled so as to predict their behavior (and estimate their satisfaction); with
a diagnostic view, the same model can be used to estimate the relevance of the document
to a user information need given its behavior (i.e. clicks or non clicks).

• Summarization – Summarize one or more documents. The first practical applications of
summarization were web search result snippets (so the user can estimate the relevance of
the proposed documents), but in the future this might lead to more interesting applications
such as summarizing a set of results.
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• Translation – Translate text to allow users accessing information in foreign languages. This
area has been transformed recently with deep learning, and has the potential of allowing
people to search information in languages they do not know, or to present more diversified
opinions around the globe.

All the above end user tasks have been studied, or are still studied nowadays, by the Information
Access field, and the impact on society has been tremendous, especially with the rise of search
engines in the 1990s and recommendation systems in the 2000s. This field has an even longer
history that traces back to the first computers and the idea of digitizing information.

The way those tasks have been handled has evolved with time, from model-based models to
representation-based learning ones. We can distinguish three phases in the evolution of models
for Information Access:

1. Probabilistic and heuristic models (roughly 1960-2000);

2. Machine learning models (roughly 1990-2010);

3. Representation Learning (roughly 2010 to Today).

Below, we discuss briefly and illustrate each phase with examples from the Information Retrieval
(IR) research field.

Towards model-based Spanning 1960–2000, heuristic or probabilistic models were developed
with a task at hand. All these models rely on specific data representations, which are considered
as mathematical objects from which the models can be expressed. Models are then expressed
based on heuristics (e.g. the more a term occurs, the more it is representative of the topic of
the document) or probabilistic modeling (e.g. the distribution of the number of occurrences of
a term follows a Poisson law). In all these models, the underlying representation can be said to
be “hidden away” within the theoretical or heuristic parts since the actual implemented model
might use it or not.

Illustration In information retrieval, Cleverdon experiments in the 60s have first shown
that by using a simple bag-of-words representation, where each term corresponds to a dimension
in a large vector space, automated systems were able to retrieve documents automatically given
a user query (Cleverdon 1967). Salton, Wong, and C. S. Yang (1975) proposed heuristics to
associate an importance with each word of a document. Finally, probabilistic models were
developed to estimate the relevance of a document (within a dataset) for a given query – one of
the most successful model being BM25 (Robertson and Walker 1994).

Machine Learning Spanning from 1990 to 2010, with the development of robust machine
learning models like Support Vector Machines (SVMs), Conditional Random Fields or Gradient
Boosted Trees (Murphy 2012), there has been a shift in the way of representing information:
instead of pursuing ever-more sophisticated models for representing data, the goal is to produce
a set of (hopefully) independent features correlated with the task. Good data representations
should emphasize explanatory factors – at least for the task at hand. These features can then
be used by a classifier that learns to combine the different features so as to take a decision.

Illustration In IR, learning to rank models were initiated by (Fuhr and Buckley 1991),
who suggested the use of a logistic classifier based on various features, among which classic
relevance models such as BM25. This work has been followed by many others in IR – proposing
pairwise and list-wise losses (T.-Y. Liu 2011). Most major Web search engines are based on
these ideas nowadays.
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Representation Learning Even though the question of representation has been outshone by
learning to rank approaches, the question of how to represent data remains central since the
model depends on these representations. The process of designing new features is inherently slow
and costly. More importantly, it might hinder models from capturing important relationships
between data and the task at hand: Going beyond handcrafted features is a natural evolution
of learning to rank techniques. This evolution has been fostered those last ten years with the
“rebirth” of neural networks, i.e. with deep learning.

Deep learning, and more generally representation learning models (Bengio, Courville, and
Vincent 2014), aim at associating with any object described by raw features (e.g. pixel RGB
values or simply one-hot encoding like for text) a latent representation in a (vector) space such
as Rd. Geometric relationships between entities encode existing relations or similarities of raw
data.

Continuous representations of information are in the spotlight of many data-related commu-
nities (Goodfellow, Bengio, and Courville 2016) – image, text, and audio signals are processed
and transformed automatically into high level continuous representations. A specific conference,
ICLR (International Conference on Learning Representations) exists since 2013, and many work-
shops and papers in the field of machine learning follow this direction.

In a schematic way, representation learning techniques aim at obtaining a simple continuous
representation of complex objects (element of a sequence, node of a graph, image, text, etc.) –
simple in the sense that it is possible to use classifiers such as neural networks or support vector
machines. Typically, this representation corresponds to a vector in Rn and is called distributed
representation, or continuous representation. This representation is ideally of sufficiently high
level that each component of the vector represents a latent factor of variance of the space of
observations (Bengio, Courville, and Vincent 2013). A very illustrative example given by LeCun
is that of the representation of the face of a person. With an image, the raw representation
amounts to millions of pixels. However, a face is controlled by 50 muscles, and its position in
space can be represented with 6 measures (position and orientation). A perfect representation
of the factor of variation would be to represent a face with only 56 values (plus some others
representing the environment, i.e. the light).

An additional assumption, which is true in practice in many areas, is that the representation
space has a (local) geometry where the objects are grouped in areas of space that have common
properties – such as belonging to the same class (e.g. the class of agricultural landscapes for
images), being relevant to the same user queries, etc.

Illustration In IR, models based on representation learning have been developed into
two orthogonal directions. The first represents separately the question and the document in
a common vector space, before matching them e.g. by computing their cosine (P. Huang et
al. 2013). The second instead uses the interactions between pre-computed representations of
query and document words (i.e. inner product between keyword representations), which can be
seen as a representation of the degree of match between each word from the query and each
word from the document. This match can then be processed using neural networks (Guo et al.
2016). In both cases, the document or word representations can be learned from data (e.g.
query-document-relevance triples).

1.1 Summary of Contributions
In the context of representation learning, the work reported in this manuscript is centered around
the question of how to represent information with continuous representations in the application
context of information access, with an emphasis on the representation of text – whose related
works are discussed in Chapter 2.
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The manuscript presents my research along to orthogonal directions, i.e. working on the
properties of a chosen representation scheme (i.e. quantum and probabilistic embeddings) and
improving the representation of textual data (grounding).

Quantum and Gaussian Representations (Part I) Most works in representation learn-
ing assume that the representation space is Euclidean equipped with the usual inner product.
However, such spaces do not have an obvious definition of how probability distributions should
be defined, and have no way to express how certain is a representation. The two first chapters
present works conducted around the development of alternative representation spaces, namely
through the use of a quantum probabilistic representation space (chapter 3) and the exploitation
of Gaussian distributions in Rn (chapter 4).

Grounding (Part II) Representing textual information mostly relies on word co-occurrence
information. However, since it is known that human relies on representations which are grounded
in reality Barsalou (2008), it has been hypothesized that any worthy representation should also
be grounded – in particular to capture common sense knowledge. Chapter 5 discusses the
problem of using multimodal information to improve representations – i.e. can we use images
to integrate common sense, such as “the sky is blue”, into word and sentence embeddings?

Other contributions (Part III) Finally, my other contributions are described succinctly
in Chapter 6, and deal with user modeling, evaluation, information extraction and document
summarization.

Finally, Chapter 7 concludes the manuscript, and presents my current research direction.

1.2 Notations

The following notations will be used throughout the manuscript (in most parts):

• We use boldface to denote vectors x and matrices A

• x ∈ Kd is the representation of x in a vector space of dimension d of field K (R or C in
this manuscript).

• When there are various possible representation for x, we note Rx the R representation of
x. For instance, we denote cnnx the CNN representation of an image x. We also use the
notation cnnθ (x) or cnn (x; θ) when parameters need to be specified.

• card (X) is the number of elements of the set X

• softmaxk y is the kth component of the softmax operator of a vector y

softmaxk y = exp (yk)∑n
i=1 exp (yi)

we also denote softmax y the vector of the probability simplex ∆n (i.e. the probability
distribution over all the outputs).

8



Chapter 2

Background: The evolution of
textual representations

In this chapter, we describe how the representation of textual data has evolved in the last fifty
years – starting from bag-of-word representations in the 1960s to the rise of deep learning in the
2000s.

2.1 Feature-based Representations
The first attempts at representing a text were based on statistics about occurring words in a
document and within a collection. The most famous example is that of Salton (Salton and Lesk
1965) who developed an automated term extraction system for IR. The interest and potential of
such a representation was latter confirmed to be competitive with many sophisticated indexing
schemes in the Cleverdon experiments (Cleverdon 1967). Many attempts have been conducted
to improve this representation, but successful attempts have mainly focused on improving how
to compute the importance of a term (term weights) rather than changing altogether the fact
that terms were the basic representation units (i.e. bag of word representation).

With the rise of machine learning in Natural Language Processing (NLP) and Information
Access fields, there has been a focus on the development of meaningful features, carefully chosen
for the task at hand. To cite a few,

• In Web Information Retrieval, learning to rank approaches rely on features such as rel-
evance scores from model-based IR such as BM25 (Robertson and Zaragoza 2009), the
PageRank (Page et al. 1999) of the given page, the number of incoming/outgoing links,
the length of the page, and so on (T.-Y. Liu 2011).

• In emotion recognition, the average valence of words (dictionary based) is used in many
works (Polanyi and Zaenen 2006), but more advanced features such as those based on
neural networks (A. Y. Ng et al. 2011) can be used.

• In information extraction, or more specifically, in relation classification where the task is
to predict which relation (between two entities) occurs in a sentence, a representation of
the path between the two entities at hand (e.g. part-of-speech tags of words between the
two entities) can be used as features (Yao, Haghighi, et al. 2011).

In all these cases, designing and evaluating the different proposed features is time consuming –
both for humans and machines. The trend towards continuous representations, that we describe
in the next sections, is tackling this main issue. The recent success of neural architectures show
that it is possible to learn automatically how to represent texts, relying on the expressive power
of such architectures, as well as on a wealth of knowledge about what architecture can be used
on which task, and about how to train their parameters successfully.

9



2.2 Towards continuous representations

Text representation has since then evolved from being non continuous (e.g. a set of words) to
being continuous (aka distributed). This evolution is centered around two different phases.

Latent Topic Spaces The first phase is in the 1990s, Deerwester et al. (1990) have shown
that it is possible to use word co-occurrence within documents to represent both documents and
words in a latent topical space. Their method, named Latent Semantic Indexing (LSI), is based
on the singular value decomposition (SVD) of a term by document matrix1, allowing to uncover
latent factors that represent a term or a document.

Probabilistic approaches have also been proposed, such as Probabilistic Latent Semantic
Allocation (Hofmann 2001) or Latent Dirichlet Allocation (Blei, A. Ng, and M. Jordan 2003),
which are generative models based on the idea that the (latent) topic explain the word distribu-
tion over some regions of a document. There has been a good number of works extending LDA,
and an overview of this type of models is presented in (Blei, Carin, and Dunson 2010).

Latent Topic Spaces have had two main applications: document clustering and term analysis
(see e.g. Blei, A. Ng, and M. Jordan 2003). In the former, the latent topics are good indicator
of the theme the document is discussing, and for the latter, it is possible to represent the term
specific topics – sometimes even looking at their evolution through time (C. Wang, Blei, and
Heckerman 2012).

Apart from these specific tasks, this type of representation has never been successful in
tackling other ones. A reason of this failure is that latent spaces are mostly topical spaces,
and do not allow to capture important information such as which specific named entity is used,
which is essential for many information access tasks. The consequence is that they have been
used has a part of other models, e.g. to smooth word distributions in language model based
approaches as in (Deveaud, SanJuan, and Bellot 2013).

Another reason is that powerful supervised models exploiting such a representation were
not developed at this time: most approaches relied on using a classifier on top of a continuous
representation, the latter being computed with no supervision (language modeling task). The
representation is thus not task-specific enough for being successfully used in the different tasks.

Neural Networks The second phase in the continuous word representation debuts with the
resurgence of neural networks for language modeling, and more precisely the work of Bengio,
Ducharme, et al. (2003). In this generative model, each word is associated with a continuous
representation. A recurrent neural network (RNN) is used to compute a probability distribution
over words w, conditioned over the previous words w1 to wt−1,

p (w|w1...t−1) = p (w|st = fθ (st−1, wt−1))

The RNN is used to summarize the information of the previous words into a fixed size state
vector st in a latent continuous space through the inductive formula st = fθ (st−1, wt−1). The
RNN can thus be thought (in theory at least) as a Markov chain with infinite order: The state
vectors st contain syntactic and semantic information necessary for the generative task. This
model both learns the representation of each word (word embeddings) as well as the parameters
of the RNN.

Following Bengio, Ducharme, et al. (2003), many works have tried to adapt (recurrent)
neural networks for specific tasks. Once this model has been trained, it is possible to use the
RNN state st as a representation of a text up to the processed word wt. The last state of a text
sT corresponds to the representation rnnd of the text d. Since states are of fixed dimensions,

1each term corresponds to a row i, each column to a document j, and a value in the matrix corresponds to
the importance of the term i for the document j
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they can be used for classification (e.g. topics) and/or regression tasks (e.g. sentiment). Such
RNNs were used directly, e.g. for speech recognition (Schwenk 2007) and morpho-syntactical
labeling (Collobert et al. 2011).

There are many variations around recurrent neural networks:

• Increasing the representational power by processing the document in the opposite time
direction (Schuster and Paliwal 1997). With Bi-directional RNNs, the representation of
a document d is the concatenation of the last states of the RNNs in both directions
rnn→d ⊕ rnn←d .

• Allowing them to capture more distant relationships in the input. It has been shown early
in the history of RNNs that they were prone to the vanishing gradient problem, i.e. that
the magnitude of the gradient decrease exponentially when going back in time with the
back-propagation mechanism. Solutions such as Long Short Term Memories (LSTM) were
proposed by Hochreiter and Schmidhuber (1997). These have only been picked in NLP and
information access much latter, giving rise to variations such as Gated Recurrent Units
(GRU, defined in Cho et al. 2014).

Convolutional Neural Networks Coming from the vision research field, Convolutional Neu-
ral Networks (CNNs) have been proposed to leverage the (two-dimensional) equivariance of data
(LeCun et al. 1989), i.e. the idea that the processing of an image region should not depend on
its location. This makes sense since an object identity will not be changed by moving it in the
picture. The second idea in convolutional networks is that the analysis should be compositional
– i.e. go from regions, composed of basic shapes, to larger ones, composed of real world objects.

This idea can be transposed for texts, the only difference being that the translation equiv-
ariance is unidimensional and not bi-dimensional. The basic 1D convolution can be expressed
as:

yi =
w∑
j=1

Kjxi−j+1 + b ∈ Rdoutput

where xi−j+1 ∈ Rdinput is 0 when i− j is out of the sequence bounds (i.e. less than 0 or greater
than the the sequence length l), Kj ∈ Rdoutput×dinput is the jthcomponent of the kernel of width
w, and b the bias.

In the first layers of a CNN, word embeddings are used, i.e. xi is equal to the embedding
wi of the word wi. As for RNNs, this embedding is learned when training the model, eventually
starting with pre-trained word embeddings (see next section).

Because of its robustness and its ability to relate distant words (compared to RNNs), CNNs
have been used for many (classification) tasks such as:

• Information Extraction, as for example the P-CNN (Y. Y. Huang and W. Y. Wang 2017;
Sahu et al. 2016; D. Zeng et al. 2015), where the text before, between and after the entities
is processed with three different CNNs, before classifying the relationship into one of the
predefined categories.

• Sentiment Analysis where CNN are quite popular since they can easily detect patterns
such as “I like”, “This ... was great” or “This ... was particularly awful” (Kalchbrenner,
Grefenstette, and Blunsom 2014).

• Entity recognition (Adel, B. Roth, and Schütze 2016), where each token of the sentence is
classified as being either an entity or not.

• Information Retrieval, to classify whether a document is relevant for a query given its
interaction map, i.e. the inner product value between each term of the query and each
term of the document (Yin et al. 2016).
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As shown above, recurrent/Convolution Neural Networks have been studied and experimented
with intensively these last fifteen years for a variety of tasks. We now focus on models and
techniques that try to represent words or sentences from raw data, i.e. from text alone.

2.3 Word Embeddings

Most – if not all – neural network-based models nowadays rely on pre-trained embeddings2,
which form an important part of the model parameters. Examples are sentiment analysis (A. Y.
Ng et al. 2011), information extraction (Y. Y. Huang and W. Y. Wang 2017; C. N. d. Santos,
B. Xiang, and B. Zhou 2015; Y. Xu et al. 2015; Z. Zhang 2004), response to questions (Iyyer,
Boyd-Graber, et al. 2014; A. Kumar et al. 2015), machine translation (Bradbury and Socher
2017; Sennrich, Haddow, and Birch 2016) and information retrieval (Mitra and Craswell 2017).

Apart from specializing neural architectures on specific tasks, and given the importance
of the quality of word/sentence embeddings, as well as the difficulty to train models such as
(Bengio, Ducharme, et al. 2003) on large quantities of text, methods have been developed to
learn word or sentence embeddings with easier to train models. The question is now of being
able to produce high quality embeddings, e.g. useful as a starting point to train a supervised
model on a given task.

Bengio, Ducharme, et al. (2003) embeddings are slow to compute, and hence big datasets
cannot be used to learn the word embeddings. The seminal work of Mikolov et al. (2013)
proposed an unsupervised model to learn word representations in a vector space, with the goal
of using them in natural language processing tasks, by grouping semantically similar words in
the same region of the vector space. This has been for many years the basic representation for
many neural network models manipulating text.

The goal of the Skip-Gram model (the simplest and most used model from Mikolov et al.
2013) is to learn word representations from which the context can be inferred, i.e. that can pre-
dict surrounding words. Thus words that appear in similar contexts have similar representations.
More formally, the training objective of the model consists in maximizing the log-probability:∑

(t,c)∈D
log p(t appears in the context of c) def=

∑
(t,c)∈D

log p (t|c) (2.1)

where (t, c) ∈ D is the set of terms t associated with the context c in which they occur. For
example, Mikolov et al. (2013), for the Skip-Gram model, take a window of a fixed size centered
on t, and consider that any word but t in this window are part of the context. Again, various
conditional probability functions may be used for p(t|c). The basic formulation (Mikolov et al.
2013) consists in using a softmax function and learning two representations, one c for the context
c and one t for the target word t:

p(t|c) = softmaxt
(
t′ · c

)
t′ = exp(t · c)∑

t′∈V exp(t′ · c) (2.2)

where V is the set of all words. In practice, the sum involves too many terms, and a classification
loss can be used instead:

p(co-occur|t, c) = σ(t · c)

This necessitates in turn requires finding “negative” samples, i.e. words that should not
appear in this context. In Mikolov et al. (2013), random words are sampled as negative contexts
since the probability of picking a wrong context word at random is very low. Formally, in

2At least, up to the recent works on Self-Attention Networks, aka Transformers (Vaswani et al. 2017)
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Skip-Gram, the optimized loss is

− E(t,c)

σ(t · c) +
N∑

k=1
c−∼U(V)

(
1− σ(t · c−)

) (2.3)

where c− is a negative context, i.e. a context where the term t should not appear. In practice, in
Mikolov et al. (2013) and all its derived works (including ours), the negative context is simply
sampled uniformly from the set of terms – which is a true negative context often enough.

An interesting property of the learned representations, for this model as well as other related
ones, is that some basic algebraic operations on word representation were found to be meaningful
and understandable from a natural language point of view (Mikolov et al. 2013). For example,
a simple operation such as France + capital is close to Paris. Even complex operations can be
done, for example, the closest word representation Lisbon-Portugal+France is Paris. This shows
that the learned representations not only bear semantics, but that the geometry of the space is
meaningful.

The models proposed in (Mikolov et al. 2013), namely Skip-Gram and C-BOW, can be set
within the wider framework of exponential family embeddings (M. R. Rudolph et al. 2016). Such
a family defines a context function, a conditional probability function (generally modeled from
the exponential family) and an embedding structure to form the objective function.

The most well-known alternative models to Word2Vec include Glove (Pennington, Socher,
and C. Manning 2014) that approximates the log-probability of co-occurrence as the inner prod-
uct between the word representations (up to a constant), and FastText (Bojanowski et al. 2016)
that solves the out-of-vocabulary problem by including subword information to represent a word
similarly to (Schütze 1993), that is, as a sum of n-gram representations.

Studies trying to compare the different word embedding models have not found high dis-
crepancies between those, in terms of performance on the task at hand (Baroni, Dinu, and
Kruszewski 2014) – which is sensible since theoretical works have shown how close these ideas
are. Levy and Goldberg (2014) have shown that Word2Vec can be interpreted as the matrix
factorization of the point-wise mutual information (PMI) matrix, which is close to both Glove
and previous works on latent topic models. Arora et al. (2015) gives another theoretical view of
these different models, whereby the text is obtained by a generative process driven by a context
vector – this allows to justify why the linear structure of word embeddings (e.g. France+capital)
is meaningful.

2.4 Sentence Embeddings
In the previous section, we described techniques for learning to represent words from raw text.
At the sentence level, apart from topics models such as Latent Semantic Analysis (LSA, Deer-
wester et al. 1990) or Latent Dirichlet Allocation (LDA, Blei, A. Ng, and M. Jordan 2003),
most sentence embeddings are an indirect outcome of a task-specific training. This includes
supervised and task-specific techniques with recursive networks (Socher et al. 2013), convolu-
tion networks (Kalchbrenner, Grefenstette, and Blunsom 2014), averaging followed by several
non-linear transformation in Deep Averaging Networks (Iyyer, Manjunatha, et al. 2015) but also
unsupervised methods producing universal representations given large text corpora. We focus
on the latter in this section, since they are more connected to the works we conducted.

Direct approaches such as averaging the embeddings of words present in the sentence are
limited by the fact that they (L1) do not include syntactic information; (L2) do not take into
account the order of words in the sentence; and (L3) do not take into account the interaction
of words in the sentence.

Trying to tackle those limitations, sentence-specific approaches were thus developed along
two axes:
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Paper Tackled Encoding Loss
L1 L2 L3

Sent2Vec (Le and
Mikolov 2014)

X WE (average) classification: word in
the sentence (AE)

Skip Thought (Kiros
et al. 2015)

X X X RNN generation:
next/previous sentence

FastSent (Hill, Cho,
and Korhonen 2016)

X WE (sum) classification: word in
previous/next/same

sentence (AE)
Kenter, Borisov, and

Rijke (2016)
X WE (average) classification: next

sentence
Quick

Thoughts(Logeswaran
and H. Lee 2018)

X X X RNN classification:
next/previous sentence

Universal Sentence
(Cer et al. 2018)

X X X WE (average) + MLP
/ Contextual WE

(average)

Multi-Task
(generation,
classification)

Arroyo-Fernández et al.
2019

X ? X WE (convex) No learning (mutual
information)

Deep Averaging
Network (Iyyer,

Manjunatha, et al.
2015)

X WE (sum, followed by
an MLP)

No learning
(finetuning on task)

Table 2.1 – Different approaches for unsupervised sentence representation (WE stands for Word
Embeddings, AE for auto-encoder)

1. Modifying the way word representations are aggregated: with RNNs (tackles L1, L2 and
L3), as a simple combination of word embeddings (sum/average, tackles L1) or convex
combination of words (tackles somehow L1, L2 and L3).

2. Modifying the optimization task(s) which are used to learn the sentence representations
– generative (e.g. generate the next/previous sentence) vs classification. The latter can
be useful to learn semantic representations through classifications tasks such as “can this
sentence follow this one?”.

The table 2.1 summarizes the different approaches, and shows that most combinations have been
tried so far, with experimental results showing that despite of their simplicity, approaches based
on simple encodings (sum/average) perform quite well because they are much easier to train. A
special mention should be paid to (Cer et al. 2018) since they use contextual word embeddings
(see next section), and perform much better than previous approaches.

2.5 Contextual Word Embeddings
Performances of unsupervised sentence encoders for end-tasks were not better than using word
embeddings and fine-tuning a model. At the same time, word embeddings are not fully satisfying
since ideal word embeddings should model both (1) complex characteristics of word use (e.g.,
syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model
polysemy). However, these characteristics are highly context dependent, and cannot be captured
with the models presented above.

Recently, contextual word embeddings models have been proposed and used with success on
end tasks – yielding significant improvements over past works – with the seminal works of M. E.
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Peters et al. (2018) with ELMO, and, more significantly, of Transformers architectures such as
BERT (Bidirectional Transformers for Language proposed in Devlin et al. 2018).

ELMO is a language model based on stacked RNNs trained on the standard auto-regressive
language modeling task – the deepest layers are supposed to contain more contextual information
about the word at hand, and can be fine-tuned on specific task. However, this work does not
depart significantly from previous works, and the limitations of recurrent neural networks are
still present (e.g. limited dependency range).

Departing from RNNs, and relying rather on the attention mechanism developed by memory-
based neural networks (Graves, Wayne, and Danihelka 2014; Weston, Chopra, and Bordes
2015), BERT (Devlin et al. 2018) is based on the transformer architecture proposed by Vaswani
et al. (2017). A transformer is composed of parametric functions that successively refine the
representation of a sequence of embeddings. More precisely, each layer ` transforms the sequence
x composed of n vectors x(`−1)

1 , . . . , x
(`−1)
n into a sequence y(`)

1 , . . . , y(`)
n

of the same length,
through an attention over the context sequence c composed of m vectors c1, . . . , cm with

x
(`)
i = x

(`−1)
i +

∑
j

p(j|i)v`(c
(`)
j )

with log p(j|i) +=
〈
q`
(
x

(`−1)
i

)
, k` (cj)

〉
. Three functions are defined, q` (the query), k` (the key)

and v` (the value). The first two are used to select which part of the context should be used
to update the contextual representation, while the third (v`) is the residual value to add to the
contextual representation.

BERT uses a self-attention mechanism, i.e. c(`)
j = x

(`−1)
j and various other mechanism to

allow efficient learning, and is trained on two unsupervised tasks:

1. Fill-in-the-blank task, where one or more tokens are removed from the input – the goal
being to recover them;

2. Predict if a sentence could come next (similar to unsupervised sentence embeddings losses,
see previous section).

GPT models (Radford, Narasimhan, et al. 2018; Radford, Wu, et al. 2018) were proposed
around the same time as (Devlin et al. 2018), but use a language model objective rather than
a fill-in-the-blanks task – showing similar performance on an array of tasks. This shows that
the pre-training task(s), while important, are not primordial for achieving a good performance
when fine-tuning – rather, the self-attention mechanism and the amount of data on which these
models are trained are the key to the improved performance.

Since BERT and GPT, many research directions have been followed around Self-Attention
Networks (SANs) – see (Rogers, Kovaleva, and Rumshisky 2020) for a recent overview of self-
attention models:

1. The first following works have proposed different optimization objectives to enhance further
the quality of the contextual representations, as measured on end tasks such as translation,
question-answering or summarization:

(a) RoBERTa (Y. Liu et al. 2019) removes the sentence classification task and uses a
bigger dataset – leading to a better pre-trained BERT version;

(b) HUBERT (Moradshahi et al. 2019) proposes to bind symbols and roles (in transform-
ers and LSTMs) by adding an extra layer to BERT;

(c) BART (Lewis et al. 2019) generalizes BERT by using more perturbations (beyond
token masking) such as sentence permutation, token deletion, etc.

(d) ALBERT (Lan et al. 2020) uses a loss that asks whether two sentences are in the
right order
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(e) T5 (Raffel et al. 2019) uses several high level tasks (translation, question answering,
...) to train the model.

(f) Electra (Clark et al. 2019) uses an adversarial approach by using a discriminator
(token level)

2. Some models have been trained on specific datasets (language or domain), e.g.

(a) SciBert (Beltagy, Lo, and Cohan 2019) for scientific texts;
(b) Camembert (Martin et al. 2020) for French language

3. As BERT has a complexity which is quadratic with respect to the sequence length (both
in memory and time), another line of research seeks to reduce the computational require-
ments:

(a) by lowering the number of parameters: ALBERT (Lan et al. 2020) by sharing param-
eters (across layers) and reducing the rank of the embedding matrix and DistilBERT
(Sanh et al. 2019) that approximates a BERT model with less parameters,

(b) by trying to approximate the key/value matching: Reformer (Kitaev, Kaiser, and Lev-
skaya 2020) leverages Locally Sensitive Hashing (LSH) and reversible layers (Gomez
et al. 2017) to allow SANs to process large texts; more recently, (S. Wang et al. 2020)
proposed LinFormer where the matching process is occurring in a space of fixed di-
mension (independent of the sequence length), and (Katharopoulos et al. 2020) uses
polynomial kernels.

(c) by using a sparse attention: Transformer-XL uses a sliding window for self-attention
(Dai et al. 2019) and (Yang et al. 2019) is based on Transformer-XL

(d) by compressing the context, as in Compressive Transformers (Rae et al. 2019)

The Self-Attention Networks models are now prevalent in NLP and in IR (e.g. W. Yang, H.
Zhang, and J. Lin 2019). Most of my conducted works presented in the manuscript do not use
such approaches – but the main principles of the approaches could be to a large extent adapted
to this formalism; however, the study of the properties of transformers is an active area I intend
to tackle so as to gain insights on what are the desirable properties that should be taken back
to “simpler” models.
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Part I

Probabilistic Representation Spaces
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The objective of most representation learning approaches is to map input instances (such as
images, relations, words or nodes in a graph) to vectorial representations in a low-dimensional
space. The goal is that the geometry of this low-dimensional latent space be smooth with respect
to some measure of similarity in the target domain. That is, objects with similar properties (e.g.
class) should be mapped to nearby points in the embedded space. While this approach is
highly successful, representing instances as vectors in the latent space carries some important
limitations:

• Vector representations do not naturally express uncertainty about the learned representa-
tions;

• We cannot properly model inclusion or entailment by comparing vector representations
(usually done by inner products or Euclidean distance which are symmetric).

In this part of the manuscript, we report our works on probabilistic representation spaces, i.e.
representations that are associated with a probability distribution in the representation space.
More precisely, we present our works on representations leveraging the quantum probability
formalism (chapter 3 on the following page) and multivariate Gaussian distributions (chapter 4
on page 36).
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Chapter 3

Quantum Information Access
Framework

3.1 Introduction

The representation of documents and questions in Information Retrieval (IR) has remained
predominantly uni-dimensional (i.e. a document or a query is a vector). This representation
has limitations. For example, it is not easy to represent an ambiguous question or a document
that deals with several topics. These issues are important for developing interactive IR systems
or seeking to diversify results – which are two sides of the same coin, since they both need to
represent faithfully the different topics of a document and/or a user information need.

Latent topic models (Blei, A. Ng, and M. Jordan 2003; Deerwester et al. 1990; Dumais
2004) address this multi-topicality issue, but at the cost of a drop in the precision of the repre-
sented information. Using such models (alone) for IR have already been shown to decrease the
performance of the systems (Hoenkamp 2011).

Another more successful approach is to diversify the search results. Current models for
diversification have not evolved much in the last years, and are either based on diversifying the
query (J. He, Hollink, and Vries 2012; R. Santos et al. 2010), or on using a scoring function
that accounts for the novelty (Carbonell and Goldstein 1998; Xia et al. 2017) of each document
relative to the previously retrieved ones. In both cases, the representation of the document itself
remains unchanged, and diversification is achieved by leveraging the relationship between the
query and the document. The representation of a document lacks precision, since only a fixed
set of topics can be used to describe any document. In both cases, this might be a problem for
documents that are not mono-topical.

The approach based on “quantum probabilities” — the mathematical formalism of quantum
physics — provides formal bases for a multi-dimensional representation of documents (or more
generally, information objects) that exceeds the above mentioned limits.

The quantum probabilistic framework generalizes the theoretical framework of classical prob-
abilities by generalizing distributions on a set of elements to distributions over vector subspaces
of a Hilbert space. This generalization is interesting because it combines geometry and proba-
bilities, two components present in information retrieval models.

To leverage such formalism, we proposed the Quantum Information Access framework (QIA),
that posits that there exists an information space where texts can be represented. Taking in-
spiration from K. v. Rijsbergen (2004), who proposed to use the quantum formalism for IR,
QIA provides both theoretical and experimental insights on the relationships between quantum
physics and information access.

More precisely, and relying on precise definitions that we will detail latter, the QIA framework
relies on a multidimensional representation of text fragments, both to represent the (quantum)
probabilistic distribution of information units present in a text fragment and to represent the
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topics covered by this fragment (using quantum probabilistic events). Using a multidimensional
representation of documents has been shown to be important in IR, e.g. to deal with multi-
topical documents (Zuccon, L. Azzopardi, and K. Rijsbergen 2009), to build up semantic spaces
or to cope with contextual IR (Melucci 2008).

In the following, we discuss related works, and then define the different notions used to
describe the QIA framework, before proceeding to the results we obtained in two information
access tasks, namely document retrieval and extractive summarization.

3.2 Related works

The QIA framework relies on a multi-dimensional representation of texts (quantum densities
and subspaces). Multi-dimensional representations have been implicitly used in IR to handle
negative feedback. In interactive Information Retrieval, Dunlop (1997) showed that positive
feedback could be used easily, but this was not the case for negative one. Based on these results,
X. Wang, Fang, and Zhai (2008) found that negative feedback could be handled by describing
the information need as a set of vectors. More in details, when estimating the relevance of a
document d, they (1) first cluster the negative documents in the representation space; and (2)
compute the maximum similarity between the document d and the different cluster centers. The
QIA framework encompasses this approach in the sense that a query is represented as a weighted
set of vectors, too.

A more explicit use of multi-dimensional representations is the work from L. Chen, J. Zeng,
and Tokuda (2006) who proposed to randomly split a document into two parts, and to use a
two-dimensional representation of documents to obtain a "stereoscopic" view of a document.
Our framework can be thought of as a principled extension of this work, where we do not limit
ourselves to two dimensions and, in addition, rely on the probabilistic framework of quantum
physics to compute the relevance of a document to a query.

Explicit multidimensional representations of texts have also been explored. Zuccon, L. A.
Azzopardi, and C. v. Rijsbergen (2009) showed that the cluster hypothesis still holds when
representing documents as subspaces. Their methodology to build subspaces is close to QIA,
since to represent documents they compute the subspace spanned by a set of vectors (albeit
implicitly). In our work, we provide an explicit methodology to construct the subspaces.

Using a quantum formalism, Melucci (2008) also uses a subspace for representing a user’s
information need (the subspace where relevant document vectors should lie), and a vector rep-
resentation for documents. The probability that a document is relevant to a user’s information
need is determined by the length of the projection of its vector representation onto the corre-
sponding (information need) subspace. Following quantum physics, we interchanged the role of
document and user’s information need. This is motivated by the fact that the user’s informa-
tion need should be represented as a dynamic component, as advocated in e.g. Ingwersen and
Järvelin (2005).

Our work also bears some similarity with Latent Semantic Indexing (LSI, Dumais 2004) since
we use spectral analysis to extract document and query representations. However, we do not
represent objects in a low-dimensional space as in LSI, but use a spectral analysis to obtain a
compact representation of our document subspaces and query densities. Hyperspace Analogous
to Language (HAL) spaces Burgess, Livesay, and Lund (1998) are also closely related to our work.
In this work, each word w is represented by a term vector where non null components correspond
to words co-occurring within a small window centered around word w. Our representation of a
term is inspired by this approach, but, for each word w, we use spectral analysis to summarize
the information brought by the set of vectors associated with it.

Outside IR, in the face detection domain, subspaces are commonly used to solve recognition
problems. In Belhumeur, Hespanha, and Kriegman (1997), a face is represented by a subspace
(generated from different picture vectors of the same face) and recognition involves computing
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the distance between a vector (representing the face to be recognized) and the subspace. Different
from (Belhumeur, Hespanha, and Kriegman 1997), we also leverage mixture of multivariate
densities.

Quantum IR is a field that has been initiated by van Rijsbergen’s seminal work (K. v.
Rijsbergen 2004). Besides works presented above, various research directions have been followed
(the list is not exhaustive):

• Zuccon, L. Azzopardi, and K. Rijsbergen (2009) experimented with a quantum inspired
principle for ranking documents (interferences). Our work proposes another approach to
the problem of diversity, whereby the representation itself gives a principled way to rank
documents;

• These are represented by a subspace generated from different aspects of the document, to
represent documents in a space different from the standard term space Huertas-Rosero,
L. Azzopardi, and C. J. v. Rijsbergen (2008);

• Sordoni, Bengio, et al. (2013) has proposed to take into account term dependencies using
quantum densities;

• Sordoni, J. He, and Nie (2013) proposed a quantum-based latent topic model.

Our work is different from the above in the sense that it proposes a general methodology to
represent document and queries, and more generally to represent textual information.

Finally, there are links with probabilistic representations, e.g. Gaussian-based representa-
tions (see section 4). In both the quantum and the Gaussian cases, a representation is linked
with a density in a probabilistic space. The main differences stems from the fact that the space
is not the same, namely a set for standard probabilities, Hilbert spaces for quantum probabilities
(or rather, a *-algebra). In practice, the advantages of the quantum formalism are in how easy
it is to deal with the manipulation of multidimensional spaces:

• Conditional distributions are projections in quantum probabilities – they can thus be
computed easily (when the dimension is small enough);

• Representing events in quantum probabilities is somehow easy, since it amounts at defining
a Hilbert subspace;

• Mixture of quantum probabilities are multimodal – this is not the case for continuous
distributions for which the mixture is easy to compute (e.g. a mixture of Gaussians is
also a Gaussian). Multimodal distributions are particularly interesting when it comes
to modeling diversity (of the user information need), and we observed positive results in
extractive summarization where (one of the goal) is to diversify the selected sentences (see
section 3.4.2 below).

The price to pay is that there is no control over the variance of random variable for quantum
representations – it is determined by the quantum formalism, and that there is less expressive
power than for multivariate distributions.

We now turn to the QIA framework and how it is used in two applications: ad-hoc retrieval
and extractive summarization. Before doing so, we introduce quickly the probabilistic framework
of quantum physics.

3.3 Quantum Probabilities
The quantum probability formalism is a generalization of standard probability theory, which
makes use of Hilbert spaces, unit vectors and subspaces. We present the components of the
formalism used in our work.
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Figure 1: Quantum probabilities - The projection of ϕ on S
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atomic topic ϕ ’is similar’ to one of the atomic topics present in the subspace. If ϕ is strictly contained

within the subspace, then the probability is 1. If ϕ is orthogonal to any atomic topic of the subspace, then

the probability is 0. In the other cases, the closer ϕ to the subspace, the closer its probability would be to

1. More formally, the probability of an event is given by the square of the length of the projection of ϕ onto

the corresponding event subspace S, that is by computing the value
����Sϕ

���
2

, where �S is the projector onto

the subspace S, as illustrated in Figure 1.

Note that, as evoked earlier, even when the system state is known or determined, the events are not

certain. This is a property of the quantum physics formalism. Within the topical space, this means that

even if we know the atomic topic to be ϕ, the probability that the text fragment deals with a topic ϕ� not

orthogonal to ϕ is not null. Said otherwise, topicality is a continuum that goes from “completely not related”

atomic topic (orthogonality) to “exactly the same” atomic topic (linearity).

We cannot assume that a text fragment is associated with only one atomic topic. To consider multi-

topicality, we assume that a text fragment has a given probability of dealing with each atomic topic it

contains, where the probability reflects the importance of each atomic topic within the text fragment. In

7

Figure 3.1 – Quantum probabilities - The projection of a simple probability distribution defined
by a unit vector ϕ on an Hilbert subspace (event S).

3.3.1 Systems and States

Quantum theory describes the behavior of matter at atomic and subatomic scales, by represent-
ing the state of a physical system (e.g. the position of an electron) as a state in a probability
distribution space. Formally, this space is a Hilbert space H, i.e. a vector space defined on
the complex field C and equipped with its natural inner product. The state of the system is
described by a unit vector in the state space, called (improperly) the state vector1. States deter-
mine statistically the measures obtained on the system, for instance the position of a particle.
In this case, the state vector determines the probability that the particle is at a given position
(but not its exact position).

A system state may be fully known, in which case the system is described by exactly one
state vector, but the formalism also allows to be uncertain about its state, in which case the
system state can be seen as a distribution over the possible state vectors. This distribution is
called a density operator (K. v. Rijsbergen 2004). Depending on the information access task, we
may regard single-part systems (a quantum probability distribution space), but very often we
need to discuss multi-part systems. We therefore introduce single-part systems, including the
cases where states are known or uncertain, and then proceed to multi-part ones (a product of
quantum probability distribution spaces).

States and Probabilities Given a Hilbert space H and a state vector ϕ, a probabilistic event
is represented as a subspace S of H. A state vector ϕ induces a probability distribution on events
(i.e., the subspaces). The probability of an event is given by the square of the length of the
projection of ϕ onto the corresponding event subspace S, that is by computing the value ‖Ŝϕ‖2
where Ŝ is the orthogonal projector onto the subspace S, i.e. it is defined as

Ŝϕ = argmin
ϕ′∈S

∥∥∥ϕ′ − Ŝϕ∥∥∥
In case of a finite Hilbert space of dimension d (which will be our case), the projector Ŝ is a
linear transformation and can thus be identified with a matrix Cd. This value is the probability
of the event S with respect to the probability distribution defined by ϕ (see figure 3.1):

q (S|ϕ) =
∥∥∥Ŝϕ∥∥∥2

(3.1)

which is by definition between 0 and 1, since ‖ϕ‖ = 1 and ‖Ŝ‖ = 1
1since multiplying with any complex number z of norm 1 does not change the underlying state, the state ϕ

and zϕ correspond to the same quantum state.

22



Uncertain States There is often some uncertainty on the preparation process of the system,
which in turn induces some uncertainty about the state the system is in at the beginning of the
experiment. This corresponds (see K. v. Rijsbergen 2004, p. 83) to a distribution over the states
p (ϕ). Given this distribution, we can then define the quantum probability of an event S as:

q (S|V ) =
∫
ϕ
p (ϕ)ϕ†Ŝϕ

where tr is the trace operator, ϕ† the transpose of ϕ and Ŝ the orthogonal projector on the
subspace S. Using the property of the trace (linearity and cycle permutation), it can be shown
that:

q (S|V ) =
∫
ϕ
p (ϕ)ϕ†Ŝϕ = tr



∫
ϕ
p (ϕ)ϕϕ†︸ ︷︷ ︸
ρV

 Ŝ
 = tr

(
ρV Ŝ

)
(3.2)

We can observe that we can isolate the event S and a linear operator ρV that represents the
quantum probability distribution. Note that equation (3.2) reduces to equation (3.1) when the
state is certain, i.e. when the distribution over the states ϕ is a Dirac.

Conditioning To compute the conditional distribution of ρV knowing S, in the quantum
formalism, we simply project the matrix ρV onto the subspace S, before normalizing. Formally,
the conditional probability distribution obtained after observing S with an initial quantum
distribution ρ is given by:

ρV/S = ŜρV

tr
(
ρV Ŝ

)
This shows that is very easy to condition in the quantum probability framework (compared

for example as a conditionalization in the case of continuous distributions). Moreover, it also
shows that observing an event corresponds at simply restricting the quantum density to the
observed subspace.

Multi-part systems Like in standard probabilities, it is possible to combine measurable
spaces into a product of measurable spaces. Without entering into details, we apply standard
probability rules when the event and density can be decomposed into independent factors:

q

(⊗
i

Si|
⊗
i

ρi

)
=
∏
i

q (Si|ρi) (3.3)

where
⊗
i Si is a product of events and

⊗
i ρi is the product of densities. In this case, both behave

like a simple a Cartesian product of standard events and probability distribution. Densities and
subspaces can be combined, but we won’t enter here into details which deal with problem of
entanglement, a very powerful quantum concept, and refer the interested reader to (Gudder
1988).

3.4 The Quantum Information Access framework

The Quantum Information Access framework (QIA) aims at defining a general methodology to
represent any text, both as an event and a density. This process was first introduced in Pi-
wowarski, Frommholz, Moshfeghi, et al. (2010) in a document filtering scenario. In Piwowarski,
Frommholz, Lalmas, et al. (2010), we further showed how to construct a document subspace
representation by experimenting with a number of strategies and associated parameters. The
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process was abstracted in Piwowarski, M.-R. Amini, and Lalmas (2012) and in this section, we
follow this latter presentation.

The text representation is based on the assumption that a typical text corresponds to a set of
“information units”. Conceptually, information units can be understood as the set of assertions
made by the document. This can be related to the notion of “nugget” (Clarke et al. 2008),
used in summarization and question-answering to assess the amount of relevant information
a summary or an answer contains, or in summarization to the notion of factoids (Teufel and
Halteren 2004).

QIA also assumes that each text can be split into possibly overlapping and non-contiguous
semantic fragments, where each fragment addresses a specific information unit. We believe that
if information units exist, this hypothesis is quite natural. Given that it is true, there are still
two main problems that need to be solved:

1. How to extract these fragments from text? In QIA, we relied in all our experimental
works on a very crude assumptions, namely that semantic fragments correspond to sliding
windows over the text.

2. How to represent those fragments? In QIA, we chose a simple bag-of-word representations
as a starting point, even though we experimented with other possibilities (see Section
3.4.3).

Based on those two assumptions, we can now model a text t as a probability distribution p (n|t)
over information units or nuggets n ∈ N. This space is infinite since it corresponds to all the
unit vectors in the Hilbert space. We suppose that each information unit n corresponds to a
representation/state ϕn in the topical space.

Two views of a text We first describe how a text can be defined either as a quantum
probability distribution (density) or as an event. According to equation (3.2), we can represent
the text as a density ρt defined as:

ρt =
∫

n∈N
p (n|t)ϕnϕ

†
n (3.4)

where we suppose that the set of information units in a text is finite, i.e. formally that the
p (n|t) is either 0 or a Dirac such that ∫

n∈N
p (n|t) = 1

The first view over a text is thus a density over information units. As the information unit
space can be large, we rely on an eigenvalue decomposition of the density ρt, i.e.

ρt =
∑
i

λibib
>
i (3.5)

where the {bi} form a basis of a subspace of H. This eigenvalue decomposition can be used to
filter out noise by discarding eigenvectors whose eigenvalue λi is below a given threshold.

Given an event S (a subspace), the probability is given by a “weighted” length of the pro-
jection of the density on the subspace S, i.e.

q
(
S|ρt

)
= tr

(
ρtŜ

)
=
∑
i

λi
∥∥∥Ŝbi∥∥∥2

where Ŝ is the projector on S.
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Another view of a text in the QIA framework is as an event, where a text event is the
subspace spanned by the information unit representations that the text contain

St = span
{
ϕn|p (n|t) > 0

}
In practice, we don’t compute the real span of the information unit vectors; we rather rely

on the above eigenvalue decomposition, and use the span of the eigenvectors whose eigenvalue is
above a given threshold. This allows to filter out noise, i.e. directions for which p (bi|t) is close to
0, i.e. using the eigendecomposition of ρt – see eq. (3.5), we define the subspace representation
of a text as

St = span {bi|λi > threshold}

Fundamental QIA hypothesis The event representation of a text St has an important
implication that we wish to discuss now. More precisely, we implicitly suppose that any linear
combination of information units presents in a text t is also a topic of the document.

For example, supposing information units are represented as bag of words vectors (term
frequency representation), we consider a text made of two information units (pizza 1, cambridge
1, uk 1) and (cheese 1, cambridge 1, uk 1). Given the QIA hypothesis, this text is supposed to
contain the information unit (pizza 1, cheese -1), which means in practice that it will be either
discussing pizza or cheese, but not both at the same time.

The QIA formalism depends on this strong assumption. It is obviously hard to disprove
formally such an assertion, and only experimental data can draw a clear line on whether this
holds or not.

Information Units in practice Having defined the density and event views of information
units, we now turn to a more practical issue: How can we extract from text information units,
and how to turn them into unit vectors?

There exists many different ways to extract information units from a document. We can
choose to use sentences, paragraphs or any unit that we suppose to contain a single information
unit. This is consistent with other approaches for building word representations, such as the
seminal work of Mikolov et al. (2013). In all the conducted experimental works but summariza-
tion (where we used sentences), we used a simple approach based on sliding windows, and used
a uniform prior over windows, i.e.

p (ϕ) = 1
card (windows(d))

∑
n∈windows(d)

ϕnϕn

where ϕn is the representation of a sequence of terms of length ` extracted from the document
d. This corresponds to a uniform prior over the extracted units.

Superposition vs mixture Finally, to illustrate the interest of the quantum formalism, we
discuss two ways to combine information units representation that have no direct analogue in
the standard probability formalism, namely the superposition. In the following, for illustration
purposes, we use an information retrieval setting where the user has expressed his/her infor-
mation need with a sequence of keywords. We further suppose that each keyword is associated
with a density over the information unit space (that corresponds to the potential information
units that should be found in relevant documents).

Superposition amounts at computing a linear combination of two or more unit vectors in
order to obtain a new one. Superposition is commonly used in vectorial IR, since to represent
a query or a document, one combines linearly the representation of each keyword. In the
simplest case, this corresponds to a vector which is naught everywhere but on the component
that corresponds to the word.
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Cambridge (UK)

Pizza

(a) A superposition of two information needs

Cambridge (USA)

Cambridge (UK)

Pizza

(b) A mixture of two information needs

Figure 3.2 – Combining information needs

An example shall illustrate this. As depicted in Figure 3.2, let ϕ
p

= (1, 0, 0)>, ϕ
c/uk

=
(0, 0, 1)> and ϕ

c/usa
= (0, 1, 0)> be three vectors in a three dimensional space that respectively

represent the information needs “I want a pizza”, “I want to be delivered in Cambridge (UK)”
and “I want to be delivered in Cambridge (USA)”. The information need “I want a pizza to
be delivered in Cambridge (UK)” would be represented by the vector 1√

2(1, 0, 1)> which is the
(normalized) linear combination of ϕ

p
and ϕ

c/uk
. In order to represent the information need

of a user typing “pizza delivery in Cambridge” (where we don’t know whether Cambridge is
in USA or in UK), we would use a mixture of the two possible information needs (assuming
there is no other source of ambiguity). Similarly, a document answering the information need
“pizza delivery in Cambridge (UK)” would be represented as the subspace defined by the vector
(1, 0, 1)> while for Cambridge (USA) it would be by the vector (1, 1, 0). Finally, a document
answering both information needs would be defined as a plane in this vector space.

This shows how superposition can be used to express specific information units (e.g. pizza
delivery in Cambridge (UK)) whereas mixture is used to represented the uncertainty about the
user information need.

Now that we have defined precisely the QIA framework, we show how it has been applied to
two Information Access tasks, namely information retrieval and summarization.

3.4.1 Ad-hoc Information Retrieval

To adapt the QIA framework to ad-hoc IR, we already have a mean to compute the represen-
tation of documents as explained above. The main remaining question is how to represent the
information need – i.e., the query q.

Single term queries As a query in its simplest form consists of a set of terms, we are first
interested in building the query representation for a query composed of a single term, t. This
representation is later needed for constructing the representation of multi-term queries. We
assume that a query term t can be represented as a distribution over fragments that would be
possible answers to a query containing term t. In the QIA framework, each fragment can be
associated with an atomic information need.

We suppose that the set of fragments for a query term t corresponds to the set of text
excerpts centered on a term t. That is, we suppose that a fragment containing term t is an
information unit that answers a query containing t. We then use the immediate surroundings
of the term t occurrences in documents to build that term representation. This methodology
is similar to pseudo-relevance feedback using passages from retrieved documents containing the
query terms (Allan 1995). The difference is that we use all the passages to build the query
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representation as we want to consider all possible information units associated with the query
term (word) w. Once this is done, we can use equation (3.4) to represent the term as density
using the distribution over information units defined as:

p(n|t) = 1 [w ∈ n]
card ({n′ ∈ N|w ∈ n′})

where N is the set of information units.

Multi-term queries We used three different ways to represent a multi-term query – either
by using a mixture over fragments defined by a probability distribution over query terms, as a
superposition and as a tensor product (the equivalent of a probability space product for quantum
probabilities).

The mixture is simply a mixture of the term specific probability distributions,

p(n|q) =
∑
w∈q

p(n|w)p(w|q) (3.6)

where we suppose that the information need is expressed by one of the terms with an importance
defined by p(w|q). The mixture corresponds to queries where each query term is as important
as the other, and where the presence of either concept associated with a query term is enough
for a document to be relevant (e.g. an hypothetical query “food eat”).

The mixture of superposition makes a different hypothesis, by supposing that a possible
information unit answering the question is a superposition of the information units coming from
the different words wi of the query q. This corresponds to the case where query terms should
be understood as a concept, e.g. “pizza in Cambridge (UK)”, but where a document discussing
Cambridge or pizza is still OK. Formally, this corresponds to the following distribution over
information units:

p(n|q) =
∑

φ⊕ini
=ϕn

∏
i

p (ni|wi) with φ⊕ini
∝
∑

p(w|q)ϕ
ni

(3.7)

In practice, the above distribution probability cannot be computed sufficiently fast, and we rely
on an approximation of it, detailed in (Piwowarski, Frommholz, Lalmas, et al. 2010).

For both mixtures (simple or of superpositions, equations 3.6 and 3.7), the above distribution
probabilities over information units define a density, following equation (3.4).

The difference between the mixture approaches and the tensor product one, that we describe
below, lies in their ability to handle queries containing different aspects. The above represen-
tations provide no explicit means to distinguish between aspects; they operate in one aspect
space and treat each aspect associated with a term equally, even if the terms describe different
aspects. To support aspects explicitly, we present in (Piwowarski, Frommholz, Lalmas, et al.
2010) a quantum analogue of the "weighted and" (#wand) operator proposed in (Metzler and
Croft 2004).

However, user’s INs (Information Needs) often consist of several "aspects" that relevant
documents should address. For example, in the TREC-8 topic 408, "What tropical storms
(hurricanes and typhoons) have caused significant property damage and loss of life?", we can
identify two (topical) IN aspects, namely tropical storms and significant damage/loss of life.
Each IN aspect can be defined within an IN aspect space, where the state vectors are now called
information units. Examples of information units are the vectors representing "hurricane" and
"typhoon" for the first IN aspect (tropical storms). We use the terminology information unit,
since one information unit addresses one aspect of the IN (tropical storms) in the same way that
a information unit addresses an IN.

We now suppose that, to be relevant to a query that comprises several aspects of an IN, a
document should satisfy ideally all of its aspects. In the quantum formalism, we suppose that the
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information need space is represented by a product of probability spaces, i.e. each information
need expressed by a query term should be answered independently for the document to be
relevant.

The tensor product representation of a query is thus defined as (see Eq. 3.3 for its definition).

ρ
q

=
⊗
i

ρ
ti

From a practical point of view, in (Piwowarski, Frommholz, Lalmas, et al. 2010), we extend
this representation by allowing users to give different importance to certain aspects, by intro-
ducing a weighting scheme for aspects, relying on the introduction of an additional dimension
of the representation space for which every document is relevant.

Finally, as discussed above, ideally queries (or query parts) should be handled by one of
three representations depending on their nature. For instance, the query “food italian french
Paris France” should be interpreted as having three aspects (food ⊗ Italian or French ⊗ Paris
France), where the second aspect is a disjunction (either can match) which should be handled
by a mixture and the third a mixture of superposition (the concept “Paris France”).

To investigate this, in a set of preliminary experiments, we manually “translated” TREC
keyword queries into structured queries. Experimental results where disappointing though,
the best approach being consider each keyword as a different aspect (as shown experimentally
below). As with any negative experimental result, it is difficult to know whether this is due to
a deficient representation space or information unit extraction methodology, or if this is a more
fundamental issue.

Experimental results We used the TREC 1 to 8 collections (with the exception of TREC-4
since it did not contain the “title” field), and the TREC ROBUST 2004 collection. We com-
pare the performance of BM25 (with standard parameters, see Robertson and Zaragoza 2009),
TF-IDF (without document normalization) and, for the QIA framework, those instantiations
corresponding to each query construction process, i.e. mixture, mixture of superpositions, and
tensor product (T1 and T2). We used a window span of 5.

Results are given in table 3.1. Overall the results were consistent across all collections. The
MAP values are below that of BM25 for mixture and mixture of superpositions, and compara-
ble for both tensor approaches. Given the novelty of our framework, and its still unexplored
parameters and their effect, we are satisfied with its performance.

The performance of the QIA framework is well above that of a simple TF-IDF model (which is
at its basis). This shows that the QIA framework includes some document length normalization,
most probably because information units are meaningful units of sense.

The tensor-based approach T performed better than mixture M and mixture of superposi-
tions MS. The fact that MS works worse than M can be due to the fact that in general terms
denote different components of the information needs – it was observed that using mixture of
superpositions was better suited for phrase queries.

Finally, we were interested by the influence of the query length. We plotted the difference in
average precision between BM25 and the performance of the QIA framework, depending on the
query length and on the query representation. We kept constant the span of the window (5). We
observed that in all cases, the performance degrades with longer queries. This shows that the
representation of multi-term queries is not well handled in the QIA framework. Understanding
why this is the case would be important for developing further such type of approaches, but we
believe this might be due to the fact that as all the approaches based on semantic representations
(e.g. LSA), the representation of a term is not specific enough. For queries composed of a few
words, this is not important since most senses should be expanded – however, this is not the
case anymore for longer queries. A simple solution would be to use a linear combination of
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TREC-1 TREC-2 TREC-3 TREC-5 TREC-6 TREC-7 TREC-8 RB-2004
BM25 0.230 0.209 0.282 0.148 0.224 0.182 0.236 0.242
TF-IDF 0.084† 0.041† 0.056† 0.035† 0.088† 0.056† 0.082† 0.074†

M 0.205† 0.184† 0.226† 0.115† 0.173† 0.142† 0.165† 0.180†
MS 0.209† 0.167† 0.206† 0.112∗ 0.157† 0.117† 0.159† 0.165†
T 0.232 0.195† 0.281 0.148 0.214 0.182 0.234 0.240

Table 3.1 – QIA - information retrieval task: this table reports mean average precision (MAP).
The first line shows the test collection. The second and third lines show the MAP value for
BM25 and TF-IDF, respectively. For the query construction, M stands for mixture, MS for
mixture of superpositions, T for tensor product. For completeness, significance of the difference
with BM25 is shown for the 0.05 level (∗) and the 0.01 level (†).

term-centered models such as BM25 with the QIA-based value, similarly to other words based
on latent representations (see e.g. Deveaud 2013).

3.4.2 Extractive Summarization

Extractive summarization aims at selecting sentences from one or more documents to summarize
(hence the extractive). Summarization techniques can be broadly categorized into three groups,
feature-based (M. R. Amini and Usunier 2011; Harabagiu and Lacatusu 2005; Radev et al. 2004),
graph-based (Erkan and Radev 2004; Mihalcea 2005; D. Wang, T. Li, et al. 2008) and lexical
chain based (Barzilay and Elhadad 1997; Y. Chen, X. Wang, and B. Liu 2005; J. Li and Sun 2008)
methods. The former first identifies themes and then assigns scores to sentences in each of these
themes based on sentence-level and inter-sentence features, e.g. sentence similarity, position,
cluster centroids, etc. Graph-based techniques begin by characterizing a set of documents as a
weighted text graph and then recursively compute sentence significance, globally, from the entire
text graph rather than using single sentences as in feature-based methods. The underlying
hypothesis of both methods is that summary sentences are those belonging to an identified
theme or to a sentence cluster found in the graph. Therefore, sentences relevant to more than
one theme or those midway between two clusters in the graph are never extracted and hence are
never part of the summary. Finally, lexical chain approaches first construct different sequences
of semantically related words, chains relevant to the topic at hand are identified and eventually
sentences matching these identified chains are extracted from the collection of documents.

Our proposed QIA-based approach to summarization belongs to the first group (feature-
based) and bears similarity with LSA-based approaches, a group of successful approaches first
proposed for single document summarization. They aim at extracting salient sentences of a given
document within a reduced term space2 and are based on the singular value decomposition (SVD)
of a term-sentence matrix.

There are two groups of LSA-based approaches. The first (Gong and X. Lin 2001; Murray,
Renals, and Carletta 2005) assumes that each topic found by SVD should be present in the
final summary and select sentences having the highest entry along each of the extracted topics.
Steinberger and Ježek (2004) found that sentences belonging to several “latent” topics may
be good candidates for extraction but are never selected by LSA-based approaches to form the
summary. To overcome this, they compute a score for each sentence that depends on the most
salient extracted latent topics. Our approach re-interprets LSA-based methods under the QIA
framework, and naturally paves the way for selecting those sentences falling into one theme or
more.

For extractive summarization, we leveraged the fact that the quantum probability handles
2Sentences are represented in a term space, and singular value decomposition (SVD) is used to find the main

latent topics, i.e. the “cluster” representatives, in the original term space.
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naturally distribution over topics and diversity – be it for events or distributions. We defined
the task of extractive summarization as finding the set of sentences S∗ = {s∗1, . . . , s∗n} that covers
the most the topic of the document(s) D to summarize, i.e. the set S∗ such that:

S∗ = argmax s1,...,snq
(
Ss1,...,sn

|ρD
)

(3.8)

where Ss1,...,sn
is the subspace spanned by the information unit vectors associated with sentences

s1, . . . , sn, and where the density ρD is defined by equation (3.4), i.e.

ρD =
∫

n∈N
p (n|D)ϕnϕ

†
n

where we experimented with various definitions of p (n|D) – taking into account (or not) the
length of the sentences or the query that was used to select the documents to summarize. Details
are reported in (Piwowarski, M.-R. Amini, and Lalmas 2012).

Links with LSA-based approaches It is illuminating to look at the link with the two main
LSA-based approaches with our QIA-based model.

To form a summary, Gong and Lin (Gong and X. Lin 2001) use the k information units
associated with the k highest singular values3, i.e. with σ1, . . . , σk. The jth information unit is
represented in the sentence space by the jth column of the matrix V (Equation 3.5). The ith

entry Vij of this vector corresponds to the importance of the ith sentence for the jth information
unit. Formally, for the jth information unit, Gong and Lin (Gong and X. Lin 2001) select the
ith
∗ sentence such that:

i∗ = argmax
i

V 2
ij

Using the fact that V = A>UΣ−1, we can rewrite this selection criterion as:

argmax
i

V 2
ij = argmax

i

(
A>UΣ−1

)2

ij
= argmax

i

(
A>U

)2

ij
Σ−1
jj

= argmax
i

(
s>i U•j

)2
= argmax

i
tr(U•jU>•jsis>i )

= argmax
i

q
(
S

(j)
D |ρ = sis

>
i

)
(3.9)

where S(j)
D is the one-dimensional subspace associated with the jth column of U , i.e. to the jth

latent information unit. Hence, the selection process corresponds to maximizing the probability
associated with the jth dimension of the subspace SD that represents the salient topics of the
documents to summarize. This means that a sentence that is a combination of two information
units (j1) and (j2) might not be selected because it lies half way between the subspaces S(j1)

D and
S(j2)
D . However, this topic, according to the hypotheses of the QIA framework, is fully contained

with the topics of the documents, and would constitute a good candidate for the summary.
This is an illustration of the problem of the hard clustering existing in Gong and Lin selection

method. This problem is further exacerbated when singular values are close to each other. In
the extreme case where they are equal, i.e. σj1 and σj2 , the SVD problem is degenerate, i.e. the
two vectors can be any two that define the same two-dimensional subspace, making the criterion
arbitrary and sensitive to numerical approximations.

Steinberger and Ježek (2004) also noticed this problem. Although they did not give a prin-
cipled explanation of the underlying reason, they noted that a sentence can be highly ranked
for many information units but never sufficiently to be selected. The approach they proposed

3If there are less that k non-null singular values, the method cycles through the singular values, beginning
with the highest ones.
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is to first select an appropriate rank k for approximation of the matrix A. Then, they proposed
to select the ith sentence that maximizes the following criterion:

gi =
k∑
j=1

V 2
ijσ

2
j = tr

(
Vi•Σ2V >i•

)

Since Vi• equals s>i UΣ−1, we have

gi = tr
(
s>i UU

>si
)

= q
(
SD|ρsi

)
(3.10)

where si is a pure information unit state, i.e. we know that the information unit is si. Hence, this
criterion selects sentences maximizing the probability of being present in the most important
(i.e. k) document topics.

This method has two shortcomings. First, it assumes that the dimension of SD is correctly
chosen, because if the rank is maximal the probability defined by Equation 3.10 is always equal
to 1 since SD is a subspace that contains all the atomic vectors present in the documents of D.
Second, different to (Gong and X. Lin 2001), sentences close to only one SVD information unit
can be selected repeatedly. While for important information units, i.e. those with high singular
values, this can be a good property, it may lead to too much homogeneity in the summary. In
the worst case, a sentence that occurs more than one time in the documents to summarize can
be chosen repeatedly.

The QIA-based approach, defined in Equation (3.8), caters for information units that (1)
are combination of the SVD information units, hence overcoming (Gong and X. Lin 2001) prob-
lems, and that (2) extract sentences from different topics, hence overcoming the limitations of
(Steinberger and Ježek 2004).

Experimental results We conducted our experiments on the DUC 2005 to 2007 datasets4.
Documents consist of news articles collected from TREC for DUC 2005 and the AQUAINT corpus for
DUC 2006 and 2007. We were interested in the main task5 of DUC 2007, i.e. providing a summary
of no more than 250 words for each topic to answer the associated question. For a given question,
a summary is to be formed on the basis of a subset of documents to its corresponding topic.

Table 3.2 reports the results on the models where hyperparameters were optimized on held-
out training sets. Thus, the results reflect the ones we would have obtained on one DUC collection,
when the summaries of the two others are available for parameter tuning.

We also compare the results with two graph-based models (symmetric non-negative matrix
factorization (SNMF) and Lexrank); two baseline systems, namely lead and random; and the best
competing summarization system in DUC 2005, DUC 2006 and DUC 2007, denoted by Best@DUC.

The lead baseline returns all the first sentences (up to 250 words) in the most recent document
for each topic and the random baseline selects sentences randomly.

SNMF conducts symmetric non-negative matrix factorization on a sentence-sentence similarity
matrix (D. Wang, T. Li, et al. 2008), the hyper-parameter λ for computing sentence scores
was fixed to 0.7 which gave best results on all three DUC collections.

Lexrank defines a random walk model on top of a graph where sentences to be summarized
define its nodes and the edges represent the similarity measures between the nodes of the
graph. Sentences are then scored by the expected probability of a random walker visiting
each sentence Erkan and Radev 2004. Here, the cosine threshold t was fixed to 0.1 leading
to best results with this approach.

4http://www-nlpir.nist.gov/projects/duc/data.html
5We ignored the short summary task (less than 100 words), which was abandoned in 2008 because of its

difficulty for extractive summarization methods.
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Metric DUC 2005 DUC 2006 DUC 2007
Model / DUC ROUGE-2 ROUGE-SU4 ROUGE-2 ROUGE-SU4 ROUGE-2 ROUGE-SU4

Best@DUC 0.072 0.133 0.095 0.155 0.123 0.175
Average@DUC 0.060 0.115 0.075 0.132 0.096 0.150

Lead 0.043 0.093 0.053 0.104 0.065 0.113
Random 0.041 0.091 0.049 0.101 0.060 0.110
LexRank 0.076 0.136 0.093 0.150 0.120 0.172

SNMF 0.060 0.121 0.085 0.140 0.110 0.158
Gong 0.072 0.133 0.087 0.148 0.118 0.180
Murray 0.073 0.135 0.086 0.147 0.120 0.181
Ozsoy 0.071 0.133 0.085 0.145 0.111 0.173

Steinberger 0.071 0.133 0.081 0.144 0.111 0.169
QIA 0.077 0.135 0.091 0.151 0.127 0.185

Table 3.2 – Final evaluation on the held-out corpus. The first three rows give respectively the
performance of the best system in DUC, the random and lead strategies.

QIA We used a greedy approach, i.e. at each step we select the sentence s∗n that maximizes
the criterion given by Equation 3.8 if added to an already constructed set of sentences
s∗1, . . . , s

∗
n−1. That is, s∗n is given by

s∗n = argmax
s

q
(
Ss∗1,...,s∗n−1,s

|D
)

We can see that our results match the main conclusion drawn in the previous sections, although
parameters vary slightly depending on the specific corpora on which they were optimized. More
precisely, for LSA-based approaches, TF and unigram/strict bi-grams with POS filtering perform
the best, and including the different priors was important. The parameters are quite different
for POS-based models, where a TF-IDF weighting scheme on unigrams, with uniform prior over
sentences, perform the best in general.

From a performance point of view, we improved substantially all the LSA-based models by
selecting appropriate indexing units (in particular, using part-of-speech tagging, as suggested
in Ozsoy, Cicekli, and Alpaslan 2010) and using priors on sentences in the document be sum-
marized, as suggested by the QIA approach. Those priors are biased towards the topic and the
length of the sentences.

In all cases, we can observe that the QIA-based model performs the best for both metrics.
The performance of both QIA-based models are over those of the best systems in DUC for the
corresponding years (not significant except for ROUGE-SU4 in DUC 2005 and 2007); in particular,
this means that in 2007 QIA-based models would have been ranked first since the data from 2005
and 2006 was available.

Finally, QIA-based models are in most of the cases performing better (significantly in 2007
for Lexrank and 2005-07 for SNMF) than two state of the art extractive summarization methods,
namely SNMF and Lexrank, thus showing that the QIAframework is a very promising approach
for extractive summarization.

In summary, our experimental results show that when summarization is performed on a set
of relevant documents to a given topic (topic-oriented documents), as it is the case with the
DUC collections, QIA-based models are able to implicitly capture the topics covered by the set of
documents and are less sensitive to varying documents or sentence lengths. This is an important
result as it means that the similarity estimations between sentences and the topic, performed
by most systems in these competitions, is not required by the QIA-based models. Indeed, the
latter uncover automatically, without relying explicitly on the DUC-provided topic at hand, the
important information units covered by a set of topic-oriented documents

32



More precisely, we showed that even though LSA and QIA-based techniques are based on
spectral decomposition, these models differ in the choice of their optimal parameters. LSA-
based approaches benefit from the various pre-processing steps (part-of-speech, bi-grams, topic
and length bias, rank selection) whereas QIA-based approaches rely on the standard IR TF-IDF
scheme and a few (typically one) information units that represent the important topics of the
documents to summarize. This difference is due to the criteria used to select sentences. LSA-
based models do not consider the “topical” space covered by a set of extracted sentences, whereas
the ones from QIA-based models do.

This leads to an important conclusion. The topical space, in the case of summarization,
resembles more a TF-IDF term space than a TF term space, which can be linked to the QIA
hypothesis on the linear combination of information units. Such a linear combination makes
more sense when less important terms (i.e. low IDF) do not influence much the result of the
linear combination.

3.4.3 Kernel approach

The results in information retrieval being somewhat unsatisfactory (Piwowarski, Frommholz,
Lalmas, et al. 2010), it was necessary to try to exploit spaces of different natures to represent the
documents. Kernels (Lanckriet et al. 2004) allow to work in Hilbert spaces of potentially infinite
dimension. I created tools to compute and manipulate « quantum probability distributions »
(Piwowarski 2012), which I expanded to allow learning the parameters of the linear combination
of kernels. This work was based on:

1. Techniques for updating quantum densities based on singular value decomposition updates
(Grant et al. 2018) ;

2. Techniques for reducing the number of pre-images used by the kernel-based learning meth-
ods (Weston, Schölkopf, and Bakir 2004) .

These tools were presented during two tutorials in conferences in Information Retrieval (ECIR
2012 and ICTIR 2013), and aim to facilitate experiments with this type of models.

These tools also allowed me to conduct new experiences in information retrieval. Rather
than assuming that the space representing documents is reduced to the space of terms (or to a
reduced space), the purpose of this work was to explore potentially infinite spaces for representing
documents. Based on annotated databases (documents, questions and the associated assessed
documents), I tried to use different types of criteria for learning: scheduling (Burges et al. 2005),
direct optimization of measures evaluation in search of information using black box optimization
techniques (Le Digabel 2011), but these experiments were unsuccessful. There are several reasons
for this:

1. The numerical complexity of the algorithms does not make it possible to use sufficiently
fine approximations ;

2. The initial representation is not suitable, and the use of kernels does not correct this
problem

3.5 Discussion and perspective
In this chapter, I presented the work conducted on leveraging the quantum probability formalism,
which crystallized around the Quantum Information Access framework – in which information
“units” are equated to physical states of quantum physics. In addition to the presented results,
the QIA framework has been applied to document filtering (Piwowarski, Frommholz, Moshfeghi,
et al. 2010) and to support poly-representation (Frommholz, Larsen, et al. 2010), i.e. information
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objects that are heterogeneous (e.g. a page describing a product, with its associated reviews
and technical characteristics).

In spite of positive results in extractive summarization (Piwowarski 2012), the experiments
in information retrieval did not allow to improve the performances nor to find new directions
which would make it possible to solve the problems met, and this, despite the development of
kernel-based approaches which could bring more flexibility into the quantum formalism.

At that time, the development of neural-based approaches to language processing, which
share many concepts with QIA (superposition, geometric relationships within vector spaces
linked to a probability distributions) together with a much simpler and direct optimization
approach, is much more promising.

There are however many ideas that could be useful and applied to current neural network
models. For instance, there is a link with recent works in continuous language models (S. Kumar
and Tsvetkov 2018). At a more fundamental level, there is a link with unitary transformations
(Arjovsky, Shah, and Bengio 2015) which preserve the norm of the input vectors (and could act
on densities, i.e. by allowing them to evolve).
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Chapter 4

Graphs and Gaussian
Representations

Gaussian representations, or more generally probabilistic representations, are interesting because
they allow to represent the uncertainty of information – this was e.g. not possible with the
quantum probability framework presented in the previous chapter.

This information about the uncertainty of representations is particularly suited for repre-
senting each node of a graph – since for some nodes, a lot of information is known (they have
many neighbors and/or have many meta-information associated with them). For some others,
almost nothing is known. In the former case, nodes can be represented with a distribution with
a low variance, and in the latter, with a distribution with high variance.

In this chapter, after presenting related works, we focus on the use of Gaussian Representa-
tions for two information access tasks:

• Node Classification (section 4.2): In the context of social networks, such models can be
used to classify items or users into sets of predefined categories. An example of application
is to automatically label musicians in a musical social graph (e.g. LastFM), allowing users
to browse categories.

• Recommendation (section 4.3), or more precisely collaborative filtering, where the goal is
to recommend items to users based on the interaction history (e.g. given ratings) of all
users.

These two tasks were chosen because they are representative of the case where uncertain repre-
sentations are useful since in this type of social networks, many entities (e.g. users, items) are
not associated with much information (e.g. a user has only rated two movies).

4.1 Capturing uncertainties in representations
Before presenting our own models, we first describe different approaches and models able to
modeling representation uncertainty (besides the quantum formalism described in the previous
chapter, which lacks flexibility since the variance is “built in” the formalism) through the learning
of (latent) densities. There is a long line of previous work in mapping entities to probability
distributions, but few represent entities directly as density distributions in a latent function
space. Density representations allow to map entities not only to vectors but to regions in space,
modeling uncertainty, inclusion, and entailment, as well as providing a rich geometry of the
latent space.

In the following, we give a state of the art of models using densities to represent entities. We
firstly give a short view of Bayesian approaches, whose posteriors can be interpreted as density
representations of nodes. We then focus on Gaussian embeddings, in which both means and
variances are directly learned from specific loss function over the densities.
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4.1.1 Bayesian Approaches

Leveraging the Bayesian framework, learning latent distributions is equaled to finding the pos-
terior marginal distributions over all individual latent variables. We suppose that each entity e
is represented by a random variable Ze in Rd. The goal is to infer the posterior P ({Ze}e∈E |D),
where D is the observed data – which in the case of graphs can encompass a variety of information
such as links between entities or meta-information associated with nodes.

In the context of relational data, this type of approach has been used in task such as clas-
sification (Airoldi et al. 2005; R. Xiang and Neville 2013), data collaborative completion (Kim
and Choi 2014) or collaborative filtering (Stern, Herbrich, and Graepel 2009). Airoldi et al.
(2005) and R. Xiang and Neville (2013) address collective classification by inferring the pos-
terior distribution of the class degrees of membership for each node. Kim and Choi (2014)
propose a graphical model for collaborative completion that handle non-random missing data.
For collaborative filtering, Stern, Herbrich, and Graepel (2009) proposed an inference model and
approximate the posterior distribution by a product of Gaussian distributions. Given a set of
rating tuples (user, item, rating), they learn the approximate posterior distributions. The opti-
mization is accomplished using variational message passing (Bishop 2006). Thus, they achieve
to learn posteriors mean and covariance of each latent representations, which they use to ap-
proximate the distribution as a normal. They then use these learned representations to predict
the rating of an item for a user.

For most of the interesting models, algorithms performing exact inference are computation-
ally intractable for all but the simplest models. There exists two ways to approximate probability
distribution, either by sampling (Monte Carlo) or by introducing a distribution approximating
the original one, but simpler to compute (variational approaches).

On the one hand, it is possible to use Monte Carlo Markov Chain (MCMC) sampling from
the posterior distribution and then train a model on those samples. However, MCMC methods
are often slow to converge and in many cases variational methods are preferred since they are
more sample efficient, and are usually faster.

Variational inference aims at approximating the (intractable) posterior distribution, denoted
P , by a (simpler and tractable, e.g. making independence assumptions between variables)
variational one, denoted Q, i.e. Q(Z|X) ≈ P (Z|X), where Z is the set of latent variables and X
the observations. Different variational families have been studied to complete this optimization,
but they all require thoughtful decisions on how to introduce independence assumptions into
the model.

4.1.2 Probabilistic Embeddings

Recently, instead of using Bayesian approaches, several works have proposed to learn these
densities “directly”. The main idea is to derive a cost function which is directly based on the
densities, and to train discriminatively instead of estimating posteriors. This allows to use
standard optimization toolchains, and, more importantly, allows for much more freedom in the
expressive power of the optimized cost. For example, they allow to compare two distributions,
which is much hard to express in a Bayesian setting.

As far as I know, all the works using probabilistic embeddings use Gaussian embeddings, since
they are simple to estimate and to optimize for a variety of distances between distributions, such
as KL-divergence or the inner product distance. The KL-divergence is particularly interesting
naturally asymmetric, and has a simple geometric interpretation as an inclusion between families
of ellipses.

We begin by describing this new framework, used in our contributions, namely Gaussian
representation learning. Introduced in (Vilnis and McCallum 2014), it consists in learning
representations in the space of Gaussian distributions. We denote Z ∼ N (µ,Σ) a Gaussian
representation characterized by its mean µ and its covariance matrix Σ.
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Figure 4.1 – Learned two dimensional Gaussian representations of nodes on the Cora dataset
from (Bojchevski and Günnemann 2017a). Color indicates the class label, and ellipses around
points indicate one standard deviation.

Figure 4.1 shows a visualization of Gaussian representations learned by the unsupervised
model presented in (Bojchevski and Günnemann 2017a) for the Cora dataset1. Colors indicate
the class label (not used during training).

The work presented in (Vilnis and McCallum 2014) has the same goal as (Mikolov et al.
2013), i.e. learning unsupervised representations of words using their context. To learn Gaussian
representations, Vilnis and McCallum (2014) proposed a ranking-based loss, following (Bordes,
Usunier, et al. 2013). They chose a max-margin ranking objective, which pushes the energy of
positive pairs below negative ones by a margin:

L(i, p, n) = max(0, 1− E(Zi, Zp) + E(Zi, Zn))

where E(Zi, Zp/n) is the energy associated to the pair of words i and p/n given their Gaussian
representations. For a given word i, Zp is a Gaussian representation of a positive context for
word p (i.e. that occurs within a given window around term i) and Zn a Gaussian representation
of a negative one (randomly sampled, as in Mikolov et al. 2013).

They proposed two functional forms for the energy function E, one symmetric and one
asymmetric. The symmetric form did not perform as well, and is less interesting since it does
not express the fact that the context of a word should contain the word representation. To
circumvent this limitation, they proposed to use the Kullback-Leibler divergence, denoted KL-
divergence or DKL:

1The Cora dataset consists of scientific publications classified into one of seven classes together with a citation
network.
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Figure 4.2 – Example of a low DKL(Zj ||Zi).

Figure 4.3 – Learned Gaussian representations with diagonal variances, from (Vilnis and Mc-
Callum 2014). The first letter of each word indicating the position of its mean. We can see for
instance that “Bach” is “included” in “composer”, which in turn is “included” in man.
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KL-divergence is a natural energy function for modeling entailment between concepts. A
low KL-divergence DKL(Zj ||Zi) indicates that we can encode Zj easily as Zi, implying that Zj
entails Zi. This can be more intuitively visualized and interpreted as a soft form of inclusion
between the Gaussian distributions of the two Gaussian representations – if there is a low KL-
divergence, then most of the mass of Zj lies inside Zi as shown in Figure 4.2. Figure 4.3
shows what kind of Gaussian representations are learned by the model proposed by (Vilnis and
McCallum 2014).

This allows (Vilnis and McCallum 2014) to learn the Gaussian representations by gradient
descent. (Vilnis and McCallum 2014) has inspired several recent work using the same frame-
work on different tasks and datasets such as (S. He et al. 2015) for knowledge graphs datasets,
(Mukherjee and Hospedales 2016) for image classification, (Bojchevski and Günnemann 2017a)
for attributed graphs with an inductive unsupervised framework and (Purpura et al. 2019) for
information retrieval.

This work has also inspired three of our contributions on graph node classification (section
4.2.2), forecasting relational time series (not presented here) and collaborative filtering (section
4.3). We focus next on node classification and collaborative filtering, since they are more related
to the information access field.

4.2 Node classification
The need for graph node classification stems from several application domains, like web data
mining or biology. For example, web page classification may be formulated as a homogeneous
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Figure 4.4 – Drawing of representation learning for relational data where nodes are projected
from the initial graph (left) to the common latent space (right) where classifiers are learned.

graph node classification task where nodes are web pages, edges between web pages are hyper-
links and node labels are the web page topic.

Work in this domain firstly focused on homogeneous graphs, i.e. with only one type of node
and one type of relation. The analysis of more complex data, e.g. coming from social sources
or knowledge bases, where nodes may be of different types and share different and sometimes
multiple relations, requires new models and techniques. Heterogeneous graph nodes classification
is a recent trend and an open problem. We review below the main directions for graph nodes
classification.

An illustration of representation learning for relational graphs is given in Figure 4.4. Each
of the nodes of the graph is projected onto Rd, and is thus associated with a learned vector
representation. In this example, we consider two types of nodes and distinguish them in the
figure representing the latent space: the first type is represented as circles and the second as
stars. This can be used in classification, as shown in the figure where two classifiers are learned,
one for the stars and the other one for the circles. In this example, circles and stars correspond
to two different types of nodes. Each type has to be classified among two classes, green/yellow
for circles and red/blue for stars, the two types of nodes are linked so that their representations
influence each other.

For graphs, supervised learning models learn representations and classifiers at the same time.
The classification task has some specificities. For example, even if labels can be seen as a new
type of node (with each node linked to its corresponding labels), the node-label relation is
very particular and handling them separately in the model performs better. That is why the
node-label relation needs to be treated differently in the loss function.

4.2.1 Related works

Most of the models share the same basic intuition (Getoor 2007): neighboring nodes have similar
properties, e.g. they tend to be classified similarly. In the following, we distinguish models that
are:
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Propagation-based Associate with each node a classification score for each possible label, and
propagate this information to neighboring nodes.

Representation-based Associate a vector in Rd with each node of the graph, and propagate
this representation to neighboring nodes.

Propagation-based method Iterative Classification Algorithms (ICA) (Sen et al. 2008) are
extensions of classical inductive classification schemes to relational data. They consist in it-
eratively building a local classifier at each node, using as inputs both node characteristics and
statistics on the node neighbors current labels. Standard models, like Bayesian classifiers (Neville
and Jensen 2000) or logistic regression (Q. Lu and Getoor 2003), are used to perform the clas-
sification task. As ICA methods can be heavily influenced by the absence of links, Gallagher
et al. (2008) proposed a way to predict new links by connecting unlabeled nodes to labeled
ones to circumvents the potential graph sparsity. ICA methods have been extended to multi-
relationship graphs, by estimating how labels propagate through each type of relationship or
type of nodes (S. Peters, Denoyer, and Gallinari 2010; X. Wang and Sukthankar 2013), but
dealing with multiple node and relation types is still an issue for this family of methods.

Random walks have been used for graph nodes classification. Labels are propagated from
labeled to unlabeled nodes using the graph structure: each label has a given probability to
be propagated to the neighboring nodes, and the stationary distribution corresponds to the
scores given to the different labels. The most typical work, for homogeneous graphs, is that
of X. Zhu and Ghahramani (2002) who proposed Homogeneous Label Propagation (HLP), the
stationary distribution of a random walk is used for classification. This branch of research
has motivated a large number of extensions, as for example taking into consideration more
specific information, such as graph communities (Devooght et al. 2014) or label distribution
(Nandanwar and Murty 2016). For heterogeneous graphs, there are two approaches that amount
at modifying the random walk by taking into account different types of nodes and relationships.
One defines specific random walks (Y. Zhou and L. Liu 2014) based on input features and graph
statistics. The specific definition of the random walk has to be done manually, which is a clear
limit of this type of approach. General models, like Graffiti (Angelova, Kasneci, and Weikum
2012a), are based on simple extensions of the random walk process: Graffiti is based on two
intertwined random walks, the first one operating between nodes of the same type which are
directly connected in the graph while the other one is defined between nodes of the same type
which are connected through another node type. While simple, Graffiti is very competitive:
according to our experiments with different models, it represents the state of the art in the
domain and is thus one of our baselines.

Regularized models, while related to random walks, are different since the objective is formu-
lated as loss optimization, when random walks do not make use of an explicit loss. A diffusion
equation, appearing as a regularization term in this loss propagates through connected nodes.
For instance, (D. Zhou, J. Huang, and Schölkopf 2005) use a regularization inspired by random
walks, and (Pimplikar et al. 2014; J. Wang, Jebara, and Chang 2008) minimize the graph-based
distance between the nodes using graph Laplacian matrices. Recently, (Ye and Akoglu 2015)
tackled the homogeneous multi-relational classification case, by assuming that relations have
varying levels of informativeness, and, associated with them, weights that are learned. Models
for heterogeneous graphs have been proposed in the case where the label set is the same for all
node types (Hwang and Kuang 2010; Ji et al. 2010b). In that case, simply ignoring the node type
allows one to use frameworks developed for the homogeneous case (Hwang and Kuang 2010).
Ji et al. (2010b) have nevertheless made a step towards heterogeneous networks by introducing
weights on relations between node types and thus differentiating in some way the different types
of nodes.
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Representation learning and Deep Learning In the context of graphs, representation
learning amounts at learning a representation in Rd of each node of the graph. This represen-
tation can then be used as an input for any appropriate classifier. Inspired from deep learning
techniques, (Fan and B. Huang 2017; Moore and Neville 2017) tackle the homogeneous graph
node classification using Recurrent Neural Networks (RNN). They transform each set of neigh-
bors for a given node into a sequence of their attributes and use a RNN to predict the label
of the last (test) node of the sequence. (T. Pham et al. 2016) use a neural network where
the hidden representations are computed based on the input graph. Contrary to our model,
these methods require node characteristics (inductive learning), whereas we only depend on the
structure (though content could be integrated within the proposed models quite easily).

Several works focused on learning a node representation without supervision. Inspired by
work on word representation learning of (Mikolov et al. 2013), (Perozzi, Al-Rfou, and Skiena
2014; Tang et al. 2015) learn distributed representations of graph nodes using a random walk. In
LINE, (Tang et al. 2015), the joint probability of neighbor nodes is a function of the inner product
of their representations. In DeepWalk (Perozzi, Al-Rfou, and Skiena 2014), the authors propose
to sample paths within the graph, and then use them as sentences fed to Skip-Gram (Mikolov
et al. 2013) to learn the representations of the nodes. Based on this work, (Cao, W. Lu, and Q.
Xu 2015) learns node representations that incorporate global and local structural information.
These representations can then be used as inputs to a classifier. Similarly, Grover and Leskovec
2016 proposed an unsupervised learning model that maximizes the likelihood of preserving a
network neighborhood of nodes. In practice, this neighborhood is defined through a biased
random walk. Deep learning architectures have been used in recent works with convolution
neural networks Niepert, Ahmed, and Kutzkov 2016 or auto-encoders (D. Wang, Cui, and W.
Zhu 2016).

Finally, our model belongs to the class of semi-supervised transductive representation-based
models. Closely related to our model are the works of (Tu et al. 2016; Z. Yang, Cohen, and
Salakhutdinov 2016), both based on DeepWalk (Perozzi, Al-Rfou, and Skiena 2014). Z. Yang,
Cohen, and Salakhutdinov (2016) have recently proposed a model that learns two different
representations for a node, one from features associated with the node (e.g. the text of a
web page), and another one from the graph alone. The main focus of this model was to take
into account external information, while in our work the focus is on handling various types of
relationships between nodes without considering node characteristics. Tu et al. (Tu et al. 2016)
proposed a Maximum-Margin Deep Walk (MMDW) procedure that couples DeepWalk with
an SVM. There are several differences between our model and MMDW: their regularization
term is based on an inner product and not on a distance like ours, our model uses a simpler
optimization procedure and learns to weight the relationship. We compared with this model in
our experiments, and have shown that our choices lead to improved performance in classification.

Finally, in the field of knowledge-based representation, a lot of work has been conducted
(Bordes, Collobert, et al. 2011; Bordes, Usunier, et al. 2013; B. Yang et al. 2014), where the
goal is to project each node of a graph into a vector space by exploiting the data related to the
graph. Although they deal with heterogeneous graphs, these methods are specialized for the
processing of specific graphs derived from the semantic Web, and are not very adapted to the
processing of social graphs. Moreover, the criterion they optimize is not specifically related to
the classification task that is the focus of our work in many cases, and the links between nodes
of the graph all have the same importance in the optimization process. It is not the case in any
graphs.

4.2.2 Formalization

A heterogeneous network is modeled as a directed graph G = (U , E) where U is the set of nodes
and E the set of edges. Each node u ∈ U of the graph has a type tu ∈ T where T is the set of
types. Similarly, each edge in E is defined as a triplet (u, v, r) ∈ U × U ×R where R is the set
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of of relationships that can hold between two nodes. We denote Uu ⊆ U ×R the neighbors of u.
Regarding the classification task, let Yt denote the set of categories associated with nodes

of type t. For a node u, the label y indicates whether u belongs to category c (if yc = 1) or not
(if yc = −1). A supervised dataset is noted D = {(u, y)} where u ∈ U and y ∈ Y.

We learn the representations of nodes and classifiers parameters by minimizing an objective
loss function. It takes the general form of transductive regularized loss (Ji et al. 2010a; D. Zhou,
Bousquet, et al. 2003):

L(Z, θ;D,G) = LC (Z, θ;D) + λLG (Z ;G) (4.2)

where LC is a classification loss and LG is a graph regularization loss with λ ∈ R is a regular-
ization weight.

The idea of using a projection of nodes in a continuous space was presented in (Jacob,
Denoyer, and Gallinari 2014). We extended this work in (L. D. Santos et al. 2018), by learning
continuous hyperparameters and providing extensive experiments (section 4.2.3), and finally in
(Dos Santos, Piwowarski, and Gallinari 2017), using probabilistic representations – this latter
work is the focus of this chapter.

As for classical transductive graph losses, the minimization in Equation (4.2) aims at finding
a trade-off between the difference between observed and predicted labels y in D = {(x, y)},
and the amount of information shared between two connected nodes. There are however major
differences, since here Z is not a label as in classical formulations (e.g. ICA), but (a distribution
over a) node embedding. Finally, the function fθ(.) is a parametric classifier for a node of type
t – there is one such classifier for each node type. Since we are using Gaussian embeddings,
the Zs are random variables and the regularization term is a dissimilarity measure between
distributions.

4.2.2.1 Classifier Loss

The mapping onto the latent space is learned so that the labels of each type of node can be
predicted from their embedding. We set the problem as a multi-label classification problem, i.e.
each node can belong to zero or more categories c in those allowed by the node type tu.

For that, we use a parametric classification function fθ whose parameters depend on the label
c. In this probabilistic setting, this multivariate function takes as input a node representation
and outputs a vector of score distributions for each label corresponding to the node type. The
parameters θ of the classifier are learned by minimizing the following loss on labeled data:

LC (Z, θ;D) =
∑

(x,y)∈D

∑
c∈Ytu

∆C(f(Zx; θc), yc) (4.3)

where Ytu are the potential classes of a node of type tu and ∆C(f(Zu; θc), y) is the loss associated
with predicting labels f(Zu; θc) given the observed label yc.

For each category c, we use a linear classifier function f cθ . Even though more complex
functions could be used, we make the hypothesis that the representation space is sufficiently
large, and the geometry sufficiently euclidean, to cater for the different degrees of variation
of data. This allows to obtain closed form formulas for the different derivatives used for the
optimization of the global cost.

Given a representation Zu, the classifier score is thus defined then as

f (Zu; θc) = θc · Zu
which is a random variable defined over R, with positive values associated with the positive
class, i.e. the node u belongs to category c if f (Zu; θc) > 0.
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In our experiments, we used different losses for ∆C – one directly inspired by the deterministic
classification loss (Jacob, Denoyer, and Gallinari 2014), and the other exploiting the variance
information.

We first considered the case where a class decision is simply the expectation of the classifier
score together with a hinge loss, adapting the loss proposed in (Jacob, Denoyer, and Gallinari
2014). For a given node u of type tu with an embedding Zu, the Expected Value classification
loss (C-EV) is defined as:

∆C−EV [f(Zu, θc), yc]
def= max

(
0; 1− ycEZu

[f (Zu; θc)]
)

(4.4)

where yc is 1 if x belongs to category c and −1 otherwise, and f (Zu; θc) is a random variable
which is greater than 0 if u belongs to class c. The main issue with this formulation is that the
information encoded in the variance is lost since

EZu
[f (Zu; θc)] = θc · µu

Alternatively, the probabilistic formulation allows us to leverage the density-based represen-
tation through a probabilistic criterion, even in the case of linear classifiers. This “probabilistic”
classification loss (C-PR) used the log-probability that ycf (Zu; θc) take a positive value:

∆C−PR [f (Zu; θc) , yc]
def= −

∑
c

log p (ycf (Zu; θc) > 0) (4.5)

In this case, the variance will be influenced by the two loss terms (see next section for the
precise definition of the graph loss). If the two terms act in opposite directions, i.e. if there is
a conflict between the graph regularization loss and the classification loss C-PR, one possible
solution is to increase the variance of Zu. This is confirmed by our experimental results.

4.2.2.2 Graph Embedding Loss

We make the hypothesis that two nodes connected in the graph should have similar representa-
tions, whatever their type is. Intuitively, this will force nodes of the same type which are close
in the graph to be close in the representation space. The strength of this attraction between
nodes of the same class is proportional to their closeness in the graph and to the weight of the
path(s) linking them. We use the asymmetric loss proposed in (Vilnis and McCallum 2014):

LG (Z ;G) =
∑

(u,v,r)∈E
wrDKL(Zu||Zv) (4.6)

where wr is a weight specific to the relationship r, and DKL(Zj ||Zi) is the Kullback-Leibler
divergence between the distributions of Zu from Zv. Other similarity measures between distri-
butions could be used as well (e.g. the inner product distance), the Kullback-Leibler divergence
having the advantage of being asymmetric, which fits well the social network datasets used in
the experiments since relations are not necessarily symmetric.

4.2.3 Prior Parameters and Learned Relation Specific Parameters

The graph regularization coefficients wr are specific to a relationship r. They reflect the im-
portance of relation r for the inference task. For example, if inference consists in classifying
an author research domain, then the authorship relation between authors and their published
papers is probably more important than their affiliation relationship. For the model, this means
that authors’ representations should be close to their papers’ representations, while the reverse
is not true.

The wr are hyperparameters that could be learned by grid search and cross-validation. Since
there might be several relation types for a heterogeneous graph, and hence a high number of
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potential values to experiment with, this is not a relevant option here. We used instead the
framework of continuous optimization of hyperparameters (Bengio 2000; Luketina et al. 2016).

This framework has been developed for learning regularization hyperparameters. Given a
regularized loss such as (4.2), hyperparameters are learned along with the model parameters,
by optimizing the unregularized loss on a distinct training set Dw.

Contrarily to grid search, which also selects regularization hyperparameters using an unregu-
larized loss on a validation set, by testing different preset hyperparameters values, here parame-
ters and hyperparameters are learned simultaneously and their dynamics are intertwined. There
is no formal proof that such procedures converge to an optimal choice of the hyperparameters,
but they offer an approximate solution which performs well in many cases (see Luketina et al.
2016 for a discussion).

There have been several instances of this general framework, and we derive below our own
version for the specific problem handled here. Our inference problem is classification, and hence,
following (Bengio 2000; Luketina et al. 2016), our loss function for hyperparameter training is
the classification objective denoted LW . This loss LW is defined on Dw, a set of labeled nodes
distinct from the labeled set Lc used in equation (4.2), i.e. we ensure that Dw ∩ Dc = ∅.

The loss we optimize with respect to the weights w = {wr} is similar to LC but defined on
a different set of labeled nodes:

LW (w;Dw) =
∑

(x,y)∈D

∑
c∈Ytu

∆C(f(Zx (w) ; θc (w)), yc) (4.7)

where the most important difference with Lc is that this loss depends on the weights w and not
on the representations Z or the classifier parameters θ, and, more importantly, where Z and θ
are both a function of w, i.e. there are one of the solutions that minimize (4.2).

The proposed learning scheme uses an alternating optimization algorithm:

1. learning the parameters Z and θ by optimizing the loss LC + λLG of equation (4.2), with
w fixed;

2. learning the hyperparameters w by optimizing the loss of equation (4.7).

At each iteration of this process, the value of the parameters are dependent on the current w:
more precisely, θ(w) and Z (w) are the parameters that minimize the loss of equation (4.2).
This dependency is emphasized in equation (4.7) by the notations zi(w) and θ(w).

Minimizing (4.7) is performed by gradient descent. In (L. D. Santos et al. 2018), we derive
a closed form for ∂LW

∂w , that relies on a series of assumptions about how the classifier and
embeddings change with respect to a change of the hyperparameter w. More precisely, we
suppose that the parameters of the classifiers θ remain mostly unchanged (for a small change
in w) compared to the representations of the nodes Z and we further suppose that each node
position can be approximated as a linear combination of its neighbors previous representations.
Note that the latter is a reasonable assumptions, since for a node in Dw, the only expressed loss
in equation (4.2) is the graph regularization.

This allows us to find closed formulas for the representations of nodes. For instance, when
using the ∆EV variant, we need to express µu as an explicit function of w by zeroing ∇zL on
Dw. We obtain closed-form equations for the parameters.

4.2.4 Results

To investigate whether using probabilistic embeddings for graph node classification is benefi-
cial, we performed extensive experiments on three datasets respectively extracted from DBLP
(author/paper network), FlickR (image, tags and authors), and LastFM (artists, users, albums
and songs). For all but the first dataset (DBLP), each node can have multiple labels. Results
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Train size Model DBLP FlickR LastFM
Micro Macro Micro Macro Micro Macro

10%

LINE 19.5 23.0 20.7 23.2 20.4 15.9
HLP 24.1 27.2 26.3 27.8 38.4 30.0

Graffiti 30.9 38.1 24.5 27.0 40.0 31.4
LaHNet 32.1 40.0 29.3 29.1 36.3 27.2

HCGE(∆EV ,S) 30.9 38.5 32.7 32.6 44.0 34.1
HCGE(∆EV ,D) 30.4 37.4 32.6 32.6 43.6 34.0
HCGE(∆P r,S) 27.9 34.3 29.7 29.2 27.8 20.7
HCGE(∆P r,D) 28.3 34.3 31.9 32.2 29.4 21.9

30%

LINE 21.9 24.8 21.5 24.2 20.5 17.0
HLP 36.0 41.9 47.7 43.7 49.7 40.0

Graffiti 38.5 46.6 47.0 43.7 50.3 40.4
LaHNet 41.2 52.9 48.4 43.6 53.3 40.3

HCGE(∆EV ,S) 42.3 52.6 50.0 45.6 57.3 45.0
HCGE(∆EV ,D) 41.2 50.8 50.1 45.7 57.0 45.3
HCGE(∆P r,S) 41.3 52.1 49.0 44.4 50.4 37.7
HCGE(∆P r,D) 42.3 54.1 50.0 45.8 50.8 38.5

50%

LINE 22.3 25.0 21.8 24.6 20.5 17.0
HLP 39.4 46.5 54.1 48.6 52.1 42.3

Graffiti 41.2 49.4 54.0 48.8 53.5 43.2
LaHNet 44.4 56.8 54.0 47.9 56.7 43.2

HCGE(∆EV ,S) 44.6 55.2 55.8 50.0 60.4 48.7
HCGE(∆EV ,D) 43.9 53.7 55.8 50.0 60.3 48.6
HCGE(∆P r,S) 45.5 57.1 54.8 49.0 58.5 45.0
HCGE(∆P r,D) 45.7 57.7 55.9 50.3 58.9 47.2

Table 4.1 – P@1 results of the model HCGE and baselines on DBLP, FlickR and LastFM

are reported in Table 4.1 – details about the datasets and the full results can be found in L. D.
Santos et al. 2018.

We compared the results of four variants of our Gaussian embedding model (HCGE), and
compared to various state-of-the-art baselines:

• LINE (Tang et al. 2015), which is representative of unsupervised learning of graph embed-
dings suitable for various tasks such as classification. We performed a logistic regression
with the learned representations as inputs.

• Graffiti (Angelova, Kasneci, and Weikum 2012b) which is representative of transductive
graph algorithms developed for semi-supervised learning.

• HLP (X. Zhu and Ghahramani 2002) which is representative of transductive graph al-
gorithms developed for semi-supervised learning. As HLP is designed for homogeneous
graphs, we perform as many random walks as the number of node types, considering each
time that all the nodes are of a same given type.

• LaHNet (L. D. Santos et al. 2018) which corresponds to the classification ∆C−EV with
Dirac distributions and where the graph regularization is based on the Euclidean distance
rather than the Kullback-Leibler divergence.

The main conclusions that we can draw from the various experiments are that:

• Supervised models (HLP, Graffiti, LaHNet and HCGE) using the class information outper-
form unsupervised representation learning, which matches the results reported in (Jacob,
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Denoyer, and Gallinari 2014; L. D. Santos et al. 2018);

• Modeling the heterogeneity of the graph brings noteworthy improvements: On all datasets,
the performances of HLP are below the performances of Graffiti, LaHNet and HCGE;

• Learning node representations improve the results: comparing the heterogeneous models,
both LaHNet and HCGE outperform Graffiti on all datasets. We can note that the more
complex the dataset, the higher the gap compared to the baselines;

• Finally, introducing uncertainty in representations clearly improves results, as acknowledge
by the comparison with LaHNet. Let us also point out that, according to our initial
intuition, the effect of using uncertainty has more impact when the amount of training
data is lower: the difference between LaHNet and HCGE decreases in general when more
training data is available.

Among the different variants of our model HCGE (classification loss and form of the covariance
matrix), there were no clear global trend.

We noticed that globally, ∆Pr seems to be disadvantaged by a low number of training
examples, when ∆EV seems to be more stable in comparison to other baselines. However, the
more training data, the closer the ∆Pr variant is to ∆EV . We believe that this is due to the
fact that the covariance matrix is only optimized in the graph regularization term in the case of
∆EV .

With respect to the use of a spherical and a diagonal covariance matrix. For the ∆EV

variant, it looks like moving from a spherical covariance matrix to a diagonal one brings no
improvement. It even decreases the performance on DBLP. Concerning the ∆Pr variant, for
which the covariance matrix plays a role in the classification cost, conclusions are reversed and
using diagonal covariance matrices improves the results.

Overall, probabilistic embeddings did improve the results over all the baselines we compared
it to. It seems that there is no real difference between the different variants – or that they are
dependent on the dataset or/and on the amount of training data. Further work would be needed
in order to clear this out.

4.3 Recommendation
We now turn to the use of probabilistic embeddings for recommender systems. These systems
help users find items they might like in large repositories, thus alleviating the information over-
load problem. Methods for recommending text items can be broadly classified into collaborative
filtering (CF), content-based, and hybrid methods (Ricci et al. 2011). Among recommender
systems, collaborative filtering systems are the most successful and widely used because they
leverage past ratings from users and items, while content-based approaches typically build users
(or items) profiles from items (or users) predefined representations. Among collaborative rec-
ommender systems we are interested in those that represent users and items as vectors in a
common latent recommendation space. Matrix factorization derivatives are a typical example
of such models. The main assumption is that the inner product between a user and an item
representation is correlated with the rating the user would give to the item. The main interest
of these models is their potential for integrating different sources of information (F. Zhang et al.
2016) as well as their good performance, both in efficiency and effectiveness (Ricci et al. 2011).
The most successful approaches are based on learning-to-rank approaches such as (Rendle et al.
2009; Weimer et al. 2007).

Despite their successes, one limitation of those models is their lack of handling of uncertainty.
Even when they are based on a probabilistic model, e.g. (Rendle et al. 2009; Salakhutdinov and
Mnih 2007), they only suppose a Gaussian prior over the user and item embeddings, but still
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learn a deterministic representation. The prior is thus only used as a regularization term on
user and item representations.

Uncertain representations can have various causes, either related to the lack of information
(new users or items, or users that did not rate any movie of a given genre), or to contradictions
between user or item ratings. To illustrate the latter, let us take a user that likes only a part
of Kung Fu movies, but with no clear pattern, i.e. no sub-genre. With usual approaches,
such a user will have a component set to zero for the direction of the space corresponding to
Kung Fu. With our proposed approach, we would still have a zero mean, but with a high
variance. Our hypothesis is that, because of these two factors, namely cold start and conflicting
information, training will result in learned representations with different confidences, and that
this uncertainty is important for recommending.

Moreover, using a density rather than a fixed point has an important potential for developing
new approaches to recommendation. First, instead of computing a score for each item, the model
can compute a probability distribution, as well as the covariance between two different item
scores. This can be interesting when trying to diversify result lists, since this information can
be leveraged e.g. by Portfolio approaches (J. Wang and J. Zhu 2009): The model could propose
diversified lists with different degrees of risk. Secondly, such models are interesting because they
can serve as a basis for integrating different sources of external information, and thus serve as a
better bridge between content-based approaches and collaborative filtering ones. Thirdly, time
could be modeled by supposing that the variance of the representation increases with time if no
new information (i.e. user ratings) are provided.

In the following, we first describe our Gaussian Embeddings Ranking Model, and then show
experimentally that it performs very well compared to state-of-the-art approaches.

4.3.1 The Gaussian Embeddings Ranking Model

Our model is learned through a pairwise learning-to-rank criteria that was first proposed by
(Rendle et al. 2009) for collaborative filtering (Bayesian Personalized Ranking, BPR). Formally,
they optimize the maximum a posteriori of the training dataset D, i.e. p (Θ|D) ∝ p (D|Θ) p (Θ)
where D represents the set of all ordered triples (u, i, j) bearing the semantic that the user u ∈ U
prefers item i ∈ I to item j ∈ I, and Θ, the model parameters. The factor p (Θ) corresponds to
the prior on the item and user representations (a Gaussian prior in Rendle et al. 2009). Then,
using the standard hypothesis of the independence of samples given the model parameters, we
have

p (D|Θ) =
∏

(u,i,j)∈D
p (i >u j|Θ) (4.8)

In Rendle et al. 2009, the probability that user u prefers item i to item j, noted by i >u j,
is given by the sigmoid function of the difference of the inner products, that is:

p (i >u j|Θ) = σ
(
xi · xu + bi − xj · xu − bj

)
(4.9)

where bi (resp. bj) is the bias for item i (resp. j), i.e. it can be interpreted as the average user
rating (or popularity) for this specific item.

In this work, while we start with Eq. (4.8), the different variables x• (• is either a user u
or an item j) are random variables, denoted X•, and not elements of a vector space. We can
hence estimate directly probability p (i >u j|Θ) of the inner product Xu ·Xi being higher than
Xu ·Xj .

We start by supposing that user and item representations follow a normal distribution. That
is, for any user u and item i,

Xi ∼ N
(
µ
i
,Σi

)
and Xu ∼ N

(
µ
u
,Σu

)
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We suppose that Σ• = diag (σ•1, . . . , σ•N ) is a diagonal covariance matrix to limit the com-
plexity of the model (N is the dimension of the latent space): in practice, we have 2N parameters
for each user, and 2N+1 for each item (+1 because of the bias). The variance is associated with
each element of the canonical basis of the vector space (diagonal covariance matrix). In practice,
we hypothesize that this helps the model to learn meaningful dimensions, since it forces the use
of the canonical latent space basis.

Since Xi and Xu are random variables, their inner product is also a random variable, and
we do not need to use the sigmoid function of Eq. (4.9) as for BPR to compute the probability
that user u prefers i to j. We can instead directly use the random variables defined above, which
leads to:

p (i >u j|Θ) = p
(
Xi ·Xu + bi > Xj ·Xu + bj |Θ

)
= p

(
Xu ·

(
Xj −Xi

)
︸ ︷︷ ︸

Zuij

< bi − bj
∣∣∣Θ)

where bi and bj are the item biases2. To compute the above equation, we use the following two
simplifications:

1. Item representations are independent given the model parameters. This implies that the
difference Xj −Xi follows a normal distribution N

(
µ
j
− µ

i
,Σi + Σj

)
2. We approximate the inner product distribution by a Gaussian using moment matching

(mean and variance), using the results from Brown and Rutemiller (1977) who defined the
moments of the inner product of two Gaussian random variables; with our notations, the
two first moments of Zuij are defined as:

E [Zuij ] = µ>
u

(µ
j
− µ

i
) (4.10)

=
Var [Zuij ] = 2µ>

u

(
Σi + Σj

)
µ
u

+
(
µ
j
− µ

i

)>
Σu(µ

j
− µ

i
)

+ tr
(
Σu

(
Σi + Σj

)) (4.11)

The above assumptions allow us to write:

p (i >u j|Θ) ≈
∫ bi−bj

−∞
N (x;E [Zuij ] ,Var [Zuij ]) dx (4.12)

which is the Normal cumulative distribution function. This function can be easily differentiated
with respect to the µ• and Σ• (• is a user or an item).

From Equations (4.12) and (4.11) and ignoring the biases, we can see that the difference
between the inner products µ

u
· µ

i
and µ

u
· µ

j
is controlled by the variance of the user and the

item (especially for the components of the means that have a high magnitude) – the larger, the
closer to 0.5 the probability. This is the main difference with other matrix factorization-based
approaches.

Finally, we have to define the prior distribution over the parameters Θ, i.e. the means and
variances. As we consider only a diagonal covariance matrix, we can consider an independent
prior for each mean and variance, i.e. for any µ•k and Σ•kk. In this case, using a normal-gamma
prior is a natural choice since it is the conjugate distribution of a normal. More specifically, we
suppose that (

µ•k,Σ
−1
•kk

)
∼ NormalGamma (ν, λ, α, β) (4.13)

2In this work, we did not consider them to be random variables, but they could be
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with ν = 0, λ = 1, α = 2 and β = 2 – these parameters do not change much the solution,
and were chosen so that user and item representations are not too much constrained. In the
absence of data, this would set, for each component, the mean to 0 and the variance to 1, which
corresponds to the mode of the normal-gamma distribution.

Finally, using Eq. (4.13) and (4.8) to express the MAP criterion gives:

L = log p (Θ) +
∑

(u,i,j)∈DS

log p (i >u j|Θ)

+=
∑
•,i

[(1
2 − α

)
log (Σ•ii)−

2β + λµ•i
2Σ•i

]
− c

∑
i

b2i

+
∑

(u,i,j)∈D
log p (i >u j|Θ)

where • is a user or an item, += means equal up to a constant, and p (i >u j|Θ) is given by
equations (4.12), (4.10) and (4.11), and where we suppose a normal prior for the biases (to
avoid overfitting). The parameters Θ =

{
Σ•, µ•

}
•∈U∪I

are optimized with stochastic gradient
update, picking a random triple at each step, and updating the correspond means and variances
(for user u, and items i and j).

4.3.2 Ordering items

We could have used pairwise comparison from our model since the relation i >u j ⇐⇒
p (i >u j|Θ) > 0.5 defines a total order over items, but it does not make any difference in
the ranking if p (i >u j|Θ) equals 0.51 or 0.99, and this difference could be due to the sole differ-
ence between variances. To avoid this problem, we order items by their probability of having a
positive score, i.e. sui = p(Xu ·Xj + bi > 0)3. This ordering preserves the variance information
in contrast to the pairwise comparison – a score with a high variance will be associated with
a score sui close to 0.5. Item scheduling that depends on the covariance between items, using
« portfolio techniques » where the variance and covariance associated with earnings (here the
relevance of a recommendation) are taken into account (J. Wang and J. Zhu 2009) .

4.3.3 Results

Results are reported in Table 4.2. There are roughly three groups of models: (1) Soft Margin
(SM) that performed the worst; (2) BPRMF and most popular (MP); (3) GER and CofiRank
(CR). Most popular (MP) performs well because of the chosen experimental evaluation where
only items seen by the user are evaluated and ranked.

Our model (GER) outperforms the others on the MovieLens and Yelp dataset. It is usually
above CofiRank (nDCG difference between 0.01 and 0.08), with the exception of the Yahoo
dataset for train sizes 20 and 50 (nDCG difference between 0.001 and 0.02). Overall, GER is
performing very well on three datasets with different characteristics in terms of rating behavior
and number of ratings.

We now turn to the analysis of results, based on the study of the learned representations for
the Yahoo dataset. We used the hyper-parameters that were selected on the validation set, and
looked at the set of mean-variance couples, i.e. the (µ•k,Σ•k) for k ∈ {1, . . . , N} and • ∈ U ∪ I.

In Figure 4.5, we plotted the different couples (µ•k,Σ•k), as well as the histogram of mean
and variance. We can see that the model exploits the different ranges of mean (-0.3 to 0.3) and,
more importantly, variance (0.4 to 1.2) around the priors. This was satisfying since it was not
obvious that the variance component would be used by the model, i.e. that it would deviate
from its prior.

3We use the same moment matching approximation to compute the inner product distribution.
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Train Size → 10 20 50
Model ↓ N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10

Yahoo!
MP 53.0 59.1 67.3 52.5 58.3 66.4 53.6 57.8 64.0

BPRMF 52.8 59.0 67.2 52.2 58.3 66.4 52.2 57.7 63.5
SM 50.9 56.7 65.4 49.7 55.6 64.2 49.9 54.1 60.3
CR 53.5 60.3 68.2 57.8 61.7 68.9 56.0 60.0 65.6
GER 53.5 60.3 68.3 53.8 60.7 68.2 54.3 59.6 65.3

MovieLens
MP 66.0 64.7 65.8 68.4 65.3 66.3 69.1 67.4 67.5

BPRMF 66.1 64.6 65.7 66.3 64.3 65.8 66.9 65.0 66.2
SM 55.9 57.5 60.3 58.3 59.6 61.6 58.6 60.4 62.5
CR 69.0 67.3 68.6 69.7 68.5 69.5 71.4 69.4 70.6
GER 70.3 67.7 70.0 72.0 69.5 71.1 72.5 71.3 71.5

Yelp
MP 40.7 41.5 46.9 39.5 39.9 44.7 37.4 37.6 41.4

BPRMF 40.8 41.3 46.8 39.6 39.8 44.6 37.3 37.2 40.9
SM 37.3 38.3 44.4 35.8 36.9 41.9 33.4 34.1 38.0
CR 47.1 46.9 51.1 46.5 46.6 50.4 46.2 45.8 48.6
GER 55.2 52.2 56.2 57.4 53.5 56.4 58.2 53.7 55.3

Table 4.2 – Collaborative Ranking results. nDCG values (×100) at different truncation levels
are shown within the main columns, which are split based on the amount of training ratings.

Figure 4.5 – User (left) and item (right) learned first component representation plots for T50
and a representation dimension of 50.
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4.3.3.1 Conclusion

In this work, we have shown that using probabilistic embeddings again allowed to outperform
previous approaches.

This work can be extended in various directions:

• By using other learning criterion that make use of the variance information

• By incorporating meta-information about users and items, leveraging the work conducted
in graph node representations

With respect to the former, a possibility that we explored is to use a learning criterion, SoftRank
(Taylor et al. 2008), which takes into account the covariance between the predicted scores, as well
as the set of scores distributions of a set of items (rather than two to two). This was published
in (Titeux, Piwowarski, and Gallinari 2018a), but the preliminary results did not show a strong
improvement with respect to the MAP cost we used in this work. The most likely reason is that
in the context of recommendation, taking into account popularity is already a strong baseline;
the extra performance brought by list-wise learning-to-rank models does not outweigh the extra
computational cost and instability arises in optimizing such criteria. However, more experiments
are needed to check whether this holds true in different experimental settings.

With respect to the latter, this corresponds to a problem that still does not have a satisfactory
solution is the integration of meta-information on items or users, in order to solve cold start
problems when no judgment is known for a new item or a new user. Content-based methods
rely on the definition of distance based on meta-information, which is neither efficient nor easily
transferable to new data sources. Works that combine representational learning and taking into
account meta-information started to appear (Vasile, Smirnova, and Conneau 2016), but do not
take into account the problem of the uncertainty related to the information provided.

Using the formalism of graph representation exposed in section 4.2, we can express meta-
information as triplets (s, r, t) where s is the source entity, r the relation, and t the target entity;
for example, a film that is « comedy » will be expressed in the form of a triplet (film, « genre »
, « comedy » ). In the case of a categorical type entity (eg. « genre of the film » ), it is possible
to use also a representation in the form of a density, and, following the works (Dos Santos,
Piwowarski, and Gallinari 2016; S. He et al. 2015) , to express the relation between s and t as
a «distance» such as Kullback-Leibler:

∆ (s, r, t) = KL (Xt||Xs)

where Xs and Xt correspond to probability distributions. To repeat the previous example, when
t is a genus, Xt represents in some way the places in the space where a movie can be found
whose genus is t . For vague genera, the variance of Xt will be large, and vice versa for a specific
genre.

More complex relationships, for example linking a movie to a text describing it, can also be
considered by learning to project a text in the distribution space. One possibility we will explore
is to learn the parameters of a Gaussian, i.e. for a text t, representing it as

Xt ∼ N (µθ (t) ,Σθ (t))

where θ are the parameters of the projection models: the goal of learning is to predict the center
and covariance matrix of each text t . This model has the possibility to learn if a text makes
it possible to specify or not (via the variance) the locus of an entity which is described by this
text.
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4.4 Gaussian Embeddings: Conclusion
In this chapter, we presented two of our works leveraging Gaussian embeddings. In both cases,
we obtained better results than state-of-the art works, with the same number of parameters (even
when taking into account the cost of adding a variance information). A third work was conducted
on time-series models (Ziat et al. 2016), by trying to model the evolution of a distribution in
a state space, but the quantitative results were not improving much compared to deterministic
approaches.

Even with the success of recent neural approaches, this problematic has nevertheless con-
tinued to be explored in various works (Bojchevski and Günnemann 2017b; Y. Chen, Pu, et al.
2019; Pei et al. 2020), and is still especially useful when modeling nodes in a graph. I believe
that given the simplicity of the optimization scheme (as opposed to a Bayesian modeling) and its
flexibility (e.g. using the KL distance), this type of probabilistic embeddings can be leveraged
in many cases successfully.

Outcomes

• I co-supervised (with P. Gallinari) the thesis of Ludovic Dos Santos (defended in December,
2017).

• Graph node classification

– L. Dos Santos, B. Piwowarski, and P. Gallinari (2016). “Multilabel Classification on
Heterogeneous Graphs with Gaussian Embeddings.” English. In: ECML. Springer
International Publishing, pp. 606–622. doi: 10.1007/978-3-319-46227-1_38

– L. D. Santos et al. (July 2018). “Representation Learning for Classification in Het-
erogeneous Graphs with Application to Social Networks.” In: ACM Transactions on
Knowledge Discovery from Data 12.5, 62:1–62:33. doi: 10/gdvmmq

• Gaussian Embeddings

– A. Ziat et al. (2016). “Modeling Relational Time Series Using Gaussian Embeddings.”
In: NIPS Time Series Workshop

– L. Dos Santos, B. Piwowarski, and P. Gallinari (2017). “Gaussian Embeddings for
Collaborative Filtering.” In: Proceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. SIGIR ’17. New
York, NY, USA: ACM, pp. 1065–1068. doi: 10.1145/3077136.3080722

– H. Titeux, B. Piwowarski, and P. Gallinari (Mar. 2018b). “Représentations Gaussi-
ennes pour le Filtrage Collaboratif.” In:
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Language Grounding
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Chapter 5

Language Grounding

5.1 Introduction
To a large extent, Natural Language Processing and Information Access tasks are mostly con-
cerned with textual information, and do not consider other sources of information. Said other-
wise, extracting information from a document only relies on textual clues and statistical patterns.
However, a wealth of information is available in images, videos or audio signals, and especially
a type of information that is seldom made explicit in texts – namely, common sense knowledge.

A few years ago, in NLP, some works have underlined the limitations of using purely textual
data. Bruni et al. (2012b) showed for instance that purely textual models learn representations
that do not contain the typical color of common concrete objects. Analyzing a purely-textual
distributed semantic models (DSMs), they found for example that the closest color (in terms of
cosine similarity) in the semantic space of the word pig is brown, and that DSMs are confused
by non-literal uses of color words (e.g. white wine). Following this work, Gordon and Durme
(2013) noted discrepancies between real word frequencies and concept frequencies in texts.

These empirical observations are supported by works in grounded cognition that reject the
traditional view of cognition as computation on amodal symbols, independent of the brain’s
modal systems for perception, action, and introspection. This traditional view is linked to works
viewing language as a purely symbolic system based on logical grammar (Burgess and Lund 1997;
Chomsky 1980). A body of knowledge (for references, see Barsalou 2008) has shown that this
view is far from reality, and have advocated for grounded cognition theories, i.e. theories that
supposes that modal (motor or perceptual) simulations, bodily states and situated actions must
be an integral part of any theory of cognition. In particular, Barsalou (2008) discusses a number
of experiments that have shown that comprehension is linked to actual modal simulations, as
for instance:

• A spatial representation of a scene is constructed when reading it (interfering with this
construction slows down comprehension);

• Abstract concepts are grounded metaphorically in embodied and situated knowledge:
specifically, these researchers argued that people possess extensive knowledge about their
bodies (e.g., eating) and situations (e.g., verticality), and that abstract concepts draw on
this knowledge metaphorically.

Whether this embodiment is necessary for natural language processing is an open question,
but it is clear from these works, and from our daily life experience, that text and image (among
other modalities) are complementary. Some works have already been trying to squeeze out of
images some real world knowledge (Bagherinezhad et al. 2016; Vedantam et al. 2015; Yatskar,
Ordonez, and Farhadi 2016).

An example is the work of Bagherinezhad et al. (2016), who seek to find what is the typical
size of an animal or object. Their model is based on the assumption that each object size follows
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Figure 5.1 – Exploiting textual and visual resources to reason about sizes of common
objects. In this example, language gives direct information about sizes of objects, while images
gives information about the relative sizes of objects. Combining both direct and relative size
knowledge allows to infer size of new objects. Illustration taken from Bagherinezhad et al. (2016)

a log-normal distribution, and that (1) language gives access to absolute size of some objects,
while (2) images provide relative sizes of objects when two objects are contained within the
same image, by comparing the depth-adjusted size of the two bounding boxed estimated with
webly-supervised detectors (Divvala, Farhadi, and Guestrin 2014). In their work, they show
how one can infer the size of each object using a probabilistic modeling of reality (see Figure
5.1).

Finally, at a more application level, there are several (multi-modal) tasks related to textual
information (Beinborn, Botschen, and Gurevych 2018) where information from other modalities
can be useful (or is mandatory):

Cross-modal transfer by learning how to transform a representation from one modality to
another (e.g. cross-modal retrieval, searching an image from a textual query). Sometimes,
the goal is to obtain a compressed and structured intermediate representation of the input
to generate a useful interpretation in the target modality (e.g. image captioning).

Joint multimodal processing are tasks which explicitly require the combination of knowl-
edge from different modalities. Examples of such tasks emotion recognition from video
and sound, disambiguation with image and text, etc.

General tasks Finally, and more importantly, general natural language processing related
tasks rely on word or sentence representations. These representations, when grounded, can
potentially bring common-sense information into the natural language processing models.

In this chapter, we focus mainly on grounding. We investigate whether visual information
can be integrated into text representation, and present two works aiming at grounding words
in Section 5.3.1 and sentences in Section 5.3.2. We also look at the question of grounding with
temporal information in Section 5.3.3.

5.2 Visual and textual representation spaces
Before presenting our works in grounding, we first study the difference between the visual modal-
ity, which is the main source of information we consider in this chapter, and the textual repre-
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Figure 5.2 – Illustration of the BoVW approach. Image taken from (Jiang et al. 2010)

sentation space.

5.2.1 Representing images

In this section, we study the evolution of the representation of images. We first present the
pre-neural canonical representation of images, before focusing on convolution neural networks.

5.2.1.1 Bag of Visual Features

In traditional computer vision pipelines, no learning is involved to compute image represen-
tations. The main idea is to compute descriptors for interesting parts of the images before
aggregating them. For example, these local descriptors could be obtained by convolving kernels
on images, with kernels coming from filter banks. Based on convolving Gaussian kernels on im-
ages at different scales, the SIFT (Lowe 1999) descriptors provide features invariant to rotations
and image scaling. The obtained features have been shown to be robust across shifts in intensity
and illumination, and, to some extent, to changes in 3D viewpoint and distortions.

To obtain a global representation, local image descriptors can be aggregated as bags of visual
words (G. Qiu 2002), through a four-step process illustrated in Figure 5.2. First, the feature
detection algorithm is used to detect key points, i.e. the important regions in the image. Second,
the feature description part associates with an image region a local representation, usually with
SIFT (Lowe 1999), HOG (Freeman and M. Roth 1995) or SURF (Bay et al. 2008). Third, the
codebook generation clusters local feature descriptors, giving rise to a codebook that associates
with each feature a cluster. Finally, in the fourth step, the image is represented as a bag of
words (or more precisely, of codewords discovered during the previous step).

Once an image is represented, any discriminative model such as a naive Bayes model or a
SVM can be used to to tackle the task of interest. This traditional pipeline has however several
limitations. As for the BoWmodel that represents documents using one hot word representations
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ignoring the sequential information, the BoVW model ignores the (spatial) structure of image
patches. Second, and this is more image specific, designing good feature descriptors is task-
dependent, and, generally expert knowledge is incorporated in the used filter banks (Y. M. Lu
and Do 2007). This creates models that poorly generalize to new domains and that are costly to
design as intensive human intervention is needed. Finally, like any human-crafted representation,
the expressive power might be limited and might not capture the important variations in the
input source, here the images. These limitations were solved to a large extent with the advent
of deep neural networks that we present next.

5.2.1.2 Representation Learning: The ConvNet era

As mentioned in the introduction, the deep learning revolution comes from the ability of neural
networks to learn rich and expressive data representation. This emerging paradigm has shown
to be much more efficient and effective than using handcrafted features, and this has begun with
image classification tasks.

Inspired by biological processes, and how certain neurons in the visual cortex were found to
fire when certain images are shown, Fukushima and Miyake (1982) proposed the seminal idea
of convolutional neural networks. The two key points are the 2D equivariance (the processing
does not depend on the location of the region of interest in the image) and the hierarchical
processing (basic characteristic are first detected, and their composition is used to detect higher
order characteristics, etc.).

The 2D equivariance in CNN is based on convolution layers, i.e. layers that convolve an
image with a kernel. Formally, we suppose that an image is a tensor x ∈ RW×H×C where W
is the width, H the height and C the number of channels (3 for RGB images). The output
is a tensor y ∈ RW ′×H′×C′ where C ′ is the number of kernels or filters (an hyperparameter)
and the width/height W ′ and H ′ depends on the original width and height, and also on the
characteristics of the kernel K. Each filter allows to detect one pattern in the image region (e.g.
a rounded corner in the lower layers or a face in the highest). The output of one element of this
tensor is formally given by a linear combination of the input region centered on the point (i, j):

yijc′ =
∑

l,m,c∈N3

K
(c)
lmcxi−l,j−m,c + bc′ (5.1)

where K is a 2D convolution kernel (with a finite support) and xi−l,j−m,c is the pixel value of
the image cth channel at coordinates i− l, j−m (or 0 if the point does not belong to the image).
Using 2D kernels allows to capture the equivariance by translation that should be verified by
image processing techniques.

The hierarchical processing is obtained through the composition of several layers (convolu-
tion, followed by some other normalization or non linear layers) that extract hierarchical deep
representations. For example, given the image of a person’s face, the first layers can detect
edges and corners, the next layers can detect larger patterns such as an eye or a nose, and the
final layers can recognize face’s shape Zeiler and Fergus (2014). The Figure 5.3 illustrates the
different layers of a CNN, or more precisely shows an image region that activates the most the
feature map of each layer.

In practice, the last layer (here, layer 5) contains larger image regions, and bears more
semantics that the first layers. This layer is aggregated into a fixed-sized representation (e.g. by
taking the maximum value of each channel) and then processed further with a fully connected
(multi-layer perceptron) architecture.

This obtained image representation can then be used to recognize the object(s) contained in
the image, and, more generally, to represent the image. In the remaining of the chapter, for an
image v, its CNN representation CNNv ∈ RcL (where cL is the number of channels of the last
CNN filter) corresponds to the last layer before the classification part of the network. As the
classification part of the network is usually a simple linear layer (followed by a softmax to obtain
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Figure 5.3 – Visualization of ConvNet learned features (from Zeiler and Fergus 2014)

a distribution over classes), CNNv can be seen as a linear combination of vectors representing
the different classes on which the CNN has been trained. This is for example exploited by
(Norouzi et al. 2013) for Zero-Shot Learning in image recognition.

Despite being introduced in the 1980s, CNNs have only become widespread only from the
2010s. On a theoretical point of view, the rise can be explained by regularization techniques
such as dropout (N. Srivastava, I. Hinton, et al. 2014) and the use of suitable activation functions
such as ReLU (Glorot, Bordes, and Bengio 2011). In addition, practical reasons also explain the
rise of CNN-based methods, such as the use of large datasets, e.g. MS COCO (T.-Y. Lin et al.
2014), ImageNet (Deng et al. 2009), and Visual Genome (Krishna et al. 2016), as well as fast
implementations of convolutions and linear algebra computations on graphical processing units
(GPUs).

In 2012, the ImageNet challenge has been won by a CNN-based method which outperformed
previous approaches by a large margin (Krizhevsky, Sutskever, and G. E. Hinton 2012). Since
then, CNN-based architectures have won all of the subsequent ImageNet competitions. The
convolutional architecture have been improved, with deeper and larger layers, such as with the
VGG network Simonyan and Zisserman 2014, the inception network Szegedy et al. 2015 and
resnet network K. He et al. 2015.

Not only does the use of CNN has spread to a wide variety of tasks in computer vision —
object recognition, detection and segmentation, image generation with GAN, and video analysis
—, but CNNs have also been widely adopted for text (see Section 2) and other fields such as
board games (e.g. the game of go with AlphaGo).

5.2.2 The structure of images and text

Having presented the evolution of image representation, we now discuss the differences between
text and image.
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Word Teraword Knext
Spoke 11,577,917 372,042
Laughed 3,905,519 179,395
Murdered 2,843,529 16,890
Inhaled 984,613 5,617
Breathed 725,034 41,215

Word Teraword Knext
Hugged 610,040 11,453
Blinked 390,692 21,973
Was late 368,922 31,168
Exhaled 168,985 4,052
Was on time 23,997 14

Table 5.1 – Illustration of the Human Reporting Bias. Count of the number of times
that A person may ..., in Teraword and Knext textual corpora. Reproduced from (Gordon and
Durme 2013).

Differences between images and text First, textual and visual modalities are trivially
different by the way information is represented: language is composed of sequences of tokens
(words) arranged in sentences, paragraphs, document, etc., while images are composed of chan-
nels (e.g. RGB), with pixel values spatially arranged in two dimensions. Beyond these obvious
differences, these modalities do not bear the same semantics – even though they are both a
biased view of reality:

• Visual data are direct depictions of the reality and are less subject to interpretation: views
of objects and spatial organization of scenes in images are unequivocal.

• Conversely, language refers to high-level concepts, is highly ambiguous, relies on context
and background knowledge (e.g. common-sense). For example, in the sentence “Hector
went to the bank and swam", the reader needs to understand that the bank is a river bank,
and to infer that the river was large enough to swim in it, etc.

This discrepancy between the textual and visual modalities can be explained by the fact that
natural language is a communication mean for humans, and has been “optimized” through a
long evolutionary process. For example, when people talk or write, they make the underlying
assumptions that the people to which the language is addressed know about the world: many
implicit facts are not mentioned because they are taken for granted by both parties (Grice 1975).

They are many illustration of this discrepancy. A first one is the discrepancies between
real-world and textual statistics (Gordon and Durme 2013) reported in table 5.1. For example,
based on n-gram occurrences count, they observe that a person is three times more likely to get
murdered that to inhale. This discrepancy is called the “reporting bias”, and stands for the fact
that the more expected a situation, the less likely people are to report it.

Bridging image and text Several works have shown that even though the information con-
tained in images and texts is of a different nature, they could be bridged. More pragmatically,
it is possible to project an image onto the textual space, a text to the visual space, or both
text and image to a common shared space. Such projections are primarily used for retrieval, i.e.
finding an image where an object appears, or finding which objects appear in an image.

The fundamental hypothesis is that there exit a smooth mapping between the visual and
the textual space, or more precisely a mapping that preserves the semantic of geodesics in both
spaces. As illustrated in Figure 5.4, where we imagine that the space is regular enough so
that even if a concept has not been learned (e.g. “tiger”), there is a high enough correlation
between visual and textual features so that an approximate mapping can be learned. Formalizing
this idea, (Costa Pereira et al. 2014) hypothesized that both semantic abstraction and cross-
modal correlation are important, i.e. both image and text representations should bear high level
semantics and be correlated in the common space.

Another view of the underlying hypothesis is that the identification of entities of the target
domain (here, the visual domain) is made possible thanks to the implicit principle of composi-
tionality (a.k.a. Frege’s principle) — an object is formed by the composition of its attributes and
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Figure 5.4 – Correlation between the image and textual spaces

characteristics — and the fact that other entities of the source domain share the same attributes.
For example, if textual resources state that an apple is round and that it can be red or green,
this knowledge can be used to identify apples in images because these characteristics (‘round‘,
‘red‘, ‘green‘) could be shared by classes of the source domain (e.g, ‘round‘ like a tennis ball,
‘red‘ like a strawberry...).

With neural-based representations (i.e. CNNs and word embeddings), the first hypothesis
is somehow addressed, leaving the mapping between both spaces to be tackled. This does seem
achievable since Collell and M.-F. Moens (2016) have shown that it was possible to predict
feature norms from word embeddings – feature norms (McRae et al. 2005) are an attribute
taxonomy where attributes are grouped by type (e.g., tactile or taxonomic). For example,
has_legs is a form and surface attribute, while is_a_bird or is_a_fruit are instances of
taxonomic attributes.

One of the first neural models exploiting this idea of a mapping is Devise (Deep Visual-
Semantic Embedding Model) proposed by (Frome et al. 2013). This model learns to project
images in the textual (word) representation space. Predicting the object in an image or the
images containing an object amounts at finding the nearest neighbor in this space. This mapping
between both spaces has been since then explored in various works (Akata et al. 2016; Bucher,
Herbin, and Jurie 2017), and extended to captions in the image captioning models (Fang et al.
2014; Karpathy, Joulin, and F. F. F. Li 2014; Y. Li, Song, et al. 2016; Shekhar et al. 2017).

Predicting the visual appearance of a word (typical color or shape) is not the only information
that can be squeezed out of word embeddings. For instance, Collell, Van Gool, and M.-F. Moens
(2018) have shown that the relative position of two objects linked by a relation, e.g. “(boy, eating
cheese)”, could be predicted from embeddings. In (E. Zablocki et al. 2019a), we show that textual
embeddings can predict (to some extent) the visual frequency (i.e. how frequently an object
appears in an image) and the contextual frequency (i.e. how frequently an object appears in an
image provided another object is present).

However, due to their very different characteristics, the two spaces are still quite different.
Collell and M.-F. Moens (2018a) have shown that, surprisingly, the neighborhood structure of
the predicted vectors consistently resembles more that of the input vectors than that of the
target vectors (i.e. words projected in the visual space), in the sense that for an entity e, the
nearest neighbors of the projection of its textual representation in the visual space f(te) intersect
more with the nearest neighbors of te than of cnne. This shows that either the mapping between
modalities is far from perfect with current models, or, more probably, that both spaces are too
different to be mapped directly (as discussed in our work on grounded sentence embeddings
presented in section 2.4).
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5.3 Grounding Textual Embeddings

In this section, we now focus on (unsupervised) models that aim at grounding text representation.
The general problematic is to take into account data coming from different sources and modalities
(text, image, video) to learn to represent words, sentences or more generally texts, so that
representation models for NLP can leverage common sense.

In section 5.3.1, we show that taking into account the visual context allows for a better
word representation – in the sense that it increases the performances on tasks depending on this
representation (synonyms, etc.), but this supposes a fine grained annotation (i.e. to know that
an object appears in a picture at least). To really exploit the potentially available data, raw
data must be used in each of the modalities and sources of information.

In section 5.3.2, we focus on sentence grounding, and study how to align images and sentences
without requiring a common space, even with the hypothesis that the geometry of the visual
world is quite different from the one of the textual one.

Finally, in section 5.3.3, we describe a model that tries to leverage temporal information (i.e.
at what date was the text written), based on the idea that word embeddings describe trajectories
in the representation space.

5.3.1 Grounding Words using Visual Context

In this section, we present works that seek to ground word representation using visual informa-
tion. We can distinguish various models depending on the way to use the visual information,
that we can classify into:

• indirect approaches that produce representations by learning to solve a particular task (e.g.
representations as a byproduct of a captioning task);

• fusion approaches that (learn to) combine pre-learned visual and textual representations;

• alignment approaches that learn a multimodal representation from textual and visual data

Indirect approaches Many multi-modal tasks imply learning a multimodal or grounded rep-
resentation of word or sentences, as, for instance, in captioning (Mansimov et al. 2015; Vinyals
et al. 2014; K. Xu et al. 2015) or in Visual Question Answering (Goyal et al. 2016; Hu et al.
2017; Y. Zhu, Groth, et al. 2015; Y. Zhu, C. Zhang, et al. 2015). (Rohrbach et al. 2016) tackle
the visual grounding task with the GroundeR model, which computes compatibility of an image
region with a phrase with multimodal fusion. While these works could be useful in the future,
we do not focus on those since these models are hard to train and not generic enough to be used
as a valid pre-training procedure.

Fusion approaches The simplest approach for grounding words is to combine the representa-
tions from various modalities, which have been learned on mono-modal data, into a multimodal
embedding.

In the simplest case, we suppose that for each entity e there exists a visual representation ve
and a textual representation te, and we wish to compute a grounded representation g

e
. The sim-

plest fusion functions are concatenation: fθ(e) = te ⊕ ve, where ⊕ designates the concatenation
operator (Kiela and Bottou 2014). To reduce the space and capture linear correlations between
both modalities, a Singular Value Decomposition (SVD) can be conducted on the concatenation
(Bruni et al. 2012a).

An alternative is to compute the projection into a common multimodal space. Silberer
and Lapata (2012) use a Canonical Correlation Analysis (CCA) to compute a projection in a
multimodal space that maximizes the correlation between projected representations. Extensions
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Figure 5.5 – Example of fusion. Image taken from (Collell, T. Zhang, and M.-F. Moens
2017).

of CCA include the use of kernelized version of CCA (Bach and M. I. Jordan 2002; Hill, Reichart,
and Korhonen 2014), and the use of non-linear projections in the deep CCA (Andrew et al. 2013;
Klein et al. 2015). As an alternative to projection, Hill, Reichart, and Korhonen (2014) use a
Weighted Gram Matrix Combination where visual and textual similarity matrices are combined
to produce a multimodal representation – thereby combining visual and textual kernels.

All the methods above are symmetric, in the sense that they give the same importance to
textual and visual information. When learning grounded representations, it might be useful to
focus on the textual information, and integrate into it some visual information. The approach
taken by Collell, T. Zhang, and M.-F. Moens (2017) follows this path, combining models that
bridge modalities (see section 5.2) and fusion approaches. In their work, illustrated in Figure
5.5, they first learn a non linear projection fT →V function from the textual representation to
the visual one (bridging), before conducting an SVD on the concatenation, for each entity e, of
the textual representation te and the so-called imagined one fT →V (te). With this model, even
abstract words, which do not have associated visual features, can benefit from grounding since
fT →V can be computed for any entity.

Alignment models: the Strong Grounding Hypothesis Multimodal fusion models pre-
vent potentially beneficial interactions during training between the different modalities. This
relies on the hypothesis that the visual and textual representation of concepts should interact to
produce meaningful results. For instance, knowing that an apple is round can modify the visual
representation space by biasing it towards representing “explicitly” the concept of being round.
This in turn can modify the textual representation of all words referring to “round” objects.
This follows the way humans are supposed to learn grounded meaning in semantics (Barsalou
2008; Glenberg and Kaschak 2002).

This hypothesis, that we name the “Strong Grounding Hypothesis”, has important impli-
cations in terms of efficiency since this implies that optimal representations must be computed
by letting modal representations interact – or said otherwise, visual and textual representations
cannot be merged through a simple process.

An instance of models capturing this interaction are alignment models that directly learn a
joint representation from textual and visual inputs. Some joint models require aligned texts and
images. For example (Roller and Schulte im Walde 2013) use a Bayesian modeling approach
based on the assumption that text and associated images are generated using a shared set of
underlying latent topics and (Kottur et al. 2016) ground word representations into vision by
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Figure 5.6 – Example of alignment. Image taken from (Lazaridou, N. T. Pham, and Baroni
2015).

trying to predict the abstract scene associated to a given sentence.
Extensions of the Skip-Gram algorithm have also been proposed, and they have the advantage

of not relying on aligned text and images. For example, (Hill and Korhonen 2014b) base their
model on the assumption that the frequency of appearance of concrete concepts correlates with
the likelihood of “experiencing” it in the world. Perceptual information for concrete concepts
is then introduced to the model whenever that concept is encountered in the textual modality.
Representations of concrete words are trained to predict surrounding words (as in the classical
Skip-Gram model) and the perceptual features, which are feature-norms (McRae et al. 2005)
that describe objects as a set of features (typical color, usage, etc.).

The work by (Hill and Korhonen 2014b) was later followed by (Lazaridou, N. T. Pham, and
Baroni 2015), whose method is uses natural images instead of the handcrafted feature-norms.
They force the representation of words for which they have images to be close to their visual
(pre-trained) representation — their approach is illustrated in Figure 5.6. More precisely, for
any visual entity e, they build visual a vector ve from the average of activations obtained with
a pre-trained ResNet applied on 100 images (taken from ImageNet) of the entity e. During
training, along with a purely textual Skip-Gram loss, the similarity between the embedding te
of the entity e and its visual appearance ve is maximized in a max-margin framework:

L =
∑
e∈D

∑
v−

max(0, γ − cos(te, ve) + cos(te, v−)) (5.2)

where γ is the margin and v− is the visual appearance of a “negative” object (randomly sampled
over all objects, with uniform distribution). The visual representation ve of each entity e is kept
fixed throughout the optimization of the loss function.

5.3.1.1 Model

The multimodal grounding models presented in the previous section mostly ignore the visual
context of objects. This has to two drawbacks. First, there is an asymmetry in the consideration
of the modalities: text defines a semantic context for each word — i.e. its surrounding words
— while images are used to gather visual information about the object. Second, it ignores that
context in which objects appear is informative and complementary to textual inputs to improve
word representation.

Indeed, this fact is suggested by several works, such as (Bruni et al. 2012a) who propose
a fusion approach where a visual embedding is built by factorizing the matrix counting visual
words in images. This is the first attempt to apply the distributional hypothesis to images:
Semantically similar objects will tend to occur in similar environments in images. Through
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Figure 5.7 – Overview of the model. An object is chosen as the target entity and is
represented with an embedding table. Two options are considered to define its context. (1)
high-level: the list of the other objects in the image is known and the context is represented
using an embedding table. (2) low-level: pixel values of surrounding image patches (or the
full-image without the zone containing the entity) are processed by a ConvNet to compute a
context vector.

their experiments, they come to the conclusion that the appearance of the surrounding objects
is more informative for semantics than the appearance of the object itself. In comparison to the
model we present in this chapter, their work does not propose to jointly learn embeddings from
both visual and textual context.

We posit that contexts in different modalities should be a key component of grounding model,
and propose a model that captures it. The different components of the model are illustrated in
Figure 5.7.

Based on the original Skip-Gram algorithm that considers entities e (words) and their con-
texts Ce = {c1, ..., cn} (n surrounding words within a window centered on the entity), we translate
in what follows the distributional hypothesis for images.

In our case, the contexts Ce are visual contexts. The choice for visual context elements
c ∈ Ce does not need to correspond to a list of semantic entities, as shown by (M. R. Rudolph
et al. 2016) who propose a generalization of the Skip-Gram algorithm with arbitrary contexts.
For instance, visual context elements can be the surrounding objects, low-level features such as
the visual appearance, or also the localization of the surrounding objects with respect to the
considered entity.

With this in mind, we define a function fθ, parameterized by θ (learned), such that for any
entity e and visual context element c ∈ Ce, fθ(c) is a vector of Rd which corresponds to the
representation of the context in the textual semantic space. These representations are then used
in the negative-sampling loss:

Li = −
∑
e∈D

∑
c∈Ce

[
log σ(fθ(c)>te) +

∑
c−

log σ(−fθ(c−)>te)
]

(5.3)

where D is the set of entities, te is the (learned) embedding associated with the entity/word
e, c− is a negative context (as in many other works, it is sampled uniformly from the set of
possible contexts), and σ is the sigmoid function. This loss formulation is very close to the
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original Skip-Gram loss but integrates the learning of fθ, a function that projects the visual
those tackled representation into the textual space.

Given an entity e, we explored different ways of modeling an instance of visual context
elements c ∈ Ce. First, we used a high-level context where we suppose that we know precisely
which entities are present in the context of the object – in that case it is possible to use the
textual embedding the context c, i.e. c = tc. Second, we used a more realistic representation
where we only assume that the bounding box of the different entities is known. In this case,
the representation of a context element c is the CNN representation cnnc. Third, in the most
unfavorable case, only the bounding box of the entity e is known. In this case, the context is
the full image where the entity is wiped out using a black mask. These three models correspond
respectively to VO, VB and VM in the experiments.

We now present our multimodal representation learning model that integrates the previously
presented visual module with the textual Skip-Gram. The main idea is that while word em-
beddings should be shared across modalities, context is media-specific. Indeed, imposing shared
context representations would be over-constraining, because of the bias that affects contexts
distribution across modalities, The contribution of each modality is controlled by a linear com-
bination (hyper-parameter α, determined by cross-validation) of modality-specific costs, which
gives the following global loss function:

L(T ,U, θ) = T(T ,U) + αV(T , θ) (5.4)

where T (resp. U) denotes the textual entity (resp. context) embeddings, T(T ,U) the Word2Vec
loss function and V(T , θ) the visual Skip-Gram. The main outcome of the model are the word
embeddings T .

A crucial point is that this model does not require aligned texts and images to train the
model, or extra pre-trained representations on external datasets – we only require that entities
identified in images be associated with a unique word of the vocabulary. Besides, we justify the
use of a joint model as we think it is important that representations are learned both for entities
and for contexts. Indeed, as the entities embeddings are affected by both modalities, the context
representations should change and be updated by transitivity between modalities through the
shared embeddings.

5.3.1.2 Experiments

In this section, we evaluate the learned word embeddings on different tasks. In particular, we
measure the performance of word embeddings built from visual data and multimodal data. We
evaluate the following models:

1. The text-only Skip-Gram model (noted T).

2. Our Visual Skip-Gram model, denoted VO, VB and VM for the three different context
(known entities, bounding boxes, and masked) – we use V when denoting our model in
general.

3. Our visually contextualized model denotedVO+T, VB+T andVM+T where embeddings
are learned by minimizing the full multimodal loss of Eq. (5.4).

4. A sequential model, noted V ⊕ T, where embeddings of model T are concatenated with
embeddings obtained from V and then projected in a lower-dimensional space with PCA.
This serves as a comparison point between our joint approach and a sequential one.

5. A baseline inspired by the state-of-the-art model of (Lazaridou, N. T. Pham, and Baroni
2015). During training, along with the purely-textual Skip-Gram loss, they maximize a
max-margin loss A (for visual Appearance) the similarity between the embedding te of the
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entity e and its visual appearance ve . We denote this model L+A where A corresponds
to the visual loss and T the text-only Skip-Gram loss.

6. Our full model denoted A+VO +T, that uses textual context and both visual appearance and
context.

Similarly to previous work (Collell, T. Zhang, and M.-F. Moens 2017; Lazaridou, N. T. Pham,
and Baroni 2015), we evaluate our model on three different semantic tasks, namely word simi-
larity and relatedness, feature norm prediction (predicting object attributes, such as “can fly”?
“can be eaten”? etc.), and abstractness/concreteness prediction (i.e. predict that apple is con-
crete while freedom is abstract). Note that the latter, concreteness, can only be evaluated when
using the textual loss. Each task serves as a weak indicator of the quality of the embeddings.
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Sequential VO ⊕T 5 3 -4 -7 -3 1 3 0 -2 2
Appearance A -2 -3 -8 -3 -6 6 9 6 -2 n/a

Joint A + T 3 3 -2 1 -3 0 -1 0 2 1
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Visual VB -28 -1 -21 -31 -25 -7 -8 -16 -30 n/a
VM -28 -4 -14 -33 -27 -5 -9 -19 -33 n/a

Objects VO -10 -6 -9 -17 -14 -8 -11 -11 -24 n/a

Combinations

A + VO 0 0 -2 -5 -6 -9 -5 -1 -7 n/a
VB + T 2 4 5 3 -2 1 0 1 1 1
VM + T 2 3 0 3 1 3 0 1 -1 1
VO + T 4 3 2 3 -1 2 1 1 1 1

A + VO + T 5 3 6 3 -2 -1 1 1 -1 2

Table 5.2 – Grounded words: feature norm prediction and concreteness (results are
given for T, and then relative to the performance of T). Feature norm results are detailed
by category. Scores for the feature-norm prediction task are f1-scores (multiplied by 100).
Concreteness measures (conc.) are coefficients of determination (R2) given in percentage.

We report results in table 5.2 (feature norm and concreteness) and table 5.3 (for word
similarity). We report the main observations below.

Overall Results highlight that all of the trained multimodal models outperform the text-only
baseline on all evaluation tasks (when used with the textual loss T). For instance, VO+T shows
an average improvement of 9% over T. This is in-line with the conclusions of related works, and
shows that contextual grounding has a positive impact on basic properties of word embeddings.
Whether this translates into a better performance for extrinsic tasks such as Question-Answering
was however not investigated in this work (we report positive results on sentences in the next
section).

Contextual information Using low-level visual features is a challenging problem. However,
they are promising since they are cheap to collect, do not require context annotations, and
contain rich information if handled correctly. The difficulty lies in the natural noise in the
surroundings of objects and the need for visual modules that automatically extract high-level
information from raw pixel values.

In our experiments, we observe that the higher level the representation of the context is (VO,
followed by VM and VB), the better the performance – but this difference fades away when
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VisSim SemSim Simlex MEN WordSim
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es Text T 48 60 33 69 63

Sequential VO ⊕T 1 2 0 2 1
Appearance A 5 -15 -17 -47 -46

Joint A + T 4 5 1 2 2

O
ur
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el
s

Visual VB -20 -25 -16 -34 -41
VM -13 -18 -14 -26 -35

Objects VO -5 -6 -2 -5 -36

Combinations

A + VO -3 -3 0 -3 -29
VB + T 5 5 2 3 4
VM + T 5 5 1 4 2
VO + T 5 6 2 6 4

A + VO + T 6 6 2 6 2

Table 5.3 – Word similarity evaluation (results are given for T, and then relative to the
performance of T). Scores are Spearman correlations (multiplied by 100) on the word similarity
benchmarks, and relative to the Skip-Gram baseline T

adding the textual loss T, showing that even using a very crude representation of the context
(an image where the target entity is blacked out), this information can still be leveraged.

Contextual and visual appearance The appearance and the context are complementary
sources of information: this can be seen by observing that A + T and VO + T perform both
worse than L + VO + T. More in detail, we can see that the effect of each loss has a different
impact depending on the tested properties:

• Visual appearance improves the feature norm prediction that describe visually the objects
(e.g. is_red in “Color” category or is_round in the “Shape” category) but not for the
other non visual categories such as “Encyclopedic”, “Taste” and “Sound”.

• Context improves the performance in word similarity benchmarks: for instance, results of
VM is on average 29% higher than those of the appearance baseline A (table 5.3).

Interaction of the visual and textual representations In the experiments conducted
here, we observe that the strong grounding hypothesis (section 5.3.1 on page 63) holds in this
case: using a joint optimization scheme, where textual and visual representations interact, is
better since the performance of VO + T is better than that of VO ⊕T.

Concrete and abstract words Finally, to get a deeper insight into learned embeddings, we
aim at explaining the impact of the visual modality on the multimodal word representation. To
do so, with the model O + T, we estimate the correlation between the shift measured on the
embedding (the norm of the difference of the initial textual embedding and the final multimodal
embedding), and the concreteness degree of a word. We measured a correlation ρSpearman = 0.33,
showing that visual and concrete words see their embeddings being more changed than other
non visual and abstract words. This was to be expected because the visual part only adds
information to visual entities.

5.3.1.3 Conclusion

In this work, we have shown that it was possible to ground words using two complementary
sources of information, namely the visual appearance and the visual context in which an entity

68



Figure 5.8 – Learning visually grounded sentence representations. Illustration taken
from (Kiela, Conneau, et al. 2018)

appears. Through extensive experiments, and in line with related work, we observed the com-
plementarity of visual and textual data to learn word representations. This work shows that
visual information, in the form of visual contexts, can be integrated in a semantic space along
with textual data.

In the paper that describes in details this work (É. Zablocki et al. 2018), we show that it is
possible to use spatial relationship (e.g. measuring whether an object is on top of another one) to
further improve the quality of embeddings (but with less impact that when using context). Ex-
tensions of this work could look at how to leverage other sources of information (e.g. knowledge
bases), and looking at more sophisticated methods to compare the learned representations.

5.3.2 Grounding Sentences

While the literature is abundant about learning grounded word representations, there exist
far less methods learning grounded sentence representations. Note that we exclude from the
discussion indirect methods that learn representations through a task (e.g. captioning), since
their representation is too biased towards the visual modality and perform worse (Chrupala,
Kádár, and Alishahi 2015).

We are aware of two works which learn sentence representations, and both of them leverage
images aligned with sentences in captioning datasets, which are based on works learning sentence
representation (see section 2.4), i.e. works that try to leverage raw text by using losses inspired
by word2vec but at the sentence level. Differently from captioning models, they also include a
textual loss that allows the model not to be too biased by the visual modality. We describe the
few existing works below.

(Chrupala, Kádár, and Alishahi 2015) propose Imaginet, a model where two recurrent neu-
ral network models, coupled through common word embeddings, are trained on a textual task
(language model) and on a visual task (predicting the image, or more precisely its CNN repre-
sentation).

Inspired by Imaginet, the model of (Kiela, Conneau, et al. 2018) additionally exploits the
fact that the same image is associated with several images (in the dataset they use) by making
a sentence predict both the image (Cap2Img, a grounding objective) and another caption of
the same image (Cap2Cap, inspired by SkipThought by Kiros et al. 2015). An illustration of
the model is given in 5.8. The final sentence representations are obtained by concatenating (1)
purely-textual SkipThought representations, and (2) grounded sentence vectors obtained with
the Cap2Cap or Cap2Img (or both).
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The tenniswoman 
starts on her serve

The woman plays tennis

The pitcher is
throwing a ball

Figure 5.9 – Model overview. Red circles indicate visual clusters. Red arrows represent the gradient
of the cluster loss, which gathers visually equivalent sentences — the contrastive term in loss LC is not
represented. The green arrow and angles illustrate the perceptual loss, ensuring that cosine similarities
correlate across modalities. The origin is at the center of each space.

5.3.2.1 Incorporating visual semantics within an intermediate grounded space

The previous models (Chrupala, Kádár, and Alishahi 2015; Kiela, Conneau, et al. 2018) rely on
paired textual and visual data. Moreover, the hypothesis of a one-to-one correspondence between
modalities is implicitly assumed. An image of an object unequivocally represents a sentence.
However, there is no obvious reason implying that the structure of the two spaces should match.
Indeed, (Collell and M.-F. Moens 2018b) empirically show that cross-modal projection of a
source modality does not resemble the target modality in terms of its neighborhood structure.
This is especially the case for sentences, where many different sentences can describe a similar
image and where many images can be described by the same sentence. Therefore, we argue that
learning grounded representations with projections to a visual space is particularly inadequate
in the case of sentences.

To overcome this issue, we proposed an alternative approach where the structure of the visual
space is partially transferred to the textual space. The first contribution is to preserve textual
semantics and to avoid an over-constrained textual space by incorporating the visual information
to textual representations using an intermediate representation space that we call grounded space.
The second contribution is to distinguish two types of complementary information sources. First,
the cluster information: the implicit knowledge that sentences associated with the same image
refer to the same underlying reality. Second, the perceptual information, which is contained
within high-level representations of images. These two sources of information aim at transferring
the structure of the visual space to the textual space, through the grounding space.

Model overview We aim at learning sentence grounded representations by jointly leveraging
the textual and visual contexts of a sentence. We note s a sentence and s = fT (s; θt) its
representation computed with a sentence encoder fT parameterized by θt. We follow the classical
approach developed in the language grounding literature at the word level (Mikolov et al. 2013;
É. Zablocki et al. 2018), which balances a textual objective LT with an additional grounding
objective LG :

L(θ) = LT (θt) + LG(θt, θi) (5.5)

The parameters θt of the sentence encoder fT are shared in LT and LG , and therefore benefit
from both textual and grounding objectives. θv denotes extra grounding parameters, including
the weights of the image encoder fV .

Note that any textual objective LT and sentence encoder fT can be used. In our experiments,
we choose the well-known SkipThought model (Kiros et al. 2015), trained on a corpus of ordered
sentences.
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In what follows, we therefore focus on the modeling of the grounding objective LG , learned
on a captioning corpus, where each image is associated with several captions. Grounding ap-
proaches generally leverage visual information by embedding textual and visual elements within
the same multimodal space (Kiela, Conneau, et al. 2018; Silberer and Lapata 2014). However,
it is not satisfying since texts and images are forced to be in one-to-one correspondence. More-
over, a caption can (1) have a wide variety of paraphrases and related sentences describing the
same scene (e.g., the kitten is devouring a mouse versus a cat eating a mouse), (2) be visu-
ally ambiguous (e.g., a cat is eating can be associated with many different images, depending
on the visual scene/context), or (3) carry non-visual information (e.g., cats often think about
their meals). Usual grounding objectives, that embed sentences in the visual space, can discard
non-visual information (3) through the projection function. They can handle (1) by projecting
related sentences to the same location in the visual space. However, they are over-sensitive to
visual ambiguity (2), because ambiguous sentences should be projected to different locations of
the visual space, which is not possible with current grounding models.

To overcome this lack of flexibility, we propose the following approach, illustrated in Figure
5.9. To cope with (1), sentences associated with the same image should be close — we call this
cluster information. To cope with (2), we want to avoid projecting sentences to a particular
point of the visual space: instead, we require that the similarity between two images in the visual
space (which is linked to the “context discrepancy”) should be close to the similarity between
their associated sentences in the textual space. We call this perceptual information. Finally, as
we want to preserve non-visual information in sentence representations (3), we make use of an
intermediate space, called grounded space, that allows textual representations to benefit from
visual properties without degrading the semantics brought by the textual objective LT .

Grounding space and objectives We now introduce more formally the grounded space
and the different information (cluster and perceptual) captured in the grounding loss LG . We
suppose that we dispose of a set D = {(s, v)} of matching pairs of captions s and images v.

Grounded space The grounded space relaxes the assumption that textual and visual
representations should be in a one-to-one correspondence. It rather assumes that the structure
of the textual space might be partially modeled on the structure of the visual space. The
underlying hypothesis is that the representation of a sentence contain information which has
nothing to do with the visual information, and that moreover the structure of the textual and
visual representation spaces is very different.

In practice, instead of directly applying the grounding objectives on a sentence embedding ts,
we propose to train the grounding objective LG on an intermediate space we name the “grounded
space”. Practically, we use a projection g

s
= g (s; θg) of a sentence s from the textual space to

the grounded space, where g is a multi-layer perceptron applied to the textual representation
ts of the sentence s. The representation ts can be obtained by any sentence embedding model.
In our case, we use a RNN to obtain the representation rnns as the final state of the recurrent
architecture.

Visual equivalence: the cluster loss LC Without considering any visual information,
it is already possible to exploit the fact that two sentences describe, or not, the same underlying
reality. For convenience, two sentences are said to be visually equivalent (resp. visually different)
if they are associated with the same image (resp. different images), i.e. if they describe the same
(resp. different) underlying reality – allowing to exploit dataset where several captions are
associated with an image as in (Kiela, Conneau, et al. 2018). We call cluster a set of visually
equivalent sentences. For instance, in Figure 5.9, the sentences “The tennis-woman starts on her
serve” and “The woman plays tennis” are visually equivalent and belong to the same cluster.
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Our hypothesis is that the similarity between visually equivalent sentences (s, s+) should be
higher than visually different sentences (s, s−). We translate this hypothesis into the constraint
in the grounded space. Following (Carvalho et al. 2018; Karpathy and F.-F. Li 2015), we use a
max-margin ranking loss to ensure the gap between both terms is higher than a fixed margin γ
(cf. red elements in Figure 5.9) resulting in the cluster loss LC :

LC =
∑

(s,s+,s−)

⌊
γ − cos(g

s
, g
s+) + cos(g

s
, g
s−

)
⌋

+ (5.6)

where s+ (resp. s−) is a randomly sampled visually equivalent (resp. different) sentence to
s. This loss function is also used in the cross-modal retrieval literature to enforce structure-
preserving constraints between sentences describing a same image (L. Wang, Y. Li, and Lazebnik
2016).

Leveraging the visual information: the perceptual loss LP The cluster hypothesis
alone ignores the structure of the visual space and only uses the visual modality as a proxy to
assess if two sentences are visually equivalent or different. Moreover, the ranking loss LC simply
drives apart visually different sentences in the representation space, which can be a problem
when two images have a closely related content. For instance, the baseball and tennis images
in Figure 5.9 may be different, but they are both sports images, and thus their corresponding
sentences should be somehow close in the grounded space. Finally, it supposes that we have a
dataset of images associated with several captions.

To cope with these limitations, we consider the structure of the visual space and use the
content of images. The intuition is that the structure of the textual space should be modeled on
the structure of the visual one to extract visual semantics. We choose to preserve similarities
between related elements across spaces (cf. green elements in Figure 5.9). We thus assume that
the similarity between two sentences in the grounded space should be correlated with the similarity
between their corresponding images in the visual space. We translate this hypothesis into the
perceptual loss LP :

LP = −ρ(
{(

cos
(
g
v1
, g
v2

)
, cos

(
cnnv1 , cnnv2

))
| (v1, s1), (v2, s2) ∈ D

}
) (5.7)

where ρ is the Pearson correlation computed for series of cosine between captions. Note that
the choice of cosine is arbitrary, and it might interesting to look at different ways to match texts
or images in their respective representation spaces.

Grounded loss Taking altogether, the grounded space and cluster/perceptual information
leads to the grounding objective LG as a linear combination of the aforementioned objectives:

LG = αCLC + αPLP (5.8)

where αC and αP are hyper-parameters weighting contributions of LC and LP .

5.3.2.2 Evaluation protocol

For the textual corpus, following (Hill, Cho, and Korhonen 2016; Kiros et al. 2015), we use the
Toronto BookCorpus dataset. This corpus consists of 11K books, and 74M ordered sentences,
with an average of 13 words per sentence. For the visual corpus, we use the MS COCO (T.-Y. Lin
et al. 2014). This image captioning dataset consists of 118K/5K/41K (train/val/test) images,
each with five English descriptions.

In the experiments, we focus on one of the most established sentence models at the time of
writing of the papers, namely SkipThought, noted T as the Textual baseline. The parameters
of the sentence embedding model are obtained by minimizing LT . All the grounding models
(baselines and our own models) are then based on T.
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Structural measures Semantic relatedness
Model MNNO ρvis Cinter Cintra STS SICK

All Cap News Forum
T 10.0 4.1 54.2 70.1 30 41 36 21 51

CM (text) 24.2 12.8 41.7 74.8 52 76 42 37 55
Pid 21.1 37.9 42.2 69.3 45 66 41 34 54
Cid 27.5 10.5 2.9 84.7 60 83 45 20 55

Cid + Pid 27.9 25.8 6.7 82.6 61 84 46 28 57
CM (vis.) 27.1 19.2 1.5 85.8 56 78 40 34 55

Pg 21.3 32.4 43.9 73.3 45 66 41 37 53
Cg 28.6 9.4 1.1 88.5 62 83 46 29 59

Cg + Pg 28.9 29.1 4.7 87.5 63 84 48 33 60

Table 5.4 – Intrinsic evaluations carried out on the grounded space for models with g = MLP;
the textual space for T, CM (text) and models with g = id; and the visual space for CM (vis).

We adapt two classical multimodal word embedding models for sentences (two first items)
and use the grounding model from (Kiela, Conneau, et al. 2018):

Cross-modal Projection (CM) Inspired by (Lazaridou, N. T. Pham, and Baroni 2015), this
baseline learns to project sentences in the visual space using a max-margin loss.

Sequential (SEQ) Inspired by (Collell, T. Zhang, and M.-f. Moens 2017), we learn a lin-
ear regression model (W, b) to predict the visual representation of an image, from the
representation of a matching caption. The grounded word embedding is the concatena-
tion of the original SkipThought vector T s and its predicted (“imagined”) representation
Is = WT s + b, which is then projected through a PCA into dimension dt. In both cases,
the parameters to be learned, in addition to the sentence encoder, are the cross-modal
projections – and the sentence representation is obtained by averaging word vectors.

GroundSent Model We re-implement the GroundSent models of (Kiela, Conneau, et al.
2018), obtaining comparable results. The authors propose two objectives to learn a
grounded vector: (a) Cap2Img: the cross-modal projections of sentences are pushed to-
wards their respective images via a max-margin ranking loss, and (b) Cap2Cap: a visually
equivalent sentence is predicted via a LSTM sentence decoder. The Cap2Both objective
is a combination of these two objectives. Once the grounded vectors are learned, they
are concatenated with a textual vector (learned via a SkipThought objective) to form the
GS-Img, GS-Cap and GS-Both vectors.

We tested variants of our grounding model, all based on T: T + Cg, T + Pg, T + Cg + Pg,
where Cg (resp. Pg) represents the cluster loss LC (resp. the perceptual loss LP ). We also
consider scenarios where g equals the identity function (i.e., no grounding space), which we note
Cid, Pid, Cid +Pid, etc. Finally, we also performed preliminary analysis learning only from the
visual modality, i.e. the previous models without adding the textual loss (T), that we present
next.

5.3.2.3 Preliminary analysis: Study of the grounded space

To probe the learned grounded space, we define structural measures, and report their values on
the validation set of MS COCO (5K images, 25K captions):

1. To study perceptual information, we define ρvis, the Pearson correlation

ρ(cos(g
s
, g
s′

), cos(vs, vs′))
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between image representation v and their corresponding sentences’ similarities. For cluster
information, we introduce Cintra = Evs=vs′ [cos(s, s

′)] where vs is the image associated with
caption s, which measures the homogeneity of each cluster, and Cinter = Evs 6=vs′ [cos(s, s

′)],
which measures how well clusters are separated from each other.

2. To study the neighboring structure, we rely on themean Nearest Neighbor Overlap (mNNO)
metric, as defined in (Collell and M.-F. Moens 2018b), that indicates the proportion of
shared nearest neighbors between image representations and their corresponding captions
in their respective spaces – this metric shows how much the local structure is common
between text, visual and multimodal representations.

We now validate our hypotheses on the grounded space, using the Cross-Modal Projection
baseline (CM) and our model scenarios. For fair comparison, metrics for the baseline CM are
estimated either on the visual or the textual space depending on whether our models rely on
the grounded space (g) or not (id). These results correspond to the rows CM (text) and CM
(vis.).

The results highlight that:

1. Using a grounded space is beneficial; indeed, semantic relatedness and mNNO scores are
higher in the lower half of Table 5.4, e.g., Cg > Cid, Pg > Pid and Cg + Pg > Cid + Pid;

2. Solely using cluster information leads to the highest Cintra and lowest Cinter, which suggests
that C• is the most efficient model at separating visually different sentences;

3. Using only perceptual information in P• logically leads to highly correlated textual and
visual spaces (highest ρvis), but the local neighborhood structure is not well preserved
(lowest Cintra);

4. Our model C• + P• is better than CM at capturing cluster information (higher Cintra,
lower Cinter) and perceptual information (higher ρvis). This also translates in a higher
mNNO measure for C• +P•, leading us to think that the conjunction of both perceptual
and cluster information leads to high correlation of modalities, in terms of neighborhood
structure. Moreover, this high mNNO score results in better performances for our model
C• + P• in terms of semantic relatedness.

Influence of concreteness To understand in which cases grounding is useful, we compute
the average visual concreteness of the STS benchmark, which is divided in three categories
(Captions, News, Forum). This is done by using a concreteness dataset built by (Brysbaert,
Warriner, and Kuperman 2014) consisting of human ratings of concreteness (between 0 and 5)
for 40,000 English words; for a given benchmark, we compute the sum of these scores and average
over all words that are in the concreteness dataset. The performance gain ∆ between Cg + Pg

and T are observed when the visual concreteness is high: for Captions (average concreteness
3.10), the improvement is substantial: (∆ = +43); for benchmarks with a lower concreteness
(News with 2.61 and Forum with 2.39), the improvement is smaller (∆ = +12). Thus, grounding
brings useful complementary information, especially for concrete sentences.

t-SNE visualization This finding is also supported by a qualitative experiment show-
ing that grounding groups together similar visual situations. Using sentences from CMPlaces
(Castrejon et al. 2016), which describe visual scenes (e.g., coast, shoe-shop, plaza, etc.) and are
classified in 205 scene categories, we randomly sample 5 visual scenes and plot in Figure 5.10
the corresponding sentences using t-SNE (Maaten and G. Hinton 2008). We notice that our
grounded model is better able to cluster sentences that have a close visual meaning than the
text-only model. This is reinforced by the structural measures computed on the five clusters of
Figure 5.10: Cinter = 19, Cintra = 22 for T, Cinter = 11, Cintra = 27 for Cg + Pg. Indeed, Cinter
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(resp. Cintra), is lower (resp. higher) for the grounded model Cg + Pg compared to T, which
shows that clusters corresponding to different scenes are more clearly separated (resp. sentences
corresponding to a given scene are more packed).

Figure 5.10 – t-SNE visualization on CMPlaces sentences for a set of randomly sampled visual
scenes. Left: textual model T. Right: grounded model Cg + Pg.

Nearest neighbors search Furthermore, we show that concrete knowledge acquired via
our grounded model can also be transferred to abstract sentences. To do so, we manually
build sentences using words with low concreteness (between 2.5 and 3.5) from the USF dataset
(Nelson, McEvoy, and Schreiber 2004). Then, nearest neighbors are retrieved from the set of
sentences of Flickr30K Plummer et al. 2015. In this sample, we see that our grounded model is
more accurate than the purely textual model to capture visual meaning. The observation that
visual information propagates from concrete sentences to abstract ones is analogous to findings
made in previous research on word embeddings (Hill and Korhonen 2014a).

Neighboring structure To illustrate the discrepancy on the mNNO metric observed be-
tween Cg +Pg and T, we select a query image Q in the validation set of MS COCO, along with
its corresponding caption S; we display, in Figure 5.11, the nearest neighbor of Q in the visual
space, noted N , and the nearest neighbors of S in the grounded space. With our grounded
model, the neighborhood S is mostly made of sentences corresponding to Q or N .

Query: A woman sitting on stone steps with a suitcase full of books.

A woman sitting on stairs has a suitcase full of books.
A woman reads a book while sitting on steps
 near a suitcase full of books.
The woman is setting on the steps with a case of books.
A woman sitting inside of an open suitcase.

A woman sitting on the ground next to luggage.
A young woman sits near three suitcases of luggage.

A young woman sitting cross legged on an apartment sofa.

A girl sitting next to three old suitcases.

A woman sitting on a couch in front of a laptop.

A woman standing on a tennis court holding a racquet.

A woman standing on a tennis court holding a racquet.Query image Nearest imageQ N

Q
Q

Q

N The woman is setting on the steps with a case of books.Q

N

Q

Grounded model Textual model

Figure 5.11 – Nearest neighbors of a selected sentence in the validation set of MS COCO, for
both grounded and purely textual models. Q is the query image, N is the nearest neighbor of
Q in the visual space. Sentences that are caption of Q or N are prefixed with Q or N .

5.3.2.4 Experiments

We now focus on extrinsic evaluation of the embeddings. In line with previous works (Hill, Cho,
and Korhonen 2016; Kiros et al. 2015), we consider several benchmarks to evaluate the quality
of our grounded embeddings using SentEval (Conneau and Kiela 2018).

Table 5.5 reports evaluations of our baselines and scenarios on SentEval (Conneau and Kiela
2018), a classical benchmark used for evaluating sentence embeddings. Before further analysis,
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MR CR MPQA SUBJ SST MRPC SNLI SICK AVG
GS-Cap 72.0∗ 76.8∗ 85.5∗ 90.7∗ 76.7∗ 72.9/80.6 73.7 82.9 78.4
GS-Img 74.5∗ 79.3∗ 87.8∗ 90.8∗ 80.0∗ 73.0/80.3 72.2∗ 80.9∗ 79.8
GS-Both 72.5∗ 75.7∗ 85.4∗ 90.7∗ 76.7∗ 72.9/81.3 72.2∗ 81.4∗ 78.4
T 75.9∗ 79.2∗ 86.7∗ 92.0 81.8∗ 72.2/80.2 72.0∗ 81.1∗ 80.1
T + CM 77.6 81.4 88.3 92.6 82.0∗ 73.5/81.1 73.0 81.4∗ 81.1
SEQ 76.1∗ 79.8∗ 86.7∗ 92.5 81.7∗ 70.0∗/79.5∗ 67.3∗ 76.7∗ 78.9
T + Pid 77.5 81.5 88.4 92.7 82.4 73.7/81.3 72.4 81.1 81.2
T + Pg 77.8 81.8 88.1 93.0 83.5 73.3/81.6 72.8 82.2 81.6
T + Cid 77.5 81.6 88.3 92.8 82.2 72.9/80.5 73.1 82.3 81.3
T + Cg 77.3 81.5 88.6 92.8 82.6 73.6/81.1 74.1 82.6 81.6
T + Cid + Pid 77.3 81.2 88.4 93.0 82.5 73.0/80.6 73.5 82.1 81.4
T + Cg + Pg 77.4 81.5 88.1 93.0 82.7 73.2/80.9 73.9 82.9 81.6

Table 5.5 – Extrinsic evaluations with SentEval (Conneau and Kiela 2018). All models represent
sentences in a space of dimension dt = 2048 (except for T, where the dimension is 1024). ‘AVG’ stands
for the average accuracies reported in the other columns. ‘†’: the model has been re-implemented (we
obtained higher scores than the one given in the original papers). ‘‡’: the baseline is an adaptation of
the model to the case of sentences. ’∗’: significantly differs from the best scenario among our models.

we find that our grounded models systematically outperform the textual baseline T, on all
benchmarks, which shows the first substantial improvement brought by grounding and visual
information in a sentence representation model. Indeed, models GS-Cap, GS-Img and GS-Both
from (Kiela, Conneau, et al. 2018), despite improving over T1024, perform worse than the textual
model of the same dimension T — this is consistent with what they report in their paper.

Our interpretation of the results is the following:

1. our joint approach shows superior performances over the sequential one S, confirming
results reported at the word level (section 5.3.1) and more generally of the strong grounding
hypothesis. Indeed, both sequential models, GS models (Kiela, Conneau, et al. 2018) and
SEQ (inspired from (Collell, T. Zhang, and M.-f. Moens 2017)) are systematically worse
than our grounded models for all benchmarks.

2. Preserving the structure of the visual space is more effective than learning cross-modal
projections; indeed, all our models outperform T + CM on average (column AVG).

3. Making use of a grounded space yields slightly improved sentence representations. Indeed,
our models that use the grounded space (g = MLP) can take advantage of more expression
power provided by the trainable g than models which integrate grounded information
directly in the textual space (g = id). More particularly, we observe that these models
improve the scores for semantic tasks (entailment and paraphrase).

4. Among our model scenarios, T + Pg has maximal scores on the most tasks; however, it
has lower scores on SNLI and SICK, which are entailment tasks. Models using cluster
information Cg are naturally more suited for these tasks and hence obtain higher results.
Finally, the combined model T+Cg +Pg shows a good balance between classification and
entailment tasks.

Finally, from an experimental point of view, the importance of the hyper-parameter control-
ling the importance of the textual loss versus the grounding losses was crucial in obtaining a
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good equilibrium of performances for high level tasks like entailment and paraphrase detection
and relatively low level like sentiment, objectivity and similarity.

5.3.2.5 Conclusion

In this section, we have exposed a methodology to learn sentence embeddings aiming at preserv-
ing the structure of visual and textual spaces to learn grounded sentence representations. The
contributions of this model include (1) leveraging both perceptual and cluster information and
(2) using an intermediate grounded space enabling to relax the constraints on the textual space.
Our approach was the first to report consistent positive results against purely textual baselines
on a variety of natural language tasks.

Note that the above described model could be improved by studying more in depth how the
structure of the visual and textual space should be related. In this work, we used the correlation
between intramodal similarities, but more principled and/or empirically validated approaches
could be interesting to investigate.

As with grounded word embeddings, possible extensions of this work should include an anal-
ysis of what this type of model brings for end-user tasks like summarization, question answering,
and more visual tasks, such as visual dialog or question answering.

5.3.3 Grounding words in Time

In this section, departing from the previously presented works, we discuss temporal ground-
ing of words. More specifically, we try to capture the evolution of language over time, using
representation-based models – this was a preliminary work detailed in (Kraljevic et al. 2016).
This can be interesting to model the evolution of a word sense, as illustrated in Figure 5.12.
A second potential use is for transfer learning: If we want to process texts which belong to a
different time period, then using such models can be interesting. This also brings interesting
questions in how to design models able to deal with evolving embeddings.

Time is an important factor that must be taken into account in representation models because
the objects represented are not static and their distributed representation must adapt to this
evolution. Most dynamic representation models consider sequences where the representation of
an object evolves in a discrete way, in the form of a state in a vector space. For example, the
evolution of the state in a phrase (Collobert et al. 2011) or in a video (N. Srivastava, Mansimov,
and Salakhutdinov 2015). These models are not satisfactory because we want to be able to
represent any object/entity at an arbitrary time t.

In the case of the text, representation models using continuous time have been proposed to
deal with the problems of changing themes. Two types of approaches can be distinguished: the
most common is to use a discrete time (Saha and Sindhwani 2012) and to learn the represen-
tations for each time interval under constraint of a regularity between the representation of a
word between two intervals of time.

The biggest problem with this type of approach is that the choice of temporal granularity is
fixed and strongly influences the results. In addition, in the context of learning representations,
it would be necessary to store a vector per object and time interval, which is prohibitive. Another
approach is that of X. Wang and McCallum (2006) who propose a probabilistic model where
latent factors are associated with a theme and a distribution over time. It is this last type of
approach that inspired us.

What is specific to our approach is the usage of a representation space for words. The
evolution of the sense of words is translated by the word representations moving in the semantic
space. As an example, we can imagine that the term deep and neural would begin to get closer,
in the representation space, for a period starting around the beginning of the 21st century.
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Figure 5.12 – Example of the evolution of the term “Intelligence” in two datasets (figure taken
from M. Rudolph and Blei 2017): words with similar embeddings are listed for at four points in
time (y-axis is a one dimensional projection of the embedding vectors onto “meaning”).

5.3.3.1 Time as embedding transformations

In our work, we explored two simple dynamic models; both rely on the fact that the represen-
tation of a word a evolves around a central position x(0)

a , and this evolution is driven by (1) the
degree with which a word belongs to a group; and (2) the importance of the group at a given
time t. More intuitively, we suppose that when a word belongs to a cluster, the cluster modifies
the position of the word in the representation space during a given time period.

More formally, we use the following equation:

x(t)
a = x(0)

a +
∑
c∈C

ρacgc(fc(t), x(0)
a ) (5.9)

where x(0)
a ∈ RN is the central position of the word in the representation space, ρac is the degree

with which the word a belongs to the group c, fc corresponds to the probability that the group
c is active at time t, and gc corresponds to the action of the group c on the representation
x

(0)
a given the influence fc(t) at the time t of the group c on the representation of the objects

belonging to it. We present below two simple instances of this model.
In the first model developed (the attraction model), words are attracted towards a cluster

center xc, and the time influence is modeled with a cluster-specific Gaussian kernel centered on
time tc. Formally, this gives

fc(t) = exp (−τc ‖t− tc‖)
gc(u, x(0)

a ) = u×
(
xc − x(0)

a

)
where the dilation parameter τc, the central time tc and the attractor xc are the learned cluster
parameters, and the central representation x(0)

a is learned of each word a of the vocabulary.

78



In the case of a word a belonging fully to only one cluster c (i.e. ρac = 1), we have

x(t)
a = x(0)

a + exp (−τc |t− tc|)
(
xc − x(0)

a

)
and hence the representation of the word is xc when t = tc and goes back to x(0)

a when t is
sufficiently different from tc.

Our second model (the translation model) assumes that words belonging to a group c are
translated by a cluster-specific vector uc in the semantic space – this vector is learned. Formally,
the transformation on the central word embedding is simply defined by its translation vector:

gc(xa) = uc (5.10)

If we integrate (5.10) into (5.9), that gives us

x(t)
a = x(0)

a +
∑
c∈C

ρac exp (−τc |t− tc|)uc

This model is less adapted to the trajectory of words because it only indirectly increases
the similarity (in the sense of the scalar product) between two different words, contrary to the
attraction model. However, it is a simpler model that can be learned more easily.

We then extend Word2Vec (Mikolov et al. 2013) which proposed a simple criterion to learn
a distributed representation of words: the dot product between two representations of words
must be even stronger when the two words appear together. Formally, the optimized criterion
is the likelihood of the observed data. Using the parametric form of the equation (5.9) instead
of a fixed representation, it is possible to use the same criterion as that proposed in (Mikolov
et al. 2013) and to learn the representation of words as well as groups, i.e. by optimizing

E(w,c+,t)

σ(x(t)
w · y

(t)
c+) +

N∑
k=1
c−

k
∼U

σ(−x(t)
w · y

(t)
c−)


Comparing with equation (2.3), we can see that the only change is that the representation of a
word is varying with the time t, using the formulas given above.

Such models are capable of expressing complex evolutions in a representation space by using
a small number of parameters with respect to a model where at each time step corresponds a
new series of representations.

5.3.3.2 Experiments

To validate the approach, we choose to evaluate the approach as an unsupervised time-dependent
clustering. We used a collection of 12 million micro-blogs (J. Yang and Leskovec 2011), a
subset of the June 2009 Twitter micro-blogs, which we downloaded using the twitter API. These
micro-blogs can be written in any language, and deal with any topic. We first cleaned up the
dataset as follows. We removed micro-blogs with less than 8 words, which reduced the set to
10 million documents. For the remaining ones, we removed numbers, punctuation, hyperlinks,
user links (@user) and tags (#tag). We kept the association between micro-blogs and tags in
order to evaluate the groups automatically found by the different algorithms, assuming that a
tag corresponds to a given group.

The micro-blog groups were computed with k-means (baseline), and using our model to
derive the estimation of a micro-blog belonging to one of the groups. Using the naive Bayes
hypothesis, i.e. in assuming that the occurrence of a word and the time are independent if the
group is known, and assuming that each group has the same probability, we can write:

p(c|d) =
p(c)p(td|c)

∏
a∈d

p(c|a)p(a)/p(c)

p(d) ∝ fc(td)
∏
a∈d

ρac
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where d is a document written at a time td, and where the product is defined on the set of words
that appear in the document d. We then assign the document d to the group cd which has the
highest probability p(c|d).

Preliminary experiments with the model (Y. Wang, Agichtein, and Benzi 2012) showed that
it was difficult to obtain satisfactory results with it – given its numerical complexity. The
corpus on which it was evaluated is much smaller; our first attempts to adapt the algorithm to
a large collection of tweets were unsuccessful. For the k-means, we used a representation of each
micro-blog in the thematic representation space given by Word2Vec, by summing the vectors
representing each word contained in the micro-blog.

The reference groups were formed under the assumption that a group is defined by the micro-
blogs containing a given label. Given the large number of tags in this corpus, we selected small
subsets (about 100 tags), with the following methodology. First of all, the labels present in less
than 500 micro-blogs were removed. Then, we generated the following sets:

Random A randomly chosen set (uniform probability) of labels;

Top The most frequent labels;

H.C. A set of the most frequent hand-picked labels – trying to favor those corresponding to an
event covering a short period of time (a few days);

G.I. 0.80, 0.85 and 0.90 Labels for which the Gini index is above a certain threshold. The
Gini index was calculated based on the frequency of occurrence of a label for each day.
The more uniformly a label appears over the days, the lower its Gini index, and the more
skewed its distribution, the higher its Gini index. We have empirically chosen thresholds
of 0.8, 0.85 and 0.90 which correspond to very “uneven” distributions (a few days).

The first two sets (Random and Top) are more likely to favor the K-means algorithm, because
they correspond to themes that have been treated throughout the period corresponding to the
month of June, contrary to the last ones (HC, GI 0.80, 0.85 and 0.90) which correspond more to
themes extending over a few days, and which a priori should be better detected by our model.

To measure the quality of the groups found, we used the V-measure (Rosenberg and Hirschberg
2007), a measure that compares the found and reference groups by calculating the harmonic av-
erage of two measurements with values in [0, 1] :

1. Homogeneity, which is related to the conditional entropy H(C|K) of a C group given the
K classes, is all the greater the more the group found is “pure”, i.e. it contains only
documents with the same labels;

2. Completeness, which is related to the conditional entropy H(K|C), is all the greater as
the documents associated with the same label are in the same found group.

Like accuracy and recall, increasing homogeneity tends to decrease completeness, and vice versa.
The V-measure is then defined as the harmonic mean of homogeneity and completeness.

In table 5.6, we give the V-measure for the different selected label sets and models. As
expected, our models behave better when the selected labels correspond (explicitly or implicitly)
to events that cover few days. The difference with the k-means algorithm is very important for
these four sets of labels, which means that the groups found, even if they are only a by-product
of the word trajectory model, are able to satisfactorily capture the events as well as the words
that describe them.

At the level of our models, the attraction model obtains results that are better (0.03 to
0.05 points of difference), except in the case of labels chosen randomly or according to their
frequency. This corresponds to our hypothesis – the similarity of words in the thematic space
is better taken into account when the words all converge towards the center of the group; what
was less obvious was that this would influence the quality of the groups found. Note that this
difference is reversed when the sets of labels are no longer those favoring temporal patterns.
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Labels \ Model Attraction Translation K-mean
G.I. > 0.80 0.48 0.45 0.43
G.I. > 0.85 0.52 0.48 0.44
G.I. > 0.90 0.56 0.51 0.47
H.C. 0.47 0.44 0.43
Top 100 0.16 0.18 0.30
Random 100 0.15 0.18 0.29

Table 5.6 – V-measurement for different models and label sets - the best result for each label
set is shown with a green background

5.3.3.3 Conclusion

The results obtained on micro-blogs (Twitter) show that this approach makes it possible to
automatically find temporal cluster of tweets. This type of model can be useful for modeling the
evolution of various objects in a representation space, and therefore has great potential for all
models of representations where objects can change their representation as a function of time.

More generally, we were interested by the problem of defining parametric trajectories in
the semantic space. I believe that there is some unexploited potential in defining potential
equations for the movement of words – and more generally of documents – in semantic spaces,
maybe inspired by works in modeling physical phenomena such as which mix neural networks
and differential equations (Bezenac, Pajot, and Gallinari 2018).

5.4 Conclusion
This chapter presented works dealing with grounding textual representations with modal infor-
mation – mostly visual, but also temporal as in the last section. In the conclusion, we focus on
the latter since it was the main part of our work.

We have first shown that even for representations inferred from purely textual information,
there was still a link between this representation and the visual or common sense properties of
the objects, even if the structure of the space is still very different. This implied that some more
information could be brought to the textual representations by grounding them.

We then discussed three works. The two first respectively dealt with grounding words and
sentences with visual information. The main conclusion that we draw from this line of research
is that

1. The geometries of the visual and textual spaces are very different, and thus aligning them
directly might not be the best way to do so. This motivated the use of a grounding space
to align both spaces without requiring them to have the same structure. Even though this
is only a step in this direction, we believe that it is important to go further in terms of how
to measure the alignment beyond using the Pearson correlation between the similarities in
both textual and visual spaces.

2. The visual context is useful in representing text since it allows to build textual representa-
tions that capture the visual context in which an entity appears. When grounding words,
we did not exploit any grounded space, which might explain why we could not fully exploit
this information.

3. The strong grounding hypothesis did hold for word and sentence embeddings; it is diffi-
cult still to judge whether this is due to the quite naive ways to fuse textual and visual
modalities (in the literature in general), i.e. by concatenating and projecting, or if this
hypothesis really holds.
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In both cases, improvements were obtained in terms of performances on probing tasks such
as word similarity or affordance. However, when applied to higher level tasks (e.g. retrieval,
summarization, etc.), results tend to be not so different from using models and representations
trained on text only – especially with new models such as the Transformer-based ones.

There are two potential causes for this problem. The first is that common sense knowledge,
as captured by grounding models, is not really useful in most cases – because datasets are biased
towards tasks that do not require grounding but rather direct natural language inference. The
second is that current grounding models are too naive, and do not really integrate useful common
sense information besides basic properties such as color, shape or size – which, again, are not so
useful for high level tasks.

Addressing the former issue is quite straightforward, by designing new datasets and tasks
(such as GuessWhat). The latter issue is more serious, and might imply more complex and/or
principled models – and maybe working more on grounded image representation – more precisely,
this would imply biasing the CNN processing the image to be grounded on text, allowing it to
recognize new objects.

Even today, it is difficult to judge whether this is because no useful information can be
gathered from modalities for those tasks, but this information could be useful in tasks relying on
more common sense knowledge. More work is needed in investigating the real difference between
grounded and not-grounded representations if one wants to draw any definitive conclusion.
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Intelligence

• E. Zablocki et al. (May 2019a). “Context-Aware Zero-Shot Learning for Object Recogni-
tion.” en. In: International Conference on Machine Learning, pp. 7292–7303

• E. Zablocki et al. (2019b). “Incorporating Visual Semantics into Sentence Representations
within a Grounded Space.” In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing
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Chapter 6

Other contributions

In this chapter, I list the other contributions in terms of developed software, and around other
Information Access themes I worked on after my PhD thesis, but which did not fit in the works
presented in the previous chapters.

6.1 Software
The main software contributions are listed here

• Experimaestro
https://experimaestro.github.io/experimaestro-python

Experimaestro is a computer science experiment manager whose goals are:

– To decompose experiments into a set of parameterizable tasks
– Schedule tasks and handle dependencies between tasks
– Avoids to re-run the same task two times by computing unique task IDs depending

on the parameters
– Handle experimental parameters through tags

• Datamaestro
https://experimaestro.github.io/datamaestro

This projects aims at grouping utilities to deal with the numerous and heterogeneous
datasets present on the Web. It aims at being

1. A reference for available resources, listing datasets
2. A tool to automatically download (when freely available) and process resources
3. Integration with the Experimaestro experiment manager.

Each dataset is uniquely identified by a qualified name such as com.lecun.mnist, which is
usually the inverted path to the domain name of the website associated with the dataset.
The main repository only deals with very generic processing (downloading, basic pre-
processing and data types). Plugins can then be registered that provide access to domain
specific datasets (I have developed three so far, for text, image and generic machine learning
datasets).

• Kernel Quantum Probabilities (KQP)
https://github.com/bpiwowar/kqp

The Kernel Quantum Probability library (KQP) aims to provide tools to effectively com-
pute “quantum probabilities”, that is to compute a representation of densities, events and
to update the densities when events are observed (conditioning). It also provides access
to generalization of standard probabilistic measure like entropy and divergence.
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Publications

• Experimaestro and datamaestro have been publicized through the following publication:
B. Piwowarski (July 2020). “Experimaestro and Datamaestro:Experiment and Dataset
Managers (for IR).” in: ACM SIGIR 2020. Xian, China. doi: 10.1145/3397271.3401410

• KQP has been described on arXiv, and presented during two ECIR tutorials
B. Piwowarski (2012). The Kernel Quantum Probabilities (KQP) Library. Tech. rep.
1203.6005v2

6.2 Past works
In this section, I give a high level overviews of other research themes I have worked on since
after my PhD.

6.2.1 Information Retrieval Metrics

The structured information retrieval (i.e. where IR models can retrieve subparts of documents,
such as chapters, sections or paragraphs) paradigm implies to change the way systems are
evaluated since they can return elements within a document instead of a full document. In
INEX (Kazai 2009), a new assessment scale has been proposed along with new precision/recall
metrics. We proposed several metrics, the latest being the most expressive (generalization of
precision-recall) and simple to compute.

Outcomes

• B. Piwowarski, P. Gallinari, and G. Dupret (2007). “An Extension of Precision-Recall
with User Modelling (PRUM): Application to XML Retrieval.” In: ACM Transactions On
Information Systems 25.1. doi: 10.1145/1198296.1198297

• B. Piwowarski and G. Dupret (2006). “Evaluation in (XML) Information Retrieval: Ex-
pected Precision-Recall with User Modelling (EPRUM).” in: Proceedings of the 29th an-
nual international ACM SIGIR conference on Research and development in information
retrieval. Ed. by E. N. Efthimiadis et al. Seattle, Washington, USA: ACM, pp. 260–267.
doi: 10.1145/1148170.1148218

6.2.2 User modeling

We worked on a model that is able to distinguish the attractiveness (how likely a user is going
to click on it) of paper and the position effect (how likely is it that the user will even consider
this document, i.e. look at the snippet). This work is described in a SIGIR paper (Dupret and
Piwowarski 2008).

We developed a predictive model for navigational queries (Piwowarski and Zaragoza 2007),
where the aim is to predict the document the user will click on along with the confidence we
have for this prediction; the confidence is important if one wants to automatically redirect (for
example) the user to the page he wanted to browse to when typing their query.

My last project aimed at modeling a whole search session (from the first query string to the
last click, including reformulations) using layered Bayesian networks (Piwowarski, Dupret, and
Jones 2009). The main potential applications of this work are the estimation of user satisfaction
and of the relevance of documents (based on a single interaction between the user and the search
engine).
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Outcomes

• G. Dupret and B. Piwowarski (2008). “A user browsing model to predict search engine
click data from past observations.” In: Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval. Ed. by S.-H.
Myaeng et al. Singapore: ACM

• B. Piwowarski, G. Dupret, and R. Jones (Feb. 2009). “Mining User Web Search Activity
with Layered Bayesian Networks or How to Capture a Click in its Context.” In: Proceedings
of the Second ACM International Conference on Web Search and Data Mining. Ed. by
R. A. Baeza-Yates et al. Barcelona, Spain: ACM, pp. 162–171. doi: 10.1145/1498759.
1498823 – lead to a patent1

• B. Piwowarski and H. Zaragoza (2007). “Predictive User Click Models Based on Click-
through History.” In: Proceedings of the 16th ACM International Conference on Infor-
mation and Knowledge Management. Lisbon, Portugal: ACM, pp. 175–182 – lead to a
patent2

6.2.3 Recommendation

I supervised the second part of the PhD thesis of Y. Moshfeghi which was about emotions and
information retrieval. More specifically, we designed models based on Latent Dirichlet Allocation
– LDA (Blei, A. Ng, and M. Jordan 2003) – to include various emotion-related signals (e.g.
emotion expressed in the plot summary for a movie) to improve the quality of recommendation.

Outcomes

• Y. Moshfeghi, D. Agarwal, et al. (2009). “Movie Recommender: Semantically Enriched
Unified Relevance Model for Rating Prediction in Collaborative Filtering Lecture Notes
in Computer Science.” In: Proceedings of the 31th European Conference on Information
Retrieval Conference. Ed. by M. Boughanem et al. Toulouse, France: Springer, pp. 54–65.
doi: 10.1007/978-3-642-00958-7_8

• Y. Moshfeghi, B. Piwowarski, and J. Jose (2011). “Handling Data Sparsity in Collabora-
tive Filtering using Emotion and Semantic Based Features.” In: Proceedings of the 34th
Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. ACM SIGIR Conference on Research and Development in Information
Retrieval. ZSCC: 0000084. ACM

6.3 Ongoing research – representation learning
Finally, I describe shortly the works I am actually conducting – and which are more linked with
the works presented at length in this manuscript.

6.3.1 Weakly Supervised Information Extraction

A first theme is the development of information extraction models with (almost) no supervision.
The most successful models have been using generative ones – where the generated text is
conditioned by a (latent) relationship (Yao, Haghighi, et al. 2011; Yao, Riedel, and McCallum

1B. Piwowarski and G. Dupret (2009). “System and Method for Deducing User Interaction Patterns Based on
Limited Activities.”

2B. Piwowarski and H. Zaragoza (2009). “System and Method for Creating and Applying Predictive User
Click Models to Predict a Target Page Associated with a Search Query.”
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2012). However, these models are limited in their expressiveness. More importantly, depending
on the set of features, they might focus on features not related to the relation extraction task.

In the supervised setting, neural network models have demonstrated substantial improve-
ment over approaches using hand-crafted features. In particular, piecewise convolutional neural
networks (PCNN, D. Zeng et al. 2015) are now widely used as a basis for other improvements,
such as the instance-level selective attention mechanism of (Y. Lin et al. 2016) which follows the
multi-instance multi-label framework (Hoffmann et al. 2011; Surdeanu et al. 2012) . The recent
NN approaches however need large amount of data to achieve good performances.

We posit that discriminative approaches can help in going further in expressiveness, especially
considering recent results with neural network models. To the best of our knowledge, the
only discriminative approach to unsupervised relation extraction is the variational auto-encoder
approach (VAE) proposed by Marcheggiani and Titov (2016): the encoder extracts the semantic
relation from hand-crafted features of the sentence (related to those of Rel-LDA), while the
decoder tries to predict one of the two entities given the relation and the other entity, using a
general triplet scoring function.

The model of Marcheggiani and Titov (2016) is however very unstable, and our first work has
been to design unsupervised losses that make possible the learning of powerful discriminative
models. In particular, we proposed two losses (named RelDist) to effectively train expressive
relation extraction models by enforcing the distribution over relations to be uniform. We were
able to successfully train a deep neural network classifier that performed well in a supervised
setting. We demonstrated the effectiveness of our RelDist losses on three datasets and showcased
its effect on cluster purity.

Future work will investigate more complex and recent neural network models such as Self-
Attention Networks (Devlin et al. 2018), and work on new losses able to leverage signals even
weaker than those that we were relying on so far.

Outcomes This work is conducted through the supervision of the PhD thesis of E. Simon
(with P. Gallinari and V. Guigue) that started in October 2017 (expected defense in mid 2021):

• E. Simon, V. Guigue, and B. Piwowarski (July 2019). “Unsupervised Information Ex-
traction: Regularizing Discriminative Approaches with Relation Distribution Losses.” In:
Proceedings of ACL 2019. Firenze, Italia

6.3.2 Summarization

Automatic summaries can be abstractive or extractive (Moreno et al. 2017). The extractive
approach works by returning the most important sentences of the original text. Most of the
methods are unsupervised and based on a comparison between the extracted sentences and
all the sentences of the document(s) to summarize. However, they are a lot of limits, as the
consideration of co-references for example (Genest 2013; Verma and D. Lee 2017).

On the author hand, the abstractive approaches generate a summary of the document(s) at
hand. This area of research has until recently been focused on a post-processing step of extractive
approaches – where coreference resolution is handled, and where sentences are simplified to
remove non-essential content (Woodsend and Lapata 2012).

Since then, the generative capabilities of neural networks have been quickly adopted as a
reference method for abstractive summarization (Q. Zhou et al. 2017). The models used are
Seq2Seq models (input sequence, output sequence) based on recurrent neural networks (RNN).
While these models excel at generalizing abstract concepts, it is more difficult for them to deal
with facts. Faced with this difficulty, memory neural networks (Weston, Chopra, and Bordes
2015) can be used. These algorithms are today the state of art for the automatic generation of
abstracts (See, P. J. Liu, and C. D. Manning 2017; Vaswani et al. 2017).
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The question of automatic summary remains open despite the definite progress that has
been made in this area. No model has yet achieved the quality of a human summary, i.e. able
to transcribe the main information of the original text (semantic dimension) expressed with a
correct syntax (syntactic dimension).

Finally, to train models, abstract approaches require the development of very important
datasets (see New York Times for example) in the form of a set of documents and their asso-
ciated summaries. In addition to being laborious to create and therefore not very adaptable to
multilingualism, the latter are too constrained because they present only one abstract for a text
while many other summaries are given while a large number of other summaries are acceptable.
In addition, the evaluation of summaries is very complex, relying on golden summaries and far
from perfect metrics.

As those metrics are also the target of recently-proposed models based on reinforcement learn-
ing techniques, it becomes necessary to develop approaches that do not rely on those imperfect
metrics, and ideally, be able to train with no supervision – in particular for multilingualism or
personalized summarization. Based on the idea of adversarial approaches, the overall goal of
our models is to optimize two contradictory objectives:

1. Maximize the syntactic quality of the summary

2. Maximize the semantic content of the summary with respect to the document to summarize

The work conducted so far has explored the problem of generating a meaningful reward since
current metrics such as ROUGE are only weakly correlated with human metrics and necessitate
human annotated data. In (Scialom, Lamprier, et al. 2019), we proposed to predict the true
performance of a model (as evaluated by a human) given indicators that necessitate or not
human annotated data. The former is shown to improve the quality of the question generation
(we choose this generative task since it is simpler than the summarization one). The latter case
is particularly interesting since it opens the door for developing models that can learn from
unlabelled data (or at least, pre-learned models than can be fine-tuned).

In our second contribution, we started to explore whether Generative Adversarial Networks
(GANs) could be used for summarization. As a first step, we trained discriminators that can
predict whether a generated summary is human-written or not. Instead of using them as a
training signal (as this would be done with GANs), we used it to bias the generative process:
at each step of the beam decoding process, instead of using the joint probability, we used the
score provided by the discriminator, showing that it improved substantially the quality of the
generated summaries.

Following this work, we are currently investigating how GANs can be trained based on these
discriminators – many attempts have not produced the expected outcomes in adapting GANs
from image to text (Rekabdar, Mousas, and Gupta 2019; L. Yu et al. 2016), mostly because of
the very sparse rewards available in the textual setting (because of the discrete nature of text).

Outcomes This work is conducted through the supervision of the PhD thesis (CIFRE, with
Recital) of Thomas Scialom (with J. Staiano from Recital, and S. Lamprier and P. Gallinari
from LIP6), and has led to the following publications:

• T. Scialom, S. Lamprier, et al. (2019). “Answers Unite! Unsupervised Metrics for Re-
inforced Summarization Models.” In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. doi: 10/ggchbh

• (accepted in ICML 2020) T. Scialom, P.-A. Dray, et al. (Feb. 2020). “Discriminative
Adversarial Search for Abstractive Summarization.” In: arXiv:2002.10375 [cs]. ZSCC:
NoCitationData[s0] arXiv: 2002.10375
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Chapter 7

Conclusion

7.1 Contributions
In this manuscript, I have presented works on the problem of learning semantic continuous repre-
sentations of entities – focusing mostly on the problem of representing text. I summarize below
the main contributions and outline the potential research directions related to the presented
works.

7.1.1 Probabilistic Representation spaces

We first tackled the problem of choosing a representation space that allows working with specific
properties such as uncertainty through the use of probabilistic embeddings, and more precisely
using either quantum or Gaussian embeddings.

Quantum embeddings allowed us to define two views of the same information object, and
were particularly well adapted for tasks in which one needs to compute the extent with which
a text covers different topics, e.g. in summarization. This is because it is easy to compute the
representation of a complex mixture of distributions, contrarily to most continuous distributions.
The downside of such an approach its it lack of flexibility, and its numerical complexity.

This motivated the use of Gaussian embeddings for further works. They were particularly
well adapted to graphs where many nodes should have an uncertain representation, because
they either are at the frontier of two node groups (e.g. neighbors have different properties) or
when not enough information is known on them. This allowed us to tackle tasks that have those
properties, namely graph node classification, recommendation and time series prediction (with
inter-related time series).

Potential Research Directions The question of how to represent uncertainty is a key to
improve information access techniques, e.g. by modeling a potentially evolving user information
need or to represent how much information is known about a specific item in a recommender
system. The positive results obtained in specific cases show that this information can benefit
from being directly modeled – as opposed of being implicitly captured, for instance by using
some specific regions or directions of the representation space to represent uncertainty. A po-
tential direction would be to investigate more probability distribution (families) and study their
properties.

However, representing this uncertainty comes at a cost, and more precisely requires an ex-
plicit modeling from data science experts. Even though there is a renewal of probabilistic
approaches in deep neural networks (Schulman et al. 2015), pushed by the integration of rein-
forcement learning and stochastic optimization techniques into more and more models, as for
instance in summarization (Y.-C. Chen and Bansal 2018), the problem of the definition of how
the uncertainty should be represented cannot be solved automatically. In many applications, this
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is satisfying enough, but a potential research direction would be to investigate whether, through
specific losses or interactions between representations, one can integrate some uncertainty in
probability-agnostic models.

7.1.2 Grounding textual embeddings

The second problem that was exposed is the question of integrating information into textual
representation through grounding. We started by analyzing the visual information that can be
extracted from purely textual embeddings through a zero-short recognition task, showing that
only a part of the information could be transferred, but that the structure of both space is too
different to allow recognizing objects on which the image CNN was not trained.

This motivated further the need of grounding textual embeddings. We have shown through
a word embeddings task that using the visual context of a word/entity allowed to improve the
quality of the embeddings on various intrinsic tasks. We have further shown that to align the
visual and textual representation spaces, using a grounding space (i.e. the “visual” component
of a textual embedding) and a specific alignment loss (requiring that similarities in the grounded
space be correlated with the similarities in the visual space) were key to obtaining good quality
grounded embeddings, that preserved or improved the performance of extrinsic tasks where
visual information might not be so important, and improved for those where it is more.

The main conclusion is that grounding can improve the quality of word or sentence em-
beddings, by integrating information from visual (and potentially other) modalities; the strong
grounding hypothesis, whereby representations from various modalities should interact to get a
better grounded representation, seems to be confirmed in our experiments.

Potential Research Directions Since these works were published, a huge gap in performance
was observed with Self-Attention Architectures (section 2.5). It would be necessary to adapt our
grounding methodology to those contextualized representation models. Note that some works
mixing the visual and textual modalities with SAN architectures have already been conducted,
such as VL-BERT (Su et al. 2019) using a pre-training task where masked words can be predicted
either from their textual context or from visual cues.

Another potential research direction would be to leverage the probabilistic embeddings pro-
posed in chapter 4, since this would allow to cater for the fact that a sentence can be visually
ambiguous by using the variance information around the projected point in the visual space.

More fundamentally, the study of the discrepancy between the visual and textual modalities
has only been very imperfectly tackled. The use of a grounding space is probably a key to
a correct matching of both spaces (since each modality should keep its specific properties), if
ones succeeds in designing the right alignment criterion. In the sentence embeddings work, the
correlation between similarities might be too simplistic since it does not possess some necessary
conditions a matching operator should, such as the fact that two images can be described by
two different sentences.

Finally, the pre-training proposed in our work, and more recently in (Su et al. 2019) relying
on SAN architecture, is probably one step towards the goal of leveraging the grounding process
to build more efficient information access tools. The effect of grounding for such high-level tasks
is understudied, mostly due to the fact that, similarly to many techniques designed to enhance
the representation of documents in IR, the impact on performance is contrasted depending on
the precise information access need: the benefits or drawbacks of grounding are not yet mastered.

7.2 Research Perspectives
In this section, after a quick restatement of the evolution of text representations, I argue for
more structured representations, which I deem necessary for tackling complex information access
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tasks such as discussion based retrieval (i.e. retrieving documents through an interaction with
the user).

7.2.1 The evolution of representation

In the introduction, I have exposed how text representations evolved from model-based and/or
hand-crafted features. For a long time, many models have attempted to leverage more sophis-
ticated textual representations. For example taking into account word order is difficult, and
models based on term proximity behave better (Zhao and Yun 2009). Another example is the
use of NLP, such as part-of-speech and disambiguation tools that have never been an important
feature for IR systems – mainly because the added complexity and the errors of the model do
not help the retrieval task.

This began to change with the fast adoption of machine learning techniques and of large
datasets (T.-Y. Liu 2011), that allowed the development of many features loosely correlated
with relevance – or only correlated in some specific cases that can be determined by the machine
learning algorithm.

This search for better representations – which in turn can produce more measures correlated
useful for the task to solve – evolved into learning representations from (un)supervised data.
Within this recent evolution, we have seen techniques to compute meaningful word embeddings,
coupled with neural network architectures like convolution or recurrent neural networks.

In the last few years, neural models have been applied to a multitude of task for access to
information: question-answering (W. Wang et al. 2017), information extraction (Y. Y. Huang
and W. Y. Wang 2017; C. N. d. Santos, B. Xiang, and B. Zhou 2015; Z. Zhang 2004), automatic
summarization (See, P. J. Liu, and C. D. Manning 2017), automated translation (Bradbury and
Socher 2017; Britz et al. 2017; Conneau, Lample, et al. 2017; Delbrouck, Dupont, and Seddati
2017), document retrieval (Mitra and Craswell 2017; Mitra, Diaz, and Craswell 2017; Nalisnick
et al. 2016) or question answering (X. Qiu and X. Huang 2015) .

Lastly, self-attention-based architectures (SANs, aka Transformers, Vaswani et al. 2017) have
swept away almost all other neural-based techniques on any task related to language. These
successes were drawn by the capacity of transformers to handle long-term relationship, and made
possible by the huge progress in computing power. They also brought two major innovations:

1. They do not try to summarize information, but rather to contextualize it – and this is
a key to their success in e.g. Information Retrieval where other neural architectures fell
short of working.

2. They rely on a residual approach, whereby a term representation is modified by its context
– this was already leveraged in residual CNNs for image recognition (R. Srivastava, Greff,
and Schmidhuber 2015) but only partially in NLP and information access with LSTMs
units (Hochreiter and Schmidhuber 1997).

7.2.2 Limits of current approaches

While the success of representation learning, and of SANs more particularly, is undeniable, these
models have some drawbacks.

First, these models are computationally intensive, and only large organizations have the
computational resources necessary to train them from scratch. Even if this is less true with
recent works (see section 2.5), this limits the processing power to small sized documents.

Second, these models have probably more parameters than needed. Indeed, Kovaleva et
al. (2019) show that these model are over-parameterized. More disturbingly, they show self-
attention is in many cases not needed, opening the door for models that might rely on very
sparse long-range attention.
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Third, a particularly strong argument against SANs – and it is true to some extent for other
(neural) models – is that their success is partly due to the fact that they exploit better artifacts
of test collections (McCoy, Pavlick, and Linzen 2019; Niven and Kao 2019). These limits are
underlined in a recent paper from Bender and Koller (2020) where the authors argue that a
“system trained only on form has a priori no way to learn meaning”. Said otherwise, it prevents
NLP-based models to reason over text, past the reproduction of training patterns data. The
authors take the example of manipulating a new concept, e.g. the “coconut catapult”, that
would be hard or impossible if the neural network has not seen such patterns in the training
data.

There is a need to go from systems that are able to react appropriately to a given input
to systems able to reason with text, and this, for a variety of reasons. First, this allows to
go beyond the current state-of-the-art for many complex tasks, such as e.g. summarization,
translation and interactive retrieval. Indeed, to faithfully capture and translate the meaning of
a text, being able to infer knowledge from text and its context (the context including the world
knowledge) is important so that systems are able to adapt to newly expressed concepts and/or
complex semantics. Second, this is a step towards more intelligent systems – and models able
to reason over language would probably be also systems that can react more appropriately in
unforeseen conditions.

7.2.3 Towards structured representations

To tackle such a challenge, one possible direction is to develop models able to work with struc-
tured representations where the different content units of a document are explicitly represented
and linked together. We give here a very quick overview of two related but different existing
approaches to bring structure into language representation, which we name the linguistic and
the psycholinguistic views.

7.2.3.1 The linguistic view – structured logical representations

The works of Chomsky in the 1960s (summarized in Chomsky 1980) have stemmed an interest
for building formal grammars, whereby a sentence can be fully analyzed by applying rules such as
"S → NP VP", i.e. a sentence is composed of a noun and verbal phrase. These rules can in turn
be interpreted as a parse tree which bears some semantics by relating sub-sequences together.
Such approaches led to more powerful theories of meaning such as the Discourse Representation
Theory (DRT, see Kamp and Reyle 1993), summarized in (Bos et al. 2017), where the analysis
can be conducted over a full text (and not a single sentence).

A lot of work has been invested in trying to design models able to construct structured
representations from text, and more specifically logical representations of text. In particular,
the work on combinatorial categorial grammars is a recent example of the development of such
approaches (Stanojević and Steedman 2020; Steedman and Baldridge 2005). Logical approaches
to language representations have however problems dealing with the variability and ambiguity
of language; even approaches based Markov logic still rely on a symbolic representation of
knowledge (Kok and Domingos 2008), which limits their robustness and expressiveness.

7.2.3.2 The psycholinguistic view – structured distributed representations

An alternative view is found in psycholinguistics. The most well known models (Broek et al. 1999;
Kintsch 1998) propose to model the reading as a construction of a valued graph where “pseudo-
predicates” are linked. The graph obtained at the end of the reading process corresponds to a
faithful representation of the analyzed text. These models were only applied to toy data, and
even though they seemed to reproduce laboratory observations, they were not readily applicable
to real world data.

92



These models are however very close to the efforts conducted in neural approaches since
in both cases there is no formal logic associated with the representation, and in both case the
representation is distributed. It has been argued recently by Besold et al. (2017) that distributed
representations are the appropriate representational language, since they provide the necessary
robustness and effectiveness for robust intelligent systems.

In machine learning, this corresponds to works dealing with graphs of distributed represen-
tations. Works on graph-based neural approaches were proposed in (Gori et al. 2009), and then
followed up by worked based on memory-based neural networks (Graves, Wayne, and Danihelka
2014; Weston, Chopra, and Bordes 2015). Note that Self-Attention Networks are in direct line
with these works – here the memory is the text itself, i.e. each text unit bears a part of the
semantics of the text. However, no structure is present explicitly, even if it can be recovered (to
some extent) for syntax trees (Hewitt and C. D. Manning 2019).

The initial works (Graves, Wayne, and Danihelka 2014; Weston, Chopra, and Bordes 2015)
were quickly exploited for complex tasks such as answers to questions (A. Kumar et al. 2015;
Sukhbaatar et al. 2015), then expanded with structures such as piles (Joulin and Mikolov 2015),
hierarchical memories (W. Zhang, Y. Yu, and B. Zhou 2015) and finally graph memories (Y. Li,
Tarlow, et al. 2015; D. D. Johnson 2017). This latest work has shown that it is possible to learn
models capable of making decisions such as adding a node, or a link between nodes.

Although they have a strong expressive power, structured representation-based models are
hard to train, which explains partly the lack of works pursuing this direction: learning to
construct graphs of individual representations is hard, and needs explicit supervision (Y. Li,
Tarlow, et al. 2015; D. D. Johnson 2017), which is very costly.

7.2.4 Structured Representations

We have seen in the previous section that there are two competing approaches to structured
representations of language.

On the one hand, structured logical representations are potentially very powerful, but are
limited by the fact that texts are noisy and hard to process, and also because a logical repre-
sentation is not adapted to all the type of texts (especially for ambiguous or unclear ones). On
the other hand, structured distributed representations are more flexible, allowing to represent a
variety of types of texts, but are hard to train since it is impossible to clearly label the sentences.

Because of their flexibility and their link to psycholinguistics who describe how a human
processes a text, I strongly believe that this second type of approach are the most promising.
This motivates the design of unsupervised means to learn structured distributed representations,
motivated by the development of machine learning models based on invariants and hypotheses
about the data.

This line of thought corresponds to the shift brought by representation-based machine learn-
ing. While machine learning has focused on designing by hand models closer to reality as a
way to leverage human knowledge, neural approaches have focused on capturing the invariants
of the problems (e.g. the translation equivariance in images or texts) and on designing strong
hypothesis on the nature of the task. For instance, in information extraction, supposing that if
two specific entities are present in a sentence, they always share the same relationship (Simon,
Guigue, and Piwowarski 2019) can be a good starting point to learn an information extraction
system. Most of the works (but quantum-based representations) presented in this manuscript
are also based on this idea that better representations can be captured through the definition
of appropriate learning schemes.

A possible direction would thus be to constrain models (for instance, self-attention models) to
have structured attention mechanisms, whereby accessing some information would imply using
this structure. Some works have already took a step in this direction, such as the LongFormer
(Beltagy, M. E. Peters, and Cohan 2020) where the long-range attention is constrained to be on
specific tokens.
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A complementary approach would be in leveraging datasets and tasks where this structured
representation could be necessary, such as document summarization or question answering, or
better, designing unsupervised tasks equivalent to token masking used to train SANs, but in
which structured representations would bring important information.

I also believe that another important aspect of building structured representations systems
is to leverage some knowledge of the world. It is not surprising that some tasks benefit from
the use of resources like WordNet (network of words and concepts) or Wikipedia. In tasks
such as question answering, textual entailment, and information retrieval, they help to reduce
the mismatch between vocabularies produced by different sources (for example, the question by
the user and the response by the user). These resources can be used as a source of information
(Müller and Gurevych 2009), where Wikipedia is used to identify concepts (defined as Wikipedia
entries) that can be used to index documents. Neural models for question-answering (Y. Zhang et
al. 2016) have also proposed to exploit the knowledge bases, but more from a research perspective
than on the real modeling of an interdependence of a text and knowledge. There is also a link
with the work conducted on grounding language, since there is always an interplay between
trying to integrate world knowledge into the embeddings (as done in our works on grounding
sentences and words), and using external databases that can be accessed by models.

7.2.5 Application in Information Access

Finally, developing more structured distributed representations of information is key to handling
more complex tasks. In the following, I give hints on how two complex tasks such as interactive
information retrieval and summarization could benefit from structured representations.

Interactive information retrieval systems – whose aim is to interact with a user who is search-
ing for information – would benefit greatly with such memories since they might be key to allow
counterfactual reasoning (“what if...”?) more appropriately than other kind of representations,
as argued in (Bottou et al. 2013), for instance by manipulating a part of the structure of the
representation and seeing how this changes the answer of the model. Another use of structure
would be to represent the current knowledge state of the user, which is important to support a
user searching for new knowledge (Belkin, Oddy, and Brooks 1982).

In summarization, observing that neural approaches fail to produce salient and logically en-
tailed (by the document) summaries, there is trend towards getting back to the idea of extracting
(salient sentences) and the summarizing. Some works are trying to use sentence entailment to
obtain a better structure in the output (Pasunuru and Bansal 2018). Having access to a struc-
tured representation of the text would allow such a research direction.
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