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Résumé. 2014 Nous étudions la mécanique statistique du problème du voyageur de commerce sur un tamis de
Sierpinski dans lequel les longueurs des liaisons { 03BBi} sont des variables aléatoires et gelées. Le problème de trouver
le plus court chemin fermé qui visite tous les N sites est traitable si tous les | 03BBi 2014 1| sont inferieurs à (2 N + 1)-1.
Pour un choix particulier d’une distribution de probabilité pour les longueurs des liaisons et aux basses tempé-
ratures, le système se comporte comme des spins d’Ising sans interactions dans un champ magnétique aléatoire.
La pertinence d’un de nos résultats aux chaînes polymériques compactes en milieux aléatoires est aussi discutée.

Abstract 2014 We study the statistical mechanics of the travelling salesman on a Sierpinski gasket in which the bond
lengths { 03BBi } are quenched random variables. The problem of finding the shortest closed path which visits all N
sites is tractable if all the| 03BBi 2014 1 | are less than (2 N + 1)-1. For a particular choice of the bond-length probability
distribution and at low temperatures, the system behaves like a set of non-interacting Ising spins in a quenched
random magnetic field. The relevance of one of our results to collapsed polymer chains in random media is also
discussed.
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1. Introduction.

The travelling salesman problem (TSP) is of central
importance in the field of combinatorial optimization
[1] and its applications are manifold. In this problem
the distances di,j between N points are given. The
object of the problem is to find the shortest closed
path that visits all of the points at least once. Almost
all TSP’s belong to the class of nondeterministic

polynomial (NP) complete problems (see [2] for

details). Although it has not yet been proven, the
problems in this class are apparently all « intractable »,
i.e., it seems that the computing time necessary for
their solution grows faster than any power of N.
The TSP in which N points are randomly placed
on the sites of a square lattice and in which the sales-
man can only move along the bonds is an important
example of an NP-complete TSP.

Recently a Monte Carlo method known as « simu-
lated annealing &#x3E;&#x3E; [3, 4] has been advanced as a way
to rapidly find near-optimal solutions to TSP’s.
In this technique the configuration space is the set
of all closed paths which visit all N points. The length

of such a path, Lpath’ is considered to be its energy,
and a « temperatures » T is introduced into the pro-
blem. The « partition function » is then

where {3 --_ T -1. The Metropolis algorithm [5] is used
to slowly cool the system from a high initial tem-

perature down to T = 0. If the annealing is sufficiently
gradual, the length of the path obtained at zero

temperature should be close to the minimum. Slow
cooling helps to prevent the system from getting
stuck in metastable states, so this technique represents
an important improvement on algorithms in which
only changes that reduce the path length are consi-
dered. Numerical studies [3, 4, 6, 7] have shown that
simulated annealing is quite efficient, and it promises
to become of increasing practical importance.
The method of simulated annealing has led naturally

to the study of the statistical mechanics of TSP’s.
One of the primary objectives of these studies is to
obtain new results on TSP’s using the techniques of
statistical mechanics [8]. Kirkpatrick and his colla-
borators [3, 7] and Vannimenus and M6zard [9]
have pointed out that finite temperature TSP’s
resemble spin glasses [10] in many respects. In parti-
cular, it is believed that the configuration space for a
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NP-complete TSP has many near-optimal states

that are separated by very large energy barriers. So
far the correspondence between TSP’s and spin
glasses has been essentially qualitative, although
Barahona et al. [11] have shown that the problem of
finding the ground state of a two dimensional spin
glass is equivalent to solving a relative of the TSP,
a particular Chinese postman problem. If the cor-

respondence between the two classes of problems
could be made more precise, then the large body of
knowledge on spin glasses could lead to new insights
into TSP’s.
As a first step toward this goal, in this paper I shall

introduce an especially simple TSP which is equivalent
at low temperatures to a set of non-interacting Ising
spins in a quenched random magnetic field. This is
the first example of a TSP which can be mapped onto
a spin system with quenched disorder for temperatures
T &#x3E; 0. This problem also represents a new addition
to the short list of TSP’s which are « tractable », i.e.,
the time necessary to find the shortest path grows
like a power of N [12]. Moreover, it is believed that
NP-completeness and low-temperature glassy beha-
viour are in some way related [7,13]. Since our problem
is tractable and has no glassy phase, it provides
corroborating evidence in favour of this belief.
The TSP considered in this paper is on a Sierpinski

gasket [14]. TSP’s on regular fractals have not pre-
viously been considered, although it is now common
to study problems in statistical mechanics on these
lattices. The motivation in statistical mechanics is
twofold : to gain greater insight into the dependence
on dimensionality, and also to model the behaviour
of statistical systems on random fractals such as an
infinite percolating cluster at threshold [15, 16].
Similarly, it is interesting to inquire into the behaviour
of the TSP in dimensions between one (in which it is
trivial) and two (in which it is NP-complete). One can
also foresee applications in which a salesman is
confined to a random fractal. For example, suppose
that each site in a square lattice is occupied by «land »
with probability p and by « water » with probability
1 - p. We require the salesman to visit every site on
his island. For p slightly less than p,, ,, the salesman on
the incipient infinite cluster must visit all sites on a
fractal with the correlation length ( as its upper cutoff
length [16]. Following Gefen et al. [15], we model the
incipient infinite cluster by a Sierpinski gasket.
As a byproduct of this work, we will obtain the

number of closed self-avoiding walks that visit all

points on a Sierpinski gasket. This quantity is of
interest in the theory of collapsed polymer chains in
random media, and we shall compare our exact result
with the predictions of the existing approximate
theories.

2. The model and its ground state.

Consider the TSP on a Sierpinski gasket of order 1
with quenched, randomly distributed bond lengths

Fig. 1. - Sierpinski gaskets of order 1 = 0, 1 and 2 with
all bond lengths equal.

All A2, ... À-3’+ (see Fig. 1). The problem is simplest
when the disorder is weak, so we shall require that
each Ai lie within s of unity. In other words, we assume
that

and otherwise the probability distribution P can be
arbitary [17]. The travelling salesman is to visit every
site in the gasket at least once, and is to return to
his starting point at the end of his journey. In so doing,
he may only traverse bonds which belong to the gasket.
Such a closed path will be called a circuit. The object
of the problem is to find the shortest circuit (or cir-
cuits).
For 6=0, there is no bond randomness and any

self-avoiding circuit (SAC) will be optimal. As we shall
see, the number of SAC’s grows exponentially with the
number of sites. This enormous ground state dege-
neracy is at least partially lifted for s &#x3E; 0. The shortest
circuit must still be self-avoiding for sufficiently
small s, however. To see this, note that the length of
any SAC must be less than (1 + 8)Ni, where

Ni * 3/2-(3l + 1) is the number of sites. The minimum
length of a non-self-avoiding circuit, on the other hand,
is (1 - s) (Ni + 1). Therefore, for s  (2 N, + 1)-1,
the non-self-avoiding circuits are all longer than the
self-avoiding circuits. We shall take s = (2 N, + 1)-1,
so only SAC’s need be considered as candidates for
the optimal circuit For this type of weak disorder, the
fractal dimension [14] of the gasket is In 3/ln 2, just
as it is whens = 0.
We now proceed to classify and enumerate the

SAC’s on the lth Sierpinski gasket [18]. Before doing
so, it will be convenient to introduce some termi-

nology. A self-avoiding path which starts at one corner
of the gasket and ends at another, and which visits all
other sites will be called a tour. A self-avoiding path
which starts at one corner and ends at another, and
which visits all other sites except the third comer will
be called an n-tour. Clearly, any SAC on the lth lattice
can be decomposed into three tours on gaskets of
order I - 1. It is therefore sufficient to consider tours
on the (I - l)th Sierpinski gasket.
For 1 &#x3E; 3, any tour on the (I - l)th Sierpinski

gasket can be subdivided into tours and n-tours on the
three sublattices of order 1 - 2. To see this, consider
a tour that starts at A and ends at B in figure 2. The
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Fig. 2. - Decomposition of the (I - l)th Sierpinski gasket
into three sublattices of order 1- 2.

tour must exist from the triangle AB’C’ through the
point B’, since a path that leaves via C’ and that visits
all sites must ultimately visit A’ or C’ twice. Moreover,
the tour must exit from the triangle B’CA’ through A’.
Once the tour has entered the triangle C’ A’B, it
cannot leave by C’ because this would entail visiting
either C’ or A’ twice. The tour terminates at B once
all the sites within C’A’B have been visited It is

important to note that the point C’ can be visited
either in the course of visiting the sites within the

triangle AB’C’ or while visiting the points inside
C’A’B. We conclude that any tour on the (I -1)the
lattice can be decomposed into two tours and an
n-tour on lattices of order 1 - 2, as shown schema-
tically in figures 3 and 4. In a completely analogous
fashion, we can separate an n-tour on the (I - l)th
lattice into two n-tours and one tour on the sublattices.

Fig. 3. - Schematic representation of a tour (a) and an
n-tour (b) on the lattice of order I - 1. A solid circle at the
third corner indicates that this site is visited during this
portion of the walk; an open circle indicates that it is not.
The arrows indicate the comers where the self-avoiding
walks enter and exit.

Fig. 4. - Figure showing how a tour on the (I - 1)th Sier-
pinski gasket (Fig. 3a) can be decomposed into two tours
and one n-tour on the three sublattices of order 1 - 2.
The two possible decompositions are shown in (a) and (b).
For clarity, the order I sublattices have been separated
slightly.

By repeatedly applying these decompositions of
tours and n-tours, we find that for I &#x3E; 2 an arbitrary
SAC on the lth Sierpinski gasket can be reduced to
tours and n-tours on gaskets of order 1. The I = 1

Sierpinski gaskets containing the corners of the

original gasket of order I must be traversed by tours.
The remaining I = 1 gaskets are grouped into P, =
3/2(3l- 2 - 1)« elementary pairs ». The two I = 1 gaskets
in an elementary pair share a vertex, and each of them
has a fixed entry and a fixed exit point for SAC’s. One
of the two I = 1 gaskets is traversed by a tour which
visits the common point, and the other gasket is
traversed by an n-tour (see Fig. 5). To complete our
classification and enumeration of the SAC’s on the lth

gasket, we note that there are two tours and three
n-tours on the I = 1 gasket with fixed starting and
finishing points. There are therefore 12 possible
configurations for each elementary pair and a total of

SAC’s on the lth Sierpinski gasket.
It is now easy to see how to obtain the SAC of

shortest length. Because the two entry and two exit
points of each elementary pair are fixed, the process
of selecting the path within any given pair is entirely
independent of the bond lengths in the other pairs and
in the three special I = 1 gaskets at the corners.

Therefore, we choose one of the 12 possible confi-
gurations within each pair sheerly on the basis of
which is the shortest. Similarly, we select the shorter
of the two allowed configurations for each I = 1

gasket at a corner. The total number of decisions
(or computational operations) made in determining
the optimal circuit, Dl, is therefore

We conclude that the computing time necessary to
find the shortest circuit grows linearly with the number
of sites to be visited This is true in spite of the fact that
the number of SAC’s grows exponentially with N,.
Thus, this problem is a non-trivial tractable TSP.

Fig. 5. - The two possible decompositions of the portion
of a SAC on a elementary pair into a tour and an n-tour.
For clarity, the I = 1 gaskets in the pair have been separated
slightly at their common point.
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The purely local decision-making process found
here is a special characteristic of the TSP on the
weakly-disordered Sierpinski gasket. For NP-com-
plete TSP’s, the local structure of the optimal circuit
is strongly dependent upon the distances between
all N points to be visited, and the decision-making
process is inherently nonlocal.

Kirkpatrick et al. [3] have observed that in the
method of simulated annealing, the large distance
structure of the optimal circuit is determined first.
As the temperature is lowered, the structure of the
path is found on progressively shorter and shorter
length scales. It is interesting that the reason that the
TSP on the Sierpinski gasket is tractable is that we
can deduce much of the structure of the optimal
circuit at successively smaller lengths. Once this

process of deduction has been carried out, a relatively
small number of computational steps remain to be
done.

Before going on, let us briefly consider the impli-
cations of our result (2) for polymer theory. The
conformations of collapsed polymer chains are often
modelled as compactly packed self-avoiding walks [19].
It sometimes proves more convenient to study closed
circuits rather than walks, and fortunately this is not
expected to change the asymptotic properties [20, 21].
Therefore, an important quantity in this theory is the
number of closed self-avoiding walks that visit all
sites in a finite subsection of a given regular lattice
(such walks are called Hamiltonian circuits in graph
theory). On the other hand, there has been consi-
derable interest recently in the behaviour of polymers
in random media [22, 23]. Tliis has led to the study
of self-avoiding walks on percolation clusters [22]
and hence on Sierpinski gaskets [23]. Our result (2)
gives the number of SAC’s or Hamiltonian circuits
on the Sierpinski gasket of order I, and so is relevant
to the theory of collapsed polymer chains in random
media. We found that the number of conformations

Cl grows like (ON,, where the « connective constant &#x3E;&#x3E;

m = 121/9 ~ 1.3180.
Exact values of the connective constant have been

obtained only for a few special Euclidean lattices [24].
Accordingly, various « mean-field » theories of Hamil-
tonian circuits have been proposed [21, 25, 26].
These theories give estimates ofco that depend only on
the coordination number z. For a lattice with z = 4,
a Flory-Huggins type of theory [25] yields WFH =
3/e ~ 1.1036, Huggins [26] predicts = 1.5, and

Orland et al. [21] give the value mo = 4/e ~ 1.4715.
Although wo is close to numerical values ofm obtained
for the square lattice [27], it is very different from the
exact value of a) for the Sierpinski gasket We conclude
that m must depend in general on other lattice charac-
teristics besides the coordination number.

3. Low-temperature behaviour.

Now that we have seen how to determine the ground
state of our TSP on the lth Sierpinski gasket, we move
on to study its behaviour at low temperatures. It is
instructive to first consider a particularly simple but
rather artificial bond-length distribution P. We shall
then generalize our conclusion. Thus, we assume that
the nine bonds within each I = 1 gasket are equal in
length, and that only two lengths, 1 + s and 1 - s,
are possible. These two lengths are to be equally
probable. Each I = 1 gasket will be assigned an Ising
spin s which is to be + 1 if the bond lengths are 1 + 8 ;
otherwise, s = - 1. We shall also assume that the
bond-length distributions in different I = 1 gaskets
are uncorrelated. With these assumptions, the six

configurations shown schematically in figure 5(a)
all have energy 5(1 + si s) + 4(1 + s2 8), where sl
is the spin on the left I = 1 gasket in the elementary
pair and s2 is the spin on the right gasket. Similarly,
the six configurations in figure 5(b) have energy
4(1 + sl e) + 5(1 + s2 E)’ It will also be useful to

assign an Ising spin a to each elementary pair. We
shall take 6 to be + 1 for the six configurations
described by figure 5(a) and to be - 1 for the six
configurations shown in figure 5(b). The energy of an
elementary pair is then

for 6 = ± 1. Finally, we put 8 = ( 1 - 11) (2 N, + 1) -1,
where 0  11  1. This ensures that the non-self-

avoiding circuits are separated from the SAC’s by a
nonzero gap 11. For temperatures T  d, then, only
SAC’s will contribute appreciably to the partition
function. The average quenched free energy may now
be written
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where the bar denotes an average over the bond-

length distribution. Equation (5) may be recast as

where A, and B, are easily determined constants.
Thus, up to terms that are linear in T, T, is the average
free energy of P, uncoupled Ising spins in a quenched,
random magnetic field, h. The probability distribution
of this field is

Since the P, Ising spins do not interact, the average
over the field configurations is easily performed.
We find

where A,’ and B,’ are constants. All evidence of ran-
domness has vanished, so there cannot be a low-
temperature spin-glass phase in this problem. It is

simple to show that the average energy at T = 0 is

and this is the average length of the shortest path.
The average zero-temperature entropy is

Our conclusion that there is no low-temperature
spin-glass phase can be extended to arbitrary bond-
length distributions P which are subject only to the
constraint (1) with B = (1 - d ) (2 Nl + 1) -1. This can
be done by a trivial generalization of the approach
used in the previous paragraph. In the general case
each elementary pair is described by a 12-state variable
6 with a quenched random energy for each state,
and these variables are non-interacting. Here I shall
take an approach which is more heuristic but less

precise : I shall consider the configuration space
« landscape » directly. With our choice of 8, the

SAC’s on the lth Sierpinski gasket are separated from
the remainder of the circuits by an « energy » gap J.
A natural topology on the set of SAC’s is obtained
by letting the « distance » d,,,, between the SAC’s
r and T’ be the fraction of bonds in i that are not
in i’. (This distance is just one minus the overlap
of Kirkpatrick and Toulouse [7]. ) Clearly, the maxi-
mum distance between two SAC’s is 1. Any SAC i
can be obtained from a given SAC To by a special
sequence of P, + 2 intermediate SAC’s ’t1, T2 I ..., Lpz+2. *
At each step in this sequence the configuration is

changed in one of the elementary pairs or in one of
the I = 1 gaskets at the corners. Any two successive
circuits in this sequence are separated by a distance
of at most 91N, and differ in energy by no more than
18E = 18(1 - J) (2 Nl + 1)-1. Therefore, the SAC’s
are closely spaced for large I and there is a path bet-
ween any two on which the slope of the energy surface
never exceeds 1 - J. Finally, all SAC’s lie within an
energy 1 - J of the ground state. We conclude that
although there are a large number of near-optimal
states when I is large, these are not separated by large
energy barriers. Moreover, any two points on the
energy surface can be joined by a path over which the
rate of change of the energy is bounded. The topo-
graphy of the energy surface, then, suggests that there
cannot be a spin-glass transition.

4. Conclusion

In this paper I introduced a new tractable travelling
salesman problem and studied its statistical mecha-
nics. The tractability of the problem was shown to be
intimately related to the absence of a low-temperature
spin-glass phase and to the lack of high energy barriers
between minima in the configuration space o land-
scape ». For a particular bond-length probability
distribution, the low-temperature free energy reduced
to that of a set of non-interacting Ising spins in a
quenched random magnetic field

Acknowledgments.

I would like to thank P. N. Strenski for helpful dis-
cussions and for critically reading the manuscript,
W. Wolff for introducing me to the subject, and the
referee for pointing out the connections to the theory
of collapsed polymers in random media. This work
was supported by the NSF-MRL program through
the Center for Materials Research at Stanford Uni-

versity.



14

References

[1] PAPADIMITRIOU, C. H., STEIGLITZ, K., Combinatorial
Optimization (Prentice Hall, Englewood Cliffs)
1982.

[2] GAREY, M. R., JOHNSON, D. S., Computers and Intracta-
bility : A Guide to the Theory of NP-Completeness
(W. H. Freeman, San Francisco) 1979.

[3] KIRKPATRICK, S., Lecture Notes in Physics Vol. 149
(Springer, Berlin) 1981, p. 280;

KIRKPATRICK, S., GELATT, C. D., JR., VECCHI, M. P.,
Science 220 (1983) 671;

KIRKPATRICK, S., J. Stat. Phys. 34 (1984) 975.
[4] 010CERNy, V., J. Optimization Theory Appl. 45 (1985) 41.
[5] METROPOLIS, N., ROSENBLUTH, A., ROSENBLUTH, M.,

TELLER, A., TELLER, E., J. Chem. Phys. 21 (1953)
1087.

[6] BONOMI, E., LUTTON, J. L., SIAM Rev. 26 (1984) 551.
[7] KIRKPATRICK, S., TOULOUSE, G., J. Physique 46 (1985)

1277.

[8] Recently Mézard and Parisi have applied the replica
trick to a simpler optimization problem, the

bipartite matching problem (Mézard, M., Parisi,
G., preprint).

[9] VANNIMENUS, J., MÉZARD, M., J. Physique Lett. 45
(1984) L-1145.

[10] For an introduction to spin glasses, see The Heidelberg
Colloquium on Spin Glasses, Lecture Notes in

Physics, Vol. 192 (Springer, Berlin) 1983.
[11] BARAHONA, F., MAYNARD, R., RAMMAL, R., UHRY,

J. P., J. Phys. A 15 (1982) 673.
[12] To date, four other solvable TSP’s are known. These

are discussed in GILMORE, P. C., GOMORY, R. E.,
Operations Res. 12 (1964) 655 ;

LAWLER, E., Math. Programming 1 (1971) 267 ;
SYSLO, M., Math. Programming 3 (1973) 347 and
GARFINKEL, R., Operations Res. 25 (1977) 741.

[13] There cannot be a direct correspondence, because a
spin glass on two coupled planes has no spin glass
phase for T &#x3E; 0, even though the problem of
finding its ground state is NP-complete [BARA-
HONA, F., J. Phys. A 15 (1982) 3241].

[14] MANDELBROT, B. B., The Fractal Geometry of Nature
(W. H. Freeman, San Francisco) 1982.

[15] GEFEN, Y., AHARONY, A., MANDELBROT, B. B., KIRK-
PATRICK, S., Phys. Rev. Lett. 47 (1981) 1771.

[16] For an introduction to percolation theory, see KIRK-
PATRICK, S., in Ill-Condensed Matter, Proceedings
of the Les Houches Summer School, Session 31,
edited by Balian, R., Maynard, R. and Toulouse,
G. (North-Holland, Amsterdam) 1979.

[17] Usually TSP’s with independently distributed sites are
considered, although TSP’s with independently
distributed bond lengths are studied in [7] and [9].
The restriction (1) allows for the possibility of
bond-bond correlations. Since site randomness
is a type of correlated bond disorder, weak site
randomness is consistent with this restriction.

[18] Self-avoiding walks on the Sierpinski gasket have been
studied by other authors [23]. The problem we
are interested in here 2014 self-avoiding walks that
visit all lattice sites 2014 has not previously been
considered.

[19] For example, see DE GENNES, P. G., Scaling Concepts
in Polymer Physics (Cornell, Ithaca) 1979,
chapter 1.

[20] SCHMALZ, T. G., HITE, G. E., KLEIN, D. J., J. Phys.
A 17 (1984) 445.

[21] ORLAND, H., ITZYKSON, C., DE DOMINICIS, C., J.

Physique Lett. 46 (1985) L-353.
[22] See NADAL, J. P., VANNIMENUS, J., J. Physique 46 (1985)

17 and references 1-12 therein.

[23] KLEIN, D. J., SEITZ, W. A., J. Physique Lett. 45 (1984)
L-241;

RAMMAL, R., TOULOUSE, G., VANNIMENUS, J., J. Phy-
sique 45 (1984) 389 and

BEN-AVRAHAM, D., HAVLIN, S., Phys. Rev. A 29 (1984)
2309.

[24] KASTELEYN, P. W., Physica 29 (1963) 1329 ;
MALAKIS, A., Physica 84A (1976) 256 ;
GORDON, M., KAPADIA, P., MALAKIS, A., J. Phys. A 9

(1976) 751.
[25] MEARS, P., Polymers : Structure and Bulk Properties

(London, Van Nostrand) 1965;
VRIJ, A., VAN DEN ESKER, M. W. J., J. Chem. Soc.

Faraday Trans. II 68 (1972) 513.
[26] HUGGINS, M. L., Ann. N. Y. Acad. Sci. 4 (1942) 1.
[27] SCHMALZ et al. [20] obtained 03C9 ~ 1.472 for the square

lattice. B. Derrida (unpublished) found that 03C9 lies
between 1.4725 and 1.4730.


