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DIVA: Deep Unfolded Network from Quantum
Interactive Patches for Image Restoration

Sayantan Dutta, Student Member, IEEE, Adrian Basarab, Senior Member, IEEE, Bertrand Georgeot,
and Denis Kouamé, Senior Member, IEEE

Abstract—This paper presents a deep neural network called DIVA unfolding a baseline adaptive denoising algorithm (De-QuIP),
relying on the theory of quantum many-body physics. Furthermore, it is shown that with very slight modifications, this network can be
enhanced to solve more challenging image restoration tasks such as image deblurring, super-resolution and inpainting. Despite a
compact and interpretable (from a physical perspective) architecture, the proposed deep learning network outperforms several recent
algorithms from the literature, designed specifically for each task. The key ingredients of the proposed method are on one hand, its
ability to handle non-local image structures through the patch-interaction term and the quantum-based Hamiltonian operator, and, on
the other hand, its flexibility to adapt the hyperparameters patch-wisely, due to the training process.

Index Terms—Quantum many-body interaction, Schrödinger equation, Unfolding, Deep learning, Image restoration, Quantum image
processing.

F

1 INTRODUCTION

R ESTORING a high-quality image from a degraded obser-
vation is a classic but still major challenge in imaging

applications, such as medical imaging, remote sensing, low-
level vision, surveillance, to cite few. Such a degradation
process can be formulated as Y = OX + e, where, Y and
X denote the low quality observation and the image of
interest, respectively, O denotes the degradation operator,
and e is associated with an additive noise. The goal is
to recover the underlying high-quality image X from the
observation Y . Depending on the degradation operator O,
different restoration problems occur. For example, if O is
the identity operator, the resulting problem is an image
denoising [1], [2], [3], [4] problem. IfO is a blurring operator
then restoration becomes a deblurring [5], [6], [7], [8], [9],
or a super-resolution (SR) task [10], [11], [12] if O includes
a subsampling operator. In practice, estimating X from
Y by mitigating the effect of the degradation operator O
is a challenging ill-posed inverse problem. Over the past
few decades, image restoration techniques have been exten-
sively studied, yet remain an active field of research.

Traditionally, the restoration process is framed as a
model-based optimization problem from a Bayesian per-
spective, in which the desired solution is obtained by mini-
mizing the sum of a regularization and a data fidelity term.
Over the time, numerous model-based regularizers have
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been introduced in the literature including total variation
[13], sparsity-based transformations [1], sparse models [2],
[14], [15] and spatial filtering [16], [17], in particular non-
local self-similarity (NLSS) filters [18], [19], anisotropic dif-
fusion filters [20], [21], guided filters [22], etc. In particu-
lar, non-local regularization approaches [15], [23], [24], [25]
blending the NLSS and low-rank regularity, such as BM3D
[3], NLM [18], LSSC [19], NCSR [15], etc., have been exten-
sively discussed due to their state-of-the-art restoration per-
formances. Integration of non-local information in the pro-
cess of retrieving a particular region of the image is the key
to the success of the NLSS models. In general, the model-
based approaches are fairly successful in tackling a variety
of image retrieval tasks, including proper interpretation of
their roles. However, these schemes require conducting a
costlier computation process and manual tuning of several
hyperparameters, which are the primary challenges of these
strategies.

Based on deep convolutional neural networks (CNN),
deep learning (DL)-based strategies brought an alternative
to the well-established model-based methods to counter
such imaging problems. DL algorithms [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35] achieved state-of-the-art perfor-
mances in recent years by learning the mapping functions
from observed degraded or low-resolution (LR) images to
the original or high-resolution (HR) images. CSF [36], TNRD
[37], DnCNN [38], Super-ONN [39], DWDN [40], SRCNN
[41], RDN [32], DRLN [42], etc., are some of the well-known
DL networks with proven efficiency in image restoration
over the conventional model-based approaches, exploiting
a training dataset in the learning process. However, training
a CNN is not straightforward. The performance largely
depends on the number of layers, the kernel size and the
learning rate. Deeper network structures may provide better
results but exponentially increase the training complexity
[28]. Thus, network structures are in most cases determined
empirically, which makes them suffer from a lack of inter-
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pretation of their true functionality.
Benefiting from CNN’s powerful representation ability, a

new concept, known as unfolding [43], gathering the advan-
tages of both model and DL-based approaches, is currently
gaining more attention due to its explanatory properties.
The main idea of such frameworks is to construct a DL net-
work starting from a classical algorithm. This approach has
recently been successfully explored in the literature, leading
to superior restoration performance over the classical peer,
such as BM3D-NET [44], LKSVD [45], FBPConvNet [46],
DRED-DUN [47], CORONA [48], USRNet [49], to cite few.

In this work, we advocate novel CNN architectures for
image restoration problems, unfolding our recently intro-
duced quantum mechanics-based adaptive denoising algo-
rithm called De-QuIP [50], [51]. In the last decade, quantum
mechanics-based frameworks have been explored in the
field of image processing and analysis, such as the single-
particle quantum theory, especially for image segmenta-
tion [52], [53], denoising [54], [55], deblurring [56], [57]
or others [58]. Despite the promising performances, these
single-particle-based frameworks cannot benefit from the
structural features of the image like NLSS algorithms. In
contrast, De-QuIP is based on the theory of many-body
quantum systems, where each image patch behaves like a
single particle system and interacts with its neighbors. This
phenomenon of interaction preserves the image similar-
ity/features from a local neighborhood. Indeed, absorption
of this concept of interaction in De-QuIP brings an intrinsic
non-local structure to the algorithm that notably enhances
the denoising performance and has been extensively studied
in [51]. Despite its interesting performances, De-QuIP strug-
gles with costly computational processes (e.g., hyperparam-
eters tuning and eigenvalue decomposition) like many other
model-based schemes, which may limit its practical use.

In this paper, we introduce a novel DL network un-
folding the baseline De-QuIP algorithm, denoted as DIVA
(Deep denoising by quantum InteractiVe pAtches) for image
denoising problem. We further extend the network architec-
ture to conduct a general image restoration task. The inclu-
sion of the quantum interaction theory brings a non-local
structure to the proposed CNN architecture. Indeed, in our
depicted DL models, the fundamental aspects of quantum
theory from the baseline De-QuIP algorithm are essentially
preserved. Furthermore, the DL model efficiently resolves
the hyperparameter tuning problem of the original De-QuIP
scheme, harnessing the power of back-propagation. The
integration of the key attributes of DL and quantum theory
significantly enhances the functionality of our proposed
networks due to their intrinsic versatility and enables our
models to exhibit state-of-the-art performances for several
restoration tasks.

An initial illustration of this work was presented as
a conference report that portrays preliminary results on
Gaussian denoising [59]. Herein, we extend our preliminary
model to a robust generalized formalism by incorporating
additional contents in significant ways: (i) we extend the
initially proposed DL model, primarily designed for de-
noising, to more complex image restoration tasks such as
deblurring, super-resolution and inpainting, with a resilient
generalized network architecture; (ii) we conduct a detailed
investigation regarding the network diagram and add con-

siderable analysis of the incorporated quantum background,
tunable parameter number, and run time; (iii) we report
a comprehensive survey of image restoration performance
against benchmark methods for various imaging problems.

The remainder of the paper is organized as follows.
Sec. 2 reminds briefly the concepts of the baseline De-QuIP
algorithm for self-consistency reasons. Sec. 3 first presents
the proposed DIVA network for denoising and then extends
it to an advanced model for other imaging tasks. The ex-
perimental settings and extensive evaluations are reported
in Sec. 4. Sec. 5 outlines the overall remarks and possible
future perspectives. Finally, Sec. 6 draws the conclusions.

2 BRIEF REVIEW OF QUANTUM-INTERACTIVE-
PATCHES-BASED DENOISING

To facilitate the understanding of the proposed method,
we briefly revisit the baseline De-QuIP algorithm for image
denoising and its main properties.

2.1 The De-QuIP Scheme
Built on an underlying nonlocal architecture, De-QuIP [50],
[51] offers an adaptive way of image denoising based on the
theory of quantum many-body interaction. The theory of
quantum many-body physics subscribes many-body quan-
tum systems, where inevitably particle-to-particle interac-
tions emerge. De-QuIP provides a framework for extending
this concept of interaction to imaging problems. Effectively,
De-QuIP divides an image into small patches, and each im-
age patch acts as a single-particle system while interacting
with its neighbors, i.e., with neighboring patches, inside
the whole image, similarly to a many-body system. Indeed,
these interactions between neighbors reflect their mutual
similarities that enhance the denoising performance of De-
QuIP significantly.

Similar to any denoising method, the goal is to estimate
the underlying clean image X ∈ RM×N from a noisy
observation Y ∈ RM×N . The respective vectorized rep-
resentations of X and Y are denoted by x ∈ RMN and
y ∈ RMN in lexicographical order. Based on the many-body
quantum physics, the primary idea of De-QuIP algorithm
is to construct an adaptive transformation using the wave
solutions of the Schrödinger equation Hψ(z) = Eψ(z),
where the wave function ψ(z) describes a particle with
energy E in a potential V , z being the spatial coordinate.
In a many-body system, denoting by I the interaction, the
Hamiltonian operator is H = −(~2/2m)∇2 + V + I , where
∇ and (~2/2m) are respectively the gradient operator and
a function of the Planck’s constant (this function acts as
a hyperparameter in this formalism). For this patch-based
imaging scheme, the potential V is represented by the
original pixels’ values of the image patch and the patch-
similarity measures act as the interaction I . The set of
eigenvectors of the Hamiltonian operator gives the adaptive
transformations for the respective patch. Thus, for a system
with multiple particles, the Hamiltonian operator Ha for
the a-th patch is defined by:

Ha = −(~2/2m)∇2 + Ja + Ia, (1)

where Ja and Ia are respectively the pixels’ values and
interaction term for the a-th patch. The corresponding set of
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eigenvectors Ba of Ha acts as the quantum adaptive basis
for the a-th patch. The key steps of De-QuIP algorithm are
as follows.

Patch extraction: The patch extraction step primarily un-
coils small patches from the observed image and assimilates
their neighbors into their respective local groups. Let us
denote by Ja a patch of size n2 whose upper-left pixel
position is a, and by Ω the set containing all such patches
extracted from the image y. For all Ja ∈ Ω, one creates a
window of size W ×W centered on Ja and accumulates all
patches inside the window in a set denoted by SJa to create
local groups.

Total interaction: The goal of the interaction step is to
preserve local structures/similarities by exploiting the local
groups through a notion akin to the interactions in quantum
mechanics. This step computes the interactions Lab, for all
Jb ∈ SJa and all Ja ∈ Ω, using power laws of physics
[51], i.e., interaction is linearly proportional to the pixel-wise
difference Kk

ab = |Jka−J
k
b | for k = 1, · · · , n2 and inversely

proportional to the square of the Euclidean distance Dab

between the patches. Summing over b gives the total inter-
action for the a-th patch

Ia = p
∑
b

Lab = p
∑
b

Kab/D
2
ab, ∀Ja ∈ Ω. (2)

In this construction the proportionality constant p acts as a
hyperparameter.

Hamiltonian operator and adaptive basis: This step formu-
lates the energy or Hamiltonian operators of the extracted
patches by incorporating their total interaction with their
neighbors in the local group using (1). The associated set of
eigenvectors Ba of the Hamiltonian operator Ha operates
as the adaptive basis for the current image patch Ja.

Thresholding: The thresholding is processed on the coeffi-
cients resulting from patch projections onto their respective
adaptive basis. Hence, the noise is attenuated by projecting
Ja onto Ba and performing hard/soft-thresholding T in
energy. Finally, reverse projecting the truncated coefficients
reinstates the denoised patch Ĵa,∀Ja ∈ Ω.

Patch accumulation: This step accumulates all the de-
noised patches to their original positions and normalizes
them to reconstruct the estimated denoised image x̂. In the
following, the patch extractor operator is denoted by E,
while the operation of accumulating the patches to form the
denoised image is denoted by E−1.

In the De-QuIP framework, the preserved spatial infor-
mation by the patch interaction phenomenon coherently
passes through the Hamiltonian operator to the quantum
adaptive basis and enables the algorithm to handle denois-
ing tasks regardless of the noise intensity, statistics and
image nature. Its application field is not limited to denoising
tasks [50], [51], and its efficiency has been illustrated in var-
ious imaging problems such as despeckling [60] and super-
resolution [61]. Fig. 1(a) depicts the De-QuIP architecture,
where interaction, proportionality constant, adaptive basis
and thresholded coefficients are denoted by L, P , B and R
respectively.

2.2 Shortcomings of De-QuIP
The major challenge of De-QuIP is its high computational
cost of tuning the hyperparameters p, (~2/2m) and energy
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(a) De-QuIP algorithm (b) Deep unfolding of De-QuIP algorithm

Fig. 1. Architectural comparison between De-QuIP and its DL counter-
part.

threshold. In [51], the influence of these hyperparameters
and strategies to optimize their values were discussed.
Despite some rules that guided the choice of the hyperpa-
rameters, they remain general for the whole image and are
not optimized to be applied patch-wise. Although De-QuIP
demonstrates favorable outcomes despite these drawbacks,
the intrinsic non-local architecture of the algorithm raises
an obvious question of assigning patch-dependent hyperpa-
rameter values, which can further enhance the adaptability
of the model. However, manually tuning all the hyperpa-
rameters separately for each patch is practically impossible.
The power of DL architecture removes this barrier by in-
volving many parameters that can be learned during the
training process.

Another challenge of De-QuIP is the computationally-
expensive task of adaptive basis vector computation from
the Hamiltonian operator. Furthermore, this adaptive basis
is exploited to calculate the projection coefficients, bringing
additional computational burden. A deep learning model
can bypass all these bottlenecks by directly estimating the
projection coefficients with the help of convolutional ker-
nels. The subsequent section focuses on this deep-learning
prospect of the De-QuIP algorithm, the main contribution of
this paper.

3 PROPOSED DEEP ARCHITECTURES FOR IMAGE
RESTORATION

This section presents deep unfolding strategies for image
restoration problems built on the baseline De-QuIP algo-
rithm. Depending on the image degradation operator O,
various imaging problems arise. IfO is an identity operator,
the image restoration problem is equivalent to a denoising
task, whereas, depending on O, it may turn into deblur-
ring, super-resolution or inpainting, addressed herein. In
the following, two deep architectures are introduced: the
first addresses denoising, and the second more complex
image restoration tasks. The first proposed network, re-
ferred to as DIVA, is a direct translation of the baseline
De-QuIP algorithm into a deep learning model to handle
denoising. To handle non-identity degradation operatorsO,
DIVA architecture is slightly modified and denoted by DIVA
advanced (DIVA-A). The subsequent subsections illustrate
these two network architectures.

3.1 Proposed DIVA Architecture

The main idea behind the proposed unfolding strategy
is to replace the matrix multiplication steps in De-QuIP
by convolution layers. The analogy between the original
algorithm and its unfolded version is illustrated in Fig. 1.
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Interaction layer Projection layer Thresholding layer Inverse projection layerNoisy image Extraction layer

:

.

Construct Hamiltonian kernel

:

.

Aggregation layer Restored image

(a) Proposed DIVA network for image denoising.

Interaction

layer

Projection

layer

Thresholding

layer

Inverse projection

layer

Degraded image Extraction

layer

:

.

:

.

Aggregation

layer

Restored imageConstruct

Hamiltonian kernel

Neutralization

layers

(b) Proposed DIVA-A network for image restoration.

Fig. 2. The architectures of the proposed deep learning models. The corresponding operations for a patch Ja are indicated next to each block.

The proposed DIVA network primarily stands upon eight
main pillars.

Extraction layer: Similar to the De-QuIP algorithm, the
extraction layer in DIVA assembles all patches from a local
window of size W × W centered at Ja in a local patch-
group denoted as SJa ,∀Ja ∈ Ω. Let the cardinality of
SJa be κ, ∀Ja ∈ Ω and ζ be the cardinality of Ω. The
patch extraction operation from the local window can be
defined as a matrix multiplication by EJa ∈ Rn

2κ×MN

for each Ja. Therefore, mathematically, GJa = EJay,
where GJa ∈ Rn

2κ is the concatenated vectorized local
patch group for each Ja. Thus, for the whole image, the
patch extractor operator E ∈ Rζn

2κ×MN is constructed by
concatenating EJa ∈ Rn

2κ×MN ∀Ja ∈ Ω. Finally, Ja and
GJa ∀Ja ∈ Ω are concatenated and reshaped to construct
matrices J ∈ Rζ×n

2

and G ∈ Rζ×n
2κ, further considered as

inputs for the next layer.
Interaction layer: This layer computes the interactions be-

tween patches for each local groupGJa following the power
laws discussed in Sec. 2.1. But rather than considering a
fixed hyperparameter value p as in (2), for each local group
GJa a different set of pkab values is assigned for each pixel k
(k = 1, · · · , n2) and patch b (b = 1, · · · , κ; 6= a) respectively.
Therefore, the total interaction can be expressed as

Ika =
κ∑

b=1,b 6=a
pkab
Kk
ab

D2
ab

=
κ∑

b=1,b 6=a
pkabL

k
ab, for each GJa . (3)

In matrix notation, Ia = P abLab, for each GJa , where
Ia ∈ Rn

2

, P ab ∈ Rn
2×n2(κ−1), and Lab ∈ Rn

2(κ−1)

respectively denote the total interaction for patch Ja, pro-
portionality constant in local group GJa , and interaction
between Ja and Jb patches. At this point, the main chal-
lenge is to tune the values of P ab so that Ia can efficiently
preserve the local information and incorporate them into the
Hamiltonian. One may note that this process is equivalent

to a convolution between Lab and a learnable filter C1a of
appropriate size. Hence, the local operation in the layer is,

Ia = C1a ?Lab, ∀GJa , (4)

where ? indicates the convolution product. This convolution
layer is followed by a Rectified Linear Unit (ReLU) to
truncate the insignificant contributions of the interactions.
Finally, by concatenating Ia,∀GJa , one obtains I ∈ Rς×n

2

.
Construct the Hamiltonian kernel: In the baseline archi-

tecture of De-QuIP, for each Ja, the Hamiltonian/energy
operator depends on the hyperparameter (~2/2m) (i.e., the
Planck constant), the total interaction Ia and the original
potential/pixels’ values Ja. This operator gives the adap-
tive basis Ba on which the noisy patch Ja is projected.
The integration of the local interactions, bringing a non-local
dimension to the formalism, is a core feature of De-QuIP.

This physical attribute of the Hamiltonian operator is
preserved in this step by constructing a kernel

C2a = (~2/2m)a∇2 + Ja + Ia, ∀Ja ∈ Ω, (5)

where different learnable values of (~2/2m)a are allotted
instead of a constant one. This kernel C2a mimics the role
of the adaptive basis Ba in the next layer in the shadow of
a convolutional process. Note that throughout the learning
process the kernel retains its original Hamiltonian structure
which is a key ingredient of the original De-QuIP algorithm.

Projection layer: This layer deals with the adaptive trans-
formation of the noisy patch Ja on the associative quantum
adaptive basis Ba for each Ja ∈ Ω, i.e., αa = BaJa,
where αa ∈ Rn

2

are the projection coefficients of Ja. In
our proposed deep architecture, this process is conducted by
performing convolution operations on Ja using a learnable
kernel C2a built in the previous step, as:

αa = C2a ? Ja, ∀Ja ∈ Ω. (6)
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Exploiting the power of a deep network, the convolution
operation (6) removes the algebraically expensive processes,
such as the computation of adaptive basis and projection
coefficients, and uses the training dataset to directly estimate
the projection coefficients. Finally, allαa are concatenated to
form α ∈ Rζ×n

2

, serving as input to the next layer.
Thresholding layer: The thresholding layer handles the

process of trimming the projection coefficients α. A non-
linear ReLU activation function ϕ is used as a thresholding
function, which makes the denoising process more robust
by adding more flexibility than the baseline scheme, where
thresholding was done in energy. Therefore, the shrunk
coefficients Ra = ϕ(αa) are obtained for each Ja ∈ Ω,
further concatenated intoR ∈ Rζ×n

2

, before stepping to the
next layer.

Inverse projection layer: In the original algorithm the de-
noised patch Ĵa is revamped from the reduced coefficients
Ra by inverse projecting onto the quantum adaptive basis
Ba for each Ja ∈ Ω, i.e., Ĵa = B−1

a Ra. This step resembles
a convolution process of Ra with a learnable kernel C3a .
Hence, the mathematical operation of the layer is defined as

Ĵa = C3a ?Ra, ∀Ja ∈ Ω. (7)

Finally, before proceeding to the following layer, all outputs
Ĵa are concatenated to Ĵ ∈ Rζ×n

2

.
Note that in the baseline algorithm, the operator used

in the inversion step was the inverse of the adaptive basis
used in the projection process. This mutual dependence
is highlighted in Fig. 1(a) by an arrow. In the proposed
deep unfolded network, the learnable kernels C2a and
C3a replaced respectively the original and inverse adaptive
basis. The convolutional operations are useful to learn these
kernels independently and are illustrated by removing the
arrow in Fig. 1(b).

Aggregation layer: Akin to the De-QuIP scheme, this layer
conducts the E−1 operation to accumulate all the denoised
patches and put them back to their initial positions in the
image after normalization, and reconstructs the denoised
image x̂. Note that overlapping patches are considered in
the proposed formalism. Fig. 2(a) illustrates the proposed
DIVA network architecture, highlighting all the layers de-
scribed above.

3.2 Proposed DIVA Advanced Network

An advanced version of the DIVA network introduced in the
previous section is proposed hereafter. This network slightly
differs from DIVA, and is adapted to image restoration tasks
involving, in addition to noise, other degradation effects on
the observed image y, such as blur, pixel resolution loss
or missing pixels. In the case of additive Gaussian noise,
the effect of the noise and the additional degradation can
be considered independently. Therefore, DIVA network of
Sec. 3.1 is extended by additional convolutional layers after
the inversion process. In this way, the first part of the net-
work eliminates the noise, and the second part neutralizes
the effects of a nonidentity degradation operator.

The modified network referred to as DIVA-A primarily
plugs a neutralization layer between the inverse projection
and aggregation layers, as highlighted in Fig. 2(b).

Neutralization layer: This layer corresponds to the restora-
tion of the patch J̃a by eliminating the influence of a degra-
dation operator Oa from the patch Ĵa reconstructed in the
inverse projection layer for each Ja ∈ Ω, i.e., J̃a = O−1

a Ĵa,
where Oa denotes a degradation operator acting on a patch
Ja, ∀Ja ∈ Ω. This operation is analogous to a convolutional
process of Ĵa with a learnable kernel C4a , defined as

J̃a = C4a ? Ĵa, ∀Ja ∈ Ω. (8)

The proposed network conducts this operation by adding
three convolutions with multiple learnable filters, and one
ReLU function to remove any unwanted contribution (see
Fig. 2(b)). The power of a CNN architecture is used to learn
these filters that mimic the role of a degradation operator in
this layer.

Before proceeding to the aggregation layer, all J̃a are
concatenated to obtain J̃ ∈ Rζ×n

2

. Similar to the DIVA net-
work, the aggregation layer assembles all recovered patches
and outputs the restored image x̂.

3.3 Loss Function
The proposed networks are trained end-to-end, where the
mean squared error (MSE) between the predicted and origi-
nal residuals is adopted as the loss function [44]:

LΘ =
1

MN
‖R(x̂; Θ)− (y − x)‖22 , (9)

where R(x̂; Θ) denotes the predicted residual by the net-
work with parameter set Θ. This loss function allows our
models to learn the disorders present in a distorted image
without bothering about the features of the true image. Note
that it is possible to use different other loss functions. 1

4 EXPERIMENTAL RESULTS

In this section, we analyze the proposed networks and illus-
trate their performance in various image restoration tasks,
such as image denoising, deblurring, SR, and inpainting.

Sec. 4.1 briefly summarizes the experimental settings
used in the different contexts. Sec. 4.2 gives an overview
of various benchmark methods considered for comparison
purposes. An ablation study with/without considering the
interaction layer and the Hamiltonian kernel within the pro-
posed networks is conducted in Sec. 4.3, with an additional
discussion on the parameter number, run time, and the
depth of the network. Finally, Sec. 4.4 presents a quantitative
and qualitative evaluation of our DL models on various
image restoration problems.

4.1 Experimental Settings
4.1.1 Image Denoising
Training data. The proposed DIVA network was trained
for the Gaussian denoising task following [29], [37], [38],
over a set of 400 gray-scale images of size 180 × 180
extracted from BSD400 dataset. All images were contam-
inated with additive white Gaussian noise (AWGN) with
standard deviation σ, following two configurations: known

1. The Python code of the proposed the trained networks are avail-
able at github.com/SayantanDutta95/

https://github.com/SayantanDutta95/
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and unknown σ. For the case of known σ, the training
was conducted individually over six known noise levels,
for σ = 10, 15, 25, 50, 75 and 100. To tackle an unknown
noise level, DIVA was also trained blindly for a range of
noise levels corresponding to σ ∈ [5, 40]. The corresponding
model is referred as DIVA-blind.

Testing data: The trained networks were tested on five
standard benchmark datasets Set12, BSD68, Kodak, LIVE1
and Urban100, widely-used for denoising problems [29],
[38].

4.1.2 Image Deblurring
Training data. DIVA-A was trained separately for two types
of blur kernels, i.e., motion and Gaussian blur, using the re-
cently released high-quality dataset DIV2K [62] that consists
of 800 images. Eight real motion blur (MB) kernels [47], [63]
and three Gaussian blur (GB) kernels [64] were considered
with AWGN.

Testing data: The models trained for motion blur were
tested on four benchmark datasets Set10, Levin, Sun et al.,
and Set12, used in [30], [47]. The BSD100 and Set16 datasets
were considered for the Gaussian case, following [64].

4.1.3 Single Image Super-Resolution
Training data. Similar to the deblurring model, the high-
quality DIV2K [62] dataset was used as training data for
image SR application. Two degradation models were used
to simulate LR images for network training: (i) bicubic
downsampling (BD), and (ii) Gaussian downsampling (GD).
The scaling factor was set to x2, x3, and x4. For BD case [42],
a LR image was simulated from the HR image by adopting
Matlab imresize function, whereas for GD scenario, the HR
image was blurred by a Gaussian kernel of size 7 × 7 with
standard deviation 1.6 before downsampling, similar to [42].

Testing data: For testing, four widely-used benchmark
datasets for image SR problem [42], [65], [66] Set5, Set14,
BSD100, and Urban100, were used.

4.1.4 Image Inpainting
Training data: The same 400 gray-scale images [38] exploited
by the denoising model were used to conduct the training of
the proposed DIVA-A model for image inpainting. Random
pixel missing model was considered to generate LR images
from HR ones. 20%, 50% and 80% rates of missing pixels
were used.

Testing data: Datasets Set5 and Set12 were used to evalu-
ate the trained inpaining networks.

4.1.5 Quantitative Metrics
For the purpose of quantitative evalution, the peak-signal-
to-noise-ratio (PSNR) and the structural similarity (SSIM)
computed between the true and the restored images were
used.

4.1.6 Training Settings
All HR and simulated LR images were clipped between 0
and 1. The patch size was set to n = 15 with a local window
of size W = 35 for the proposed image denoising model
with known σ. For DIVA-blind and inpainting applications,
these parameters were slightly modified to n = 25 andW =

50. For deblurring and SR, larger patch and window sizes
were used, n = 35 and W = 70, to preserve more spatial
information from the local neighborhood. Finally, all LR-
HR patch pairs were augmented randomly by rotating 90
degree and flipping horizontally or vertically to generate
training data pairs. The proposed models were trained in a
supervised manner by exploiting these patch-pairs.

To conduct the training, the ADAM optimizer with a
mini-batch size of 128 was employed. More precisely, the
models were trained with an exponentially decaying learn-
ing rate ranging from 10−3 to 10−6 over 60 epochs. The
proposed network architectures were implemented under
the Keras framework, and trained using NVIDIA GTX 1080
Ti GPU. The training process took about 6 hours for DIVA
and 12 hours for DIVA-A to reach convergence for each
experiment.

4.2 Comparison Methods

This subsection regroups the state-of-the-art methods used
to conduct a comprehensive comparison to illustrate the po-
tential of the proposed models in various imaging problems.

4.2.1 Image Denoising
The residual learning-based DnCNN [38] model is the
benchmark for AWGN denoising, and its superiority over
model-based (e.g., BM3D [3], NLM [18], etc.), and learning-
based (e.g., TNRD [37], MLP [27], CSF [36] etc.) algorithms is
well-established. In addition to DnCNN [38], our denoising
model DIVA was also compared to two recently introduced
DL-based networks, FFDNet [29] and IRCNN [31]. Further-
more, comparisons were carried out with a newly proposed
deep unfolded scheme, BM3D-NET [44], as well as with the
baseline De-QuIP [51] algorithm.

4.2.2 Image Deblurring and SR
For image deblurring and SR problems, newly published
leading methods from the literature were considered to
illustrate the accuracy of DIVA-A architecture. In the follow-
ing, the relevant methods used for comparison purposes in
different settings are listed. (i) MB model: IDD-BM3D [5],
FDN [67], VEMNet [30], DWDN [40], DRED-DUN [47]; (ii)
GB model: IDD-BM3D [5], Son et al. [68], DEBCNN [64]; (iii)
BD model: LapSRN [69], MemNet [66], CARN [65], DRLN
[42]; (iv) GD model: IRCNN [31], DFAN [70], RDN [32],
DRLN [42].

In image SR problems, the DRLN [42] is the new bench-
mark in the literature. It is already shown in the seminal
paper that the DRLN [42] exhibits reference state-of-the-
art performance for image SR. Thus, the DRLN [42] was
considered in the comparisons, thus avoiding to include
all the other approaches. Similarly, for image deblurring,
DWDN [40], DRED-DUN [47], and DEBCNN [64] were the
best performing models in their fields. Hence, these models
are selected for comparisons over other methods in the
literature.

4.2.3 Image Inpainting
DIVA-A trained for image inpainting was compared against
the DL prior based model IRCNN [31].
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Fig. 3. Loss function (MSE) with respect to epochs. Two specific models
are trained for image denoising with σ = 15, with and without integrating
the interaction layer in the proposed DIVA architecture for the ablation
study.

The pretrained models and the testing codes, made pub-
licly available by the authors, were used for comparisons.
Importantly, note that the proposed networks have been
trained and tested exactly in the same conditions and on the
same datasets as the comparison methods, thus ensuring a
fair comparison.

4.3 Ablation Study and Model Analysis
This section regroups several ablation studies aiming at
showing the importance of the layers inspired from quan-
tum mechanics, and an in-depth analysis of the properties
of the proposed networks.

4.3.1 Influence of the Interaction Layer
To show the effect of the interaction layer’s integration in
the Hamiltonian kernel, two versions of the DIVA network
were trained for image denoising with σ = 15: the complete
network as shown in Fig. 2(a), and the same network
without the interaction layer. Fig. 3 plots the corresponding
loss functions for these two network settings with respect to
the number of epochs. One can see that using the interaction
layer results into a faster and more stable convergence of the
training process. Meanwhile, in the absence of this layer, a
strong periodic fluctuation can be observed. This is caused
by the absence of a non-local architecture in the network,
which helps stabilizing the convergence process.

The same ablation study was conducted for different
depths of the projection layer, using the Hamiltonian convo-
lutional kernel constructed with and without the interaction
layer. From Table 1, one can see a clear improvement in
denoising performance in the presence of the interaction
layer. In addition, the interaction layer significantly reduces
the depth of the network by extracting the local similari-
ties/structures from the neighboring patches. Indeed, more
local information can be transferred through this non-local
architecture, which helps network structures with lower
depth to be more efficient. On the contrary, the network
without the interaction layer improves while increasing the
depth. This is expected since a deeper network consists
of a larger set of tunable parameters. Although a bigger
set of parameters leads to a better outcome, the learning
process becomes more computationally expensive. Thus, the
integration of the interaction layer enhances the network
performance with a reduced computational cost, giving an
edge to the proposed models.

Note that, in absence of the interaction layer in the pro-
posed model, the network does not consider the influence of

neighboring patches on the target patch and loses its non-
local nature. Thus, each patch behaves as a single particle
quantum system, and all patches are independent. Hence,
in this circumstance, the network without an interaction
layer becomes an unfolded DL scheme of the baseline QAB
algorithm [55], originally proposed for image denoising
based on single-particle quantum theory. Recently, in [51], it
has been shown that the baseline De-QuIP outperforms the
conventional QAB algorithm significantly. This observation
by the traditional algorithm [51] is also consistent in our
unfolded DL models, as reported in Fig. 3 and Table 1.
Therefore, the consideration of the quantum interaction
concept clearly enhances the model performance of both
conventional and DL architectures.

4.3.2 Depth of the Projection Layer
Table 1 reports denoising performance on Set12 for σ = 15
for different depths of the projection layer within the Hamil-
tonian kernel. As expected, the denoising performance in-
creases with the depth of the network, but this increment
is less significant beyond depth 3. Assessing the trade-
off between the network efficiency and the computational
complexity, a depth of 2 was considered in the proposed DL
models.

4.3.3 Ablation Study on the Hamiltonian Kernel
In the proposed models, the objective is to construct a
Hamiltonian kernel to conduct the projection operation,
while preserving the original attributes of the proposed
Hamiltonian operator in the baseline De-QuIP algorithm
[51]. This Hamiltonian kernel is a sum of the nabla operator,
original pixels’ values of the patch and the interactions
with its neighbors, following equation (5). To illustrate the
importance of this Hamiltonian structure in the proposed
networks, an ablation investigation of this Hamiltonian
kernel was conducted, through three network settings: (i)
without the Hamiltonian kernel and interaction layer, (ii)
with the Hamiltonian kernel but without the interaction
layer, and (iii) with the Hamiltonian kernel including the
interaction layer. For all settings, the depth of the projection
layer was set to 2. Table 2 regroups the denoising results
on Set12 for AWGN with σ = 15 for all these three
configurations. From these results, one may observe that
the accuracy of the network is significantly improved in
the case where the Hamiltonian shape is preserved and
includes the interactions between neighboring patches. This
improvement is even further illustrated by the SSIM, that
is more sensitive to the image structure than the PSNR,
and thus more suitable to reflect the contribution of the
interaction-based Hamiltonian operator. Furthermore, one
may notice that without none of these two ingredients,
the denoising performance is largely decreased. This can
be explained by the fact that in this case, the resulting
netwrok, very similar to DnCNN [38], needs far more layers
to achieve good denoising results. Indeed, a network depth
of 17 is suggested in [38], while, as mentionned previously,
the proposed network depth can be reduced to 2. Therefore,
the exploitation of the local information through the patch
interaction, originally proposed in the baseline De-QuIP,
and the attributes of the Hamiltonian kernel, make the
proposed DL networks easily adaptable but resilient even
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TABLE 1
Ablation investigation of the projection layer’s depth using Hamiltonian kernel with or without the interaction layer. The results (PSNR/SSIM) are

obtained on Set12 contaminated with AWGN with σ = 15, in 50 epochs.

Depth of the projection layer using Hamiltonian convolutional kernel
1 2 3 4 5 1 2 3 4 5

Interaction layer 7 7 7 7 7 3 3 3 3 3
PSNR(dB)/SSIM(%) 30.38/87.64 31.61/89.22 31.95/90.74 32.17/91.61 32.28/91.88 32.09/93.68 32.92/95.41 32.95/95.52 32.96/95.55 32.98/95.60

DIVA DIVA

BM3D-Net
BM3D-Net

DudeNet DudeNet

IRCNN IRCNN

DnCNN

FFDNet

DnCNN

FFDNet

(a) Left: Denoising performance vs parame-
ter number comparisons are presented on the
BSD68 dataset with σ = 50. Right: Denoising
performance vs run time comparisons are pre-
sented on the Set12 dataset with σ = 50.

DIVA-A

DRED-DUNDWDN

VEMNet

DEBCNN

FDN

Son et al.

DIVA-A

DRED-DUN DWDN

VEMNet

DEBCNN

FDN

Son et al.

(b) Left: Deblurring performance vs parame-
ter number comparisons are presented on the
Levin dataset with motion blur and σ = 7.65.
Right: Deblurring performance vs run time
comparisons presented on the Levin dataset
with motion blur and σ = 7.65.

DIVA-A
DIVA-A

DRLN

DRLN

RDN

RDN

DFAN

DFAN

CARN

CARN

LapSRN
LapSRN

MemNet

MemNet

IRCNN IRCNN

(c) Left: SR performance vs parameter num-
ber comparisons are presented on the BSD100
dataset for 4X SR. Right: SR performance vs
run time comparisons are presented on the
Urban100 dataset for 4X SR.

Fig. 4. Performance versus parameter number and run time versus performance are presented for different methods for different tasks. The proposed
methods give high performances in terms of SSIM(%) with fewer number of parameters and low computation time.

TABLE 2
Ablation study with/without using the Hamiltonian kernel in the network.
The results (PSNR/SSIM) are obtained in 50 epochs on Set12 images

contaminated with AWGN (σ = 15).

Contribution of different components
Hamiltonian kernel 7 3 3
Interaction layer 7 7 3
PSNR(dB)/SSIM(%) 29.30/86.82 31.61/89.22 32.92/95.41

for lower depth. In conclusion, this experiment illustrates
the significance of the inclusion of the Hamiltonian kernel
with the interaction layer in the proposed models.

4.3.4 Analysis of the Parameter Number and Runtime
The number of hyperparamers of a DL network plays a
crucial role in its efficiency. Generally, a larger pool of
parameters drives the model more resilient and leads to
better performance. However, it also imposes an impor-
tant computational load, in particular within the training
process. Furthermore, excess baggage of parameters may
lead to an over-fitting problem. Hence, a balanced trade-off
between the learnable parameter number, the performance,
and the computational cost becomes a crucial factor for an
efficient DL model.

As detailed in the previous ablation studies, the pro-
posed models exploit the Hamiltonian kernel, which is
enriched by an intrinsic non-local architecture through the
interaction layer. As a result, the resulting DL networks are
able to process more information through fewer parameters
and significantly reduce the cost of training with high effi-
ciency. Fig. 4 provides the performance in terms of SSIM(%)
versus the number of parameters and the runtime of the
proposed models against state-of-the-art methods, in the
context of different image restoration problems. One can
observe a significant gain in performance of DIVA model
for image denoising (see Fig. 4(a)). DIVA increases SSIM
by 10%, with almost half the number of parameters of

its closest competitors FFDNet [29] and DnCNN [38]. For
image deblurring problem (see Fig. 4(b)), DIVA-A requires
only half of the parameters compared to its nearest rival
DRED-DUN [47], but offers a 1% better SSIM value. Sim-
ilarly, from Fig. 4(c), one can report a gain of 1-2% in
SSIM for image SR by DIVA-A compared to the recently
introduced DRLN network, whereas our model has 40 times
less parameters than DRLN. Naturally, the proposed net-
works that need a reduced number of parameters to perform
well, also offer a signaficantly reduced training cost. Fig. 4
presents the runtime comparisons against other standard
models in various imaging tasks, showing that the proposed
models are significantly faster. Note that similar results are
achieved for image inpainting, but are not reported here
since the comparison network is IRCNN, already included
in the SR experiments. Hence, harnessing the benefits of
the interaction layer and of the Hamiltonian kernel, the
proposed DL models demonstrate better performance for
image restoration with fewer parameters and more efficient
computational costs.

4.4 Qualitative and Quantitative Image Restoration Re-
sults
4.4.1 Image Denoising
Table 3 summarizes the average PSNR and SSIM results
of the different methods on six commonly used testing
datasets with six different noise levels. One might notice
that the proposed DIVA model uniformly outperforms all
the state-of-the-art approaches, irrespective of the noise
level and dataset. Compared to the deep unfolded BM3D
network BM3D-NET, our model exhibits much better de-
noising performance with an average increment of 1.5dB
PSNR and 4.5% SSIM for low noise levels and up to 2dB
PSNR and 13% SSIM for higher σ. Note also that BM3D-
NET was only available for four levels of noise. One can
observe that the performance gain is much higher over
the benchmark DnCNN and FFDNet networks for high
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TABLE 3
Image denoising results in terms of average PSNR(dB) and SSIM(%) values for five benchmark datasets contaminated by six noise levels

(σ = 10, 15, 25, 50, 75, 100). For each experiment, the best values are in bold and the second best values are underlined.

Dataset σ Input Methods
DnCNN [38] FFDNet [29] IRCNN [31] BM3D-NET [44] De-QuIP [51] DIVA DIVA-blind

Set12

10 28.16/82.87 34.76/92.69 34.64/92.71 33.62/91.83 33.27/91.97 33.45/91.03 34.80/96.77 34.68/94.56
15 24.64/69.97 32.84/90.23 32.75/90.27 32.77/88.08 31.65/88.96 31.15/87.30 32.92/95.41 32.79/93.61
25 20.20/49.68 30.42/86.14 30.42/86.34 30.38/84.23 29.77/85.09 28.65/81.23 30.47/93.00 30.36/90.73
50 14.18/24.87 27.16/78.25 27.32/79.03 27.14/75.70 25.78/76.77 25.28/70.43 27.45/88.22 -/-
75 10.66/14.75 25.15/71.71 25.49/73.52 23.75/67.46 -/- 23.44/63.69 25.63/84.31 -/-
100 8.16/9.64 23.87/64.28 24.20/69.26 21.95/59.70 -/- 22.21/58.02 24.43/81.17 -/-

BSD68

10 28.15/83.57 33.87/92.71 33.75/92.66 33.74/90.57 32.74/91.73 32.67/90.65 33.94/96.21 33.80/94.38
15 24.63/70.99 31.73/89.06 31.63/89.02 31.63/87.98 31.42/88.77 30.24/85.38 31.79/94.04 31.64/92.74
25 20.19/50.70 29.22/82.78 29.19/82.89 29.15/79.51 28.95/81.42 27.83/77.35 29.34/90.07 29.19/87.44
50 14.17/25.08 26.22/71.85 26.29/72.45 26.16/68.13 25.73/70.31 24.88/64.25 26.33/82.99 -/-
75 10.65/14.61 24.63/64.69 24.78/65.86 22.87/60.05 -/- 23.33/56.55 24.87/77.81 -/-
100 8.15/9.41 23.16/55.46 23.77/60.96 19.46/49.47 -/- 22.27/51.23 23.93/74.21 -/-

Kodak

10 28.14/81.24 34.86/92.17 34.81/92.20 34.76/87.91 32.39/91.01 33.56/89.95 34.91/96.35 34.82/94.75
15 24.62/67.32 32.84/88.82 32.72/88.90 32.63/83.40 30.82/87.68 31.27/85.13 32.93/94.49 32.78/93.02
25 20.18/45.89 30.43/83.15 30.37/83.42 30.29/78.07 28.55/81.62 28.83/77.64 30.55/91.16 30.30/87.89
50 14.16/21.13 27.47/73.53 27.61/74.34 27.44/69.24 25.91/72.15 25.71/65.76 27.70/85.41 -/-
75 10.64/11.91 25.77/67.34 25.96/68.80 23.85/61.75 -/- 24.07/59.02 26.16/81.36 -/-
100 8.14/7.54 23.99/55.99 24.88/64.74 20.38/51.29 -/- 22.92/53.74 25.22/78.66 -/-

LIVE1

10 28.14/83.19 34.24/92.95 34.13/92.96 33.02/88.09 32.77/91.83 32.39/90.98 34.27/96.54 32.19/94.81
15 24.62/70.46 32.11/89.68 32.01/89.71 30.42/81.32 30.46/88.74 29.96/85.96 32.19/94.65 31.97/92.69
25 20.18/50.19 29.55/83.91 29.53/84.08 27.22/75.04 27.61/82.14 27.44/78.00 29.62/91.12 29.46/88.32
50 14.16/25.03 26.40/73.34 26.51/74.03 23.05/66.92 24.75/71.60 24.28/64.73 26.63/84.54 -/-
75 10.64/14.74 24.70/66.14 24.92/67.59 21.21/57.58 -/- 22.62/56.66 24.99/79.65 -/-
100 8.14/9.59 22.39/50.10 23.81/62.74 19.59/48.28 -/- 21.51/50.87 23.99/76.23 -/-

Urban100

10 28.15/87.17 34.43/95.74 34.45/94.89 32.93/91.35 32.53/94.52 31.25/93.26 34.75/97.84 34.52/95.37
15 24.63/77.13 32.17/93.36 32.42/92.73 30.30/88.77 30.65/91.99 29.53/88.60 32.51/96.52 32.26/94.11
25 20.19/60.04 29.27/88.42 29.92/88.87 27.01/83.09 27.68/86.63 25.75/82.53 30.01/93.73 29.75/91.89
50 14.17/34.98 25.46/77.82 26.52/80.57 22.79/71.51 23.99/75.34 22.81/68.02 26.67/87.80 -/-
75 10.65/22.46 23.23/68.69 24.52/73.65 20.81/61.21 -/- 20.59/58.92 24.80/82.10 -/-
100 8.15/15.38 22.04/62.85 23.08/67.59 18.79/53.57 -/- 19.65/50.51 23.39/77.37 -/-

noise cases. Precisely, DIVA outperforms these competing
methods by 0.05-1.2dB PSNR and 4-18% SSIM in average
and achieves the best denoising yields. Moreover, our blind
denoising model DIVA-blind that, in contrast to the other
networks, is not trained for a given (known) noise level, but
for a range of σ, still gives comparable PSNR values and
improved SSIM compared to the state-of-the-art approaches.
In all the cases, one can observe a considerable improvement
in SSIM enabled by the proposed network, which proves
that it is better equipped for image structure and pattern
preservation than other models. Utilization of this local
information from neighboring patches enables our network
to be resilient and adapted to high and low-level noise,
giving us an edge over other models.

Furthermore, a notable gain of an average of 1.5-3dB
PSNR and 5-26% SSIM is observed compared to the baseline
De-QuIP method. This is a consequence of finely tuned
hyperparameters values for each patch by harnessing the
power of the backpropagation architecture.

Fig. 5 illustrates denoising results for three images, Girl,
Castle and Parrot, from three datasets, for σ = 25, 50 and 75
respectively. The qualitative analysis of the denoised images
confirms the superiority of the proposed model. Indeed,
all competing methods fail to recover the original textures
around the eye and lips in Girl image, the sharp edges
and peaks around the windows and roof in Castle image,
and the patterns in Parrot image. IRCNN restores blurred
edges, and BM3D-NET and De-QuIP generate some small
artifacts. DnCNN and FFDNet give comparable PSNR, but
low SSIM, caused by over-smoothed results, which were not
able to retrieve small details. In contrast, DIVA is faithful to
the ground truths and restores the images with the right

TABLE 4
Deblurring results in terms of average PSNR(dB) and SSIM(%) values

for two datasets degraded with three GB kernels and AWGN.

Dataset kernelσ noiseσ Methods
IDD-BM3D [5] Son et al. [68] DEBCNN [64] DIVA-A

BSD100
1.6 2 27.17/86.14 23.18/73.47 28.47/87.90 29.97/89.65
3 10 24.16/76.66 22.88/68.14 25.34/78.11 26.57/80.16
5 10 22.75/71.74 22.17/65.92 22.79/71.94 23.73/74.09

Set16
1.6 2 30.85/93.41 29.87/93.29 31.34/94.39 32.38/95.37
3 10 26.37/85.78 25.20/82.34 26.93/86.91 27.38/89.31
5 10 24.23/82.24 23.63/80.55 27.28/82.76 28.11/87.22

consistency by capturing the subtle details more reliably.
Visual and quantitative inspections indicate that DIVA

model conclusively outperforms its baseline method De-
QuIP, as well as other advanced DL methods by a significant
margin in terms of PSNR and SSIM. The DnCNN and
FFDNet are the closest to DIVA, but struggle to preserve
image textures accurately, mainly because of a smoothing
effect. DIVA preserves most of the image fragments and
textures in a better way without creating any visible artifacts
and thus provides a denoised image closer to the ground
truth.

4.4.2 Image Deblurring
Image deblurring results for GB are illustrated on two
benchmark datasets degraded with three different GB kernel
settings of size 25×25: (i) GB kernel with standard deviation
of 1.6 and AWGN with σ = 2, (ii) GB kernel with standard
deviation of 3 and AWGN with σ = 10, (iii) GB kernel
with standard deviation of 5 and AWGN with σ = 10.
Table 4 regroups the average PSNRs and SSIMs obtained
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Ground truth PSNR 20.18dB/SSIM 38.42%

Girl image Noisy image DnCNN BM3D-NET DIVADe-QuIP

PSNR 32.04dB/SSIM 84.24% PSNR 30.68dB/SSIM 83.32% PSNR 32.15dB/SSIM 92.70%PSNR 30.45dB/SSIM 82.64%

FFDNet IRCNN

PSNR 32.09dB/SSIM 84.57% PSNR 30.87dB/SSIM 81.71%

Ground truth PSNR 14.18dB/SSIM 21.28%

Castle image Noisy image DnCNN BM3D-NET DIVADe-QuIP

PSNR 26.91dB/SSIM 79.35% PSNR 25.21dB/SSIM 78.44% PSNR 27.13dB/SSIM 88.87%PSNR 25.01dB/SSIM 76.89%

FFDNet IRCNN

PSNR 26.93dB/SSIM 80.06% PSNR 25.82dB/SSIM 73.05%

Ground truth PSNR 10.67dB/SSIM 17.63%

Parrot image Noisy image DnCNN DIVADe-QuIP

PSNR 24.66dB/SSIM 74.79% PSNR 22.97dB/SSIM 70.34% PSNR 24.87dB/SSIM 85.69%

FFDNet IRCNN

PSNR 24.81dB/SSIM 76.11% PSNR 24.40dB/SSIM 72.41%

Fig. 5. Denoising image results using different methods. The Girl image (Top), Castle image (middle), and Parrot image (bottom) are respectively
contaminated with AWGN with σ = 25, σ = 50, and σ = 75.

TABLE 5
Deblurring results in terms of average PSNR(dB) and SSIM(%) values

for four datasets degraded with standard MB kernels and AWGN.

Dataset noiseσ Methods
IDD-BM3D [5] FDN [67] VEMNet [30] DWDN [40] DRED-DUN [47] DIVA-A

Set10

0 36.24/89.24 -/- -/- 43.95/96.49 43.67/96.38 43.54/96.67
2.55 30.75/86.63 -/- 31.71/89.95 33.28/93.12 33.16/92.97 33.03/93.54
7.65 27.25/77.76 -/- 28.27/82.51 29.61/88.07 29.80/88.48 29.38/90.03
12.75 25.71/71.38 -/- 26.62/77.68 26.92/83.16 27.49/84.05 27.42/85.79

Levin

0 37.48/94.68 -/- -/- 46.13/97.63 45.56/97.27 46.19/97.76
2.55 33.75/92.19 34.05/93.35 34.31/94.31 36.90/96.14 36.02/95.79 36.19/95.86
7.65 29.26/85.78 29.77/85.83 30.50/87.86 32.77/91.79 32.87/91.97 33.12/92.46

12.75 27.33/78.92 27.94/81.39 28.52/82.73 30.77/88.57 30.89/88.79 30.80/89.87

Sun et al.

0 37.14/90.42 -/- -/- 43.10/97.19 42.49/97.08 42.65/97.36
2.55 32.24/87.79 32.63/88.87 32.73/90.13 34.05/92.25 34.43/92.97 34.44/93.49
7.65 28.74/77.86 28.97/78.42 29.41/81.08 29.11/86.31 29.88/87.28 30.30/89.14
12.75 27.30/73.24 27.62/74.52 28.04/77.89 27.81/80.85 28.20/81.59 27.95/83.36

Set12

0 -/- -/- -/- -/- -/- 43.48/96.39
2.55 31.43/88.14 31.43/89.17 31.93/90.19 -/- -/- 33.77/92.58
7.65 27.56/80.09 27.89/80.86 28.47/82.78 -/- -/- 28.97/87.89
12.75 25.95.74.88 26.28/76.24 26.77/78.13 -/- -/- 27.28/84.45

∗The symbol -/- denotes that the results were not provided in the original paper
for a particular experiment.

by all competing methods. One can observe that the bench-
mark DEBCNN [64] method performs much better than the
model-based IDD-BM3D [5] and learning-based Son et al.
[68] schemes. DIVA-A outperforms DEBCNN by 1.1 dB in
PSNR and 2% in SSIM and 0.8 dB in PSNR and 2.6% in SSIM
on average for BSD100 and Set16 datasets, respectively.

In Fig. 6, a qualitative evaluation shows that the pro-
posed method not only generates better image contrast but

Penguin image

Ground truth PSNR 29.69dB/SSIM 88.35%

Noisy blurred image

PSNR 33.13dB/SSIM 92.71%

IDD-BM3D Son et al.

PSNR 31.27dB/SSIM 90.80% PSNR 33.91dB/SSIM 94.49%

DEBCNN DIVA-A

PSNR 34.65dB/SSIM 96.27%

Fig. 6. Image deblurring results for Penguin image degraded by a 25×25
GB kernel of standard deviation 1.6 with random AWGN of standard
deviation 2.

also retrieves sharp edges with more details than the other
approaches, like IDD-BM3D and Son et al. [68], where ran-
dom artifacts and blurred edges are visible in the deblurred
outputs. Our DL model restores the Penguin image with
much sharper and more precise edges than the DEBCNN,
for which edges look hazy. Thus, though DEBCNN and
DIVA-A are the two best models in this setting, our model
uniformly outperforms the sophisticated DEBCNN method
for GB problems.

Table 5 gives the average deblurring performance of our
method in terms of PSNRs and SSIMs in contrast to other
standard models from the literature under eight commonly
used MB kernels [47], [63] and four different noise levels.
One should note that the code or trained models provided
by the authors are used to generate these results. As the
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4th-Levin image

Ground truth PSNR 26.40dB/SSIM 89.84%

Noisy blurred image

PSNR 36.89dB/SSIM 92.71%

IDD-BM3D DIVA-A

PSNR 45.07dB/SSIM 98.65%

DWDN

PSNR 44.78dB/SSIM 98.39%

DRED-DUN

PSNR 45.26dB/SSIM 98.92%

Parrot image

Ground truth PSNR 20.21dB/SSIM 74.96%

Noisy blurred image

PSNR 28.19dB/SSIM 92.62%

IDD-BM3D DIVA-A

PSNR 29.95dB/SSIM 96.11%

DWDN

PSNR 30.62dB/SSIM 94.58%

DRED-DUN

PSNR 34.13dB/SSIM 97.89%

Fig. 7. Deblurring results for MB kernels. The first row shows restored
4th-image from the Levin dataset with 17 × 17 MB kernel, and second
row shows restored Parrot images with 25× 25 MB kernel.

first observation, one can see that DWDN and DRED-
DUN outperform the conventional IDD-BM3D, FDN and
VEMNet for the Set10, Levin and Sun et al. datasets, which
is consistent with the findings in [47]. Secondly, DWDN
performs better in the case of low/no noise in terms of
PSNRs compared to DRED-DUN and our proposed model.
DRED-DUN is more accurate for high levels of noise. On
the contrary, our proposed model exhibits the best SSIMs
with a gain up to 0.15-1.8% against the DWDN and DRED-
DUN for low as well as high noise levels and this efficiency
increases with noise intensity. In terms of PSNR values,
our model often stays in the top two and only fails to do
so for Set10, where the average PSNR gaps between the
best two methods and our model is very small. Noticeably,
although DIVA-A sometimes offers slightly worse PSNRs
than DWDN and DRED-DUN, it requires only half of the
tunable parameters (shown in Fig. 4(b)). Finally for Set12,
our model unilaterally dominates the comparison and ex-
ceeds its nearest rival VEMNet by up to an average of 1dB
PSNR and 3.5% SSIM.

For visual assessment, restored images from images
degraded with three different MB kernels are shown in
Figs. 7, 8. Fig. 7 shows that for the 4th-Levin and Parrot
images respectively under a MB kernel of size 17 × 17 and
25 × 25, the quality of the restored images by our model
is considerably improved compared to the other methods.
In particular, the finer texture of the images is severely
smoothed out by IDD-BM3D, DWDN and DRED-DUN,
as shown in the zoomed boxes. Furthermore, the overall
visual impression of the restored images is improved, as
visible on the facial decorations and minute patterns that are
better preserved with DIVA-A. Finally, Fig. 8 offers a similar
conclusion for the restored 3th-Levin image under a 23× 23
MB kernel with AWGN with σ = 2.55. Thus, under MB
kernels DIVA-A demonstrates a better efficiency in recover-
ing edges and patterns of the original images. DWDM and
DRED-DUN produce comparative results compared to our
model, but with lower contrast. Quantitatively, our method
is always among the best two approaches in this context.

4.4.3 Single Image Super-Resolution (SR)
This subsection presents SR results for two standard down-
sampling operators, bicubic downsampling (BD) and Gaus-

TABLE 6
SR results in terms of average PSNR(dB) and SSIM(%) values for 4

benchmark datasets degraded with bicubic downsampling with
downsampling factors of 2, 3 and 4.

Dataset Scale Methods
LapSRN [69] MemNet [66] CARN [65] DRLN [42] DIVA-A

Set5
2x 37.52/95.91 37.78/95.97 37.76/95.90 38.27/96.16 37.42/97.43
3x 33.82/92.27 34.09/92.48 34.29/92.55 34.78/93.03 33.14/93.36
4x 31.54/88.50 31.74/88.93 32.13/89.37 32.63/90.02 30.87/90.02

Set14
2x 33.08/91.30 33.28/91.42 33.52/91.66 34.28/92.31 33.67/93.69
3x 29.87/83.20 30.00/83.50 30.29/84.07 30.73/84.88 29.18/85.34
4x 28.19/77.20 28.26/77.23 28.60/78.06 28.94/79.00 27.74/80.66

BSD100
2x 31.80/89.50 32.08/89.78 32.09/89.78 32.44/90.28 32.00/90.49
3x 28.82/79.80 28.96/80.01 29.06/80.34 29.36/81.17 28.91/82.15
4x 27.32/72.80 27.40/72.81 27.58/73.49 27.83/74.44 27.66/76.95

Urban100
2x 30.41/91.00 31.31/91.95 31.51/93.12 33.37/93.90 31.48/93.06
3x 27.07/82.80 27.56/83.76 27.38/84.04 29.21/87.22 27.54/85.31
4x 25.21/75.60 25.50/76.30 26.07/78.37 26.98/81.19 25.39/81.29

sian downsampling (GD). Tables 6, 7 regroup average PSNR
and SSIM values of different methods on four datasets for
BD and GD respectively. One may observe that the recently
introduced benchmark method DRLN [42] provides the best
performance in both contexts. DRLN has a complex network
architecture with dense residual Laplacian modules pow-
ered by 34 million parameters. In contrast, the proposed
model has a much simpler architecture, and requires only
850K parameters approximately. Nevertheless, our model
obtains the best SSIM for three datasets (e.g., Set5, Set14 and
BSD100) and among the top two SSIM for Urban100 images
for BD. One can see an average gain of 1.5% SSIM by our
method over DRLN in the BD scenario. For GD problems,
our method struggles to produce competitive results against
benchmark DRLN, RDN and DFAN approaches. Note that
for SR problem our method upsamples the observed LR
image by bicubic interpolation to obtain an initial HR image
before enhancing it using the trained DL network.

The visual inspections of Figs. 9, 10 and 11 illustrate the
potential of our method for SR. Figs. 9 and 10 correspond-
ingly display the restored HR images from the LR BD Zebra
and Baby-face images with scale factors of 3 and 4. The visual
effects of HR images recovered by our method are better
than others and higher in accuracy. For example, in our
retrieved HR images the stripes on the zebra’s body, in Baby-
face image the textures and shapes of eye, lips and nose have
better specifications than the other methods. Fig. 11 shows
the reconstructed HR images from the LR Book-cover image
obtained by GD with scale factor of 2. Observation reveals
that our method efficiently recovers the edges, patterns and
texts of the original image from LR data. Moreover, our
method strongly competes with the benchmark DRLN and
beats it in some respects, especially in terms of overall visual
quality and preservation of the image structure.

4.4.4 Image Inpainting
Table 8 illustrates our model performance in terms of av-
erage PSNR and SSIM on Set5 and Set12 datasets com-
pared to the standard IRCNN network for image inpainting
problems. Our model outperforms IRCNN in almost all
situations when 20%, 50%, and 80% of random pixels are
missing in the degraded observed images. DIVA-A provides
a improvement of 0.2-1 dB in PSNR and 0.6-5.5% in SSIM
over IRCNN and this gain increases with data lacking.
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3rd-Levin image

Ground truth PSNR 19.22dB/SSIM 57.41%

Noisy blurred image

PSNR 31.94dB/SSIM 91.55%

IDD-BM3D

PSNR 33.44dB/SSIM 92.44%

FDN

PSNR 33.97dB/SSIM 93.47%

VEMNet DIVA-A

PSNR 35.33dB/SSIM 96.51%

DWDN

PSNR 34.84dB/SSIM 95.49%

DRED-DUN

PSNR 35.07dB/SSIM 96.60%

Fig. 8. Deblurring results for the 3rd-image from the Levin dataset with motion blur kernel of size 23× 23 and random AWGN σ = 2.55.

Zebra image Zoomed LR image LapSRN DIVA-A

PSNR 21.49dB/SSIM 69.21% PSNR 28.17dB/SSIM 81.90% PSNR 28.74dB/SSIM 86.32%Ground truth PSNR 28.38dB/SSIM 84.46%

MemNet CARN DRLN

PSNR 28.54dB/SSIM 85.75% PSNR 29.28dB/SSIM 86.19%

Fig. 9. SR results for Zebra image for a bicubic downsampling with scaling factor 3.

Baby-face image

Ground truth PSNR 24.92dB
SSIM 73.34%

Zoomed LR image Bicubic

PSNR 32.53dB
SSIM 91.02%

PSNR 27.81dB
SSIM 81.46%

CARNLapSRN

PSNR 29.47dB
SSIM 86.81%

MemNet

PSNR 30.16dB
SSIM 87.29 %

PSNR 33.42dB
SSIM 92.80%

DRLN DIVA-A

PSNR 33.83dB
SSIM 94.59%

Fig. 10. Two zoomed regions of the restored HR Baby-face images, extracted from SR results for a bicubic downsampling with scaling factor 4.

TABLE 7
SR results in terms of average PSNR(dB) and SSIM(%) values for 4

benchmark datasets degraded with GD by using a 7× 7 GB kernel of
standard deviation 1.6 with scaling factors of 2, 3 and 4.

Dataset Scale Methods
IRCNN [31] DFAN [70] RDN [32] DRLN [42] DIVA-A

Set5
2x 35.34/93.04 -/- -/- -/- 33.62/93.79
3x 33.38/91.82 34.50/92.74 34.58/92.80 34.81/92.97 32.70/91.45
4x 30.76/85.47 -/- -/- -/- 29.02/85.76

Set14
2x 31.98/88.49 -/- -/- -/- 30.88/90.65
3x 29.63/82.81 30.43/84.19 30.53/84.47 30.81/84.87 28.97/83.47
4x 27.73/74.12 -/- -/- -/- 26.86/76.01

BSD100 3x 28.65/79.22 29.17/80.58 29.23/80.79 29.40/81.21 28.26/80.65
Urban100 3x 26.77/81.54 28.27/85.26 28.46/85.82 29.11/86.97 27.72/84.92

Book cover Zoomed LR image IRCNN DIVA-ABicubic interpolated

PSNR 21.32dB/SSIM 83.66% PSNR 23.02dB/SSIM 90.74% PSNR 24.17dB/SSIM 93.81%Ground truth PSNR 21.73dB/SSIM 85.24%

Fig. 11. Restored HR Book-cover images from LR images generated by
GD under a 7×7 GB kernel of standard deviation 1.6 with scaling factor
2.

The visual analysis of Fig. 12 confirms the quantitative
results. From the restored F-16 Jet image, it appears that
our model efficiently reproduces the F-16 logo, borders and
sharp edges despite 50% of data missing, whereas IRCNN
fails to do so and loses/distorts many details in the restored
output. Hence, our model can gather local information from
the image neighborhood quite promisingly and delivers a
high-quality restored image even with limited pixels avail-
able. 2

5 DISCUSSIONS

In this section, we briefly recap the benefits and limitations
of our proposed networks and future prospects in this
regard.

Advantages: With the quantum principles of the baseline
De-QuIP algorithm, our proposed DIVA/DIVA-A network
provides an efficient DL method for image restoration fol-
lowing the deep unfolding philosophy. Indeed, the use of
quantum concepts like patch interaction layer and Hamilto-
nian kernel makes our models better equipped than others.
The local structure/similarities in an image neighborhood
are preserved through the interaction layer exploiting the lo-
cal patch groups that convey an intrinsic non-local network
architecture. Processing of the local information by this

2. More visual results can be found in the supplementary material.
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TABLE 8
Image inpainting results in terms of average PSNR(dB) and SSIM(%)

values for two benchmark datasets for respectively 20%, 50% and 80%
pixels missing.

Dataset Missing pixels’ Input Methods
IRCNN [31] DIVA-A

Set5
20% 13.33/38.61 41.62/98.67 41.85/99.24
50% 9.34/23.44 35.57/95.87 36.08/97.84
80% 7.29/12.40 29.41/88.54 30.38/94.01

Set12
20% 12.46/27.93 39.06/98.29 38.57/99.15
50% 8.48/14.45 32.82/94.53 33.02/97.21
80% 6.44/6.71 26.75/84.53 27.73/91.92

interaction layer significantly enhances the performances
of the network. It even yields a smaller network depth,
leading to a good trade-off between the performance and
computational cost, as portrayed in Sec. 4.3. Harnessing the
power of back-propagation, our networks uniquely tune all
hyperparameters, such as proportionality constant, Planck
constant and thresholding energy, for each patch. This en-
ables network adaptability with several image restoration
tasks, and leads to promising performances.

Limitations: In the case of a challenging image degrada-
tion task, our method may sometimes struggle to produce
a better recovered image than other benchmarks. To restore
a Gaussian downsampled LR image, we notice that our DL
model fails to compete in quantitative data against bench-
mark methods, like DRLN, RDN, and DFAN, as noted in
Table 7. However, the overall visual efficiency of our method
is quite good, as depicted in Fig. 11. Perhaps in presence of
a strong decay, such as ’blur+downsampling’, our method
does not match the true pixels’ intensity, which seems to
be the main reason for the lower quantitative measures.
Instead, our method utilizes the interaction layer to provide
better visual quality by preserving the image structure,
patterns, and textures with more details. Furthermore, our
proposed models are trained in an end-to-end supervised
manner, i.e., we need the clean-degraded image pairs for
training. However it is worth-noting that the proposed
method is much simpler and not specialized in a specific
task as is the case for the other methods.

Future perspectives: The quantum mechanics-based imag-
ing methods open up a broad spectrum of future prospects.
Following the limitations, the obvious direction would be
an unsupervised DL network design, that essentially solves
the training data problem and extends our reach to real-
life applications more reliably [71], [72]. Another possibility
is to design a versatile network by stacking the proposed
DIVA to build a deep and more complex architecture like
UNet [47] and offer some attention mechanisms [42] to
make the patch interaction robust while preserving the core
philosophy. This complex network system should enhance
the capacity of the proposed network in challenging degra-
dation operators and even for blind imaging problems.
Furthermore, the idea of quantum interaction can also be
treated as a transformer in a deep architecture [73]. Another
interesting prospect would be to explore imaging problems
beyond the Gaussian model since baseline De-QuIP is well-
adapted for such tasks without modifying the global archi-
tecture. Combining graph signal processing model with the
proposed quantum-based interaction framework is also an

F-16 Jet image Masked image IRCNN DIVA-A

PSNR 5.79dB/SSIM 8.32% PSNR 29.53dB/SSIM 93.43% PSNR 30.15dB/SSIM 96.29%Ground truth

Fig. 12. Restored F-16 Jet images, when 50% pixels’ are missing.

interesting perspective [74].

6 CONCLUSIONS

This paper introduces a novel neural network approach
to solve image denoising problems, further extended to
general image restoration tasks relying on the philosophy of
quantum many-body theory. Our model recasts the baseline
De-QuIP algorithm into a DL framework and optimizes
the relevant parameters by exploiting the power of back-
propagation approach. The proposed unfolded CNN ar-
chitecture inherently employs various quantum mechanical
components, such as interaction and Hamiltonian operator,
from its baseline method to boost up the network perfor-
mance while significantly reducing the training cost. Inte-
gration of these key features from the quantum theory en-
ables our proposed model to be well-adapted for handling
several imaging problems efficiently. We conduct thorough
ablation investigations and present extensive assessments
regarding the network design. Finally, we perform com-
prehensive evaluations of our proposed DL methods for
various imaging problems, such as denoising, deblurring,
single image super-resolution, and inpainting. In all cases,
notable improvements were shown in the image restoration
performance, especially overall visual quality, compared to
standard well-established techniques from the literature.
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7 INTRODUCTION

IN this work, we introduce a novel deep-learning (DL) network unfolding the baseline Denoising by Quantum Interactive
Patches (De-QuIP) [50], [51] algorithm, denoted as DIVA (Deep denoising by quantum InteractiVe pAtches) for image

denoising problem. We further extend the network architecture to conduct a general image restoration task and the
respective network denoted as DIVA advanced (DIVA-A). The integration of the key attributes of DL and quantum
theory significantly enhances the functionality of our proposed networks due to its intrinsic versatility and enables our
models to exhibit state-of-the-art performances for several restoration tasks such as denoising, deblurring, super-resolution,
inpainting, etc.

In the original manuscript, we extensively study the network architecture and present comprehensive comparisons
with benchmark approaches. The detailed quantitative and qualitative analyses are reported in the original manuscript. In
this supplementary material, we depict more restored images for the image deblurring, super-resolution, and inpainting
problems to give better insights into the visual qualities of the images recovered by our proposed networks.

8 EXPERIMENTAL RESULTS

In this section, we analyze the qualitative performance of our proposed networks in various image restoration tasks, such
as image deblurring, super-resolution, and inpainting.

8.1 Quantitative Metrics
For the purpose of quantitative evalution, the peak-signal-to-noise-ratio (PSNR) and the structural similarity (SSIM)
computed between the true and the restored images were used.

8.2 Qualitative Image Restoration Results
8.2.1 Image Deblurring
In Fig. 13, through qualitative evaluation, one can notice that our method not only generates better image contrast but also
retrieves sharp edges with more details than other models. For example, in the Horse image, IDD-BM3D [5] produces better
contrast, but random patterns are visible in the deblurred outputs, whereas Son et al. [68] fails to preserve sharp edges

Horse image

Ground truth PSNR 24.09dB/SSIM 73.65%

Noisy blurred image

PSNR 27.06dB/SSIM 83.49%

IDD-BM3D Son et al.

PSNR 26.32dB/SSIM 78.63% PSNR 27.82dB/SSIM 87.08%

DEBCNN DIVA-A

PSNR 28.67dB/SSIM 88.05%

Fig. 13. Image deblurring results for Horse image degraded by a 25 × 25 Gaussian blur kernel of standard deviation 1.6 with random Gaussian
noise of standard deviation 2.
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Butterfly image

Ground truth PSNR 20.24dB/SSIM 69.06%

Noisy blurred image

PSNR 25.60dB/SSIM 84.22%

IDD-BM3D DIVA-A

PSNR 27.05dB/SSIM 87.40%

FDN

PSNR 28.32dB/SSIM 90.50%

VEMNet

PSNR 28.79dB/SSIM 92.68%

Fig. 14. Deblurring results for motion blur kernel. The restored Butterfly images with 13 × 13 motion blur kernel and Gaussian noise of standard
deviation 7.65.

City-building image

Ground truth PSNR 22.06dB
SSIM 76.55%

Zoomed LR image Bicubic

PSNR 30.38dB
SSIM 93.41%

PSNR 27.88dB
SSIM 88.08%

CARNLapSRN

PSNR 30.22dB
SSIM 92.18%

MemNet

PSNR 30.69dB
SSIM 92.57%

PSNR 31.33dB
SSIM 94.38%

DRLN DIVA-A

PSNR 31.27 dB
SSIM 94.10%

Fig. 15. A zoomed regions of the restored HR City-building images, extracted from SR results for a bicubic downsampling with scaling factor 3.

and the overall images appear blurred compared to others. Our DL model restores the head with much sharp and precise
edges than the DEBCNN [64], where the edges look hazy. Thus, though DEBCNN [64] and our DIVA-A are the two best
models in this setting, our model uniformly dominates the sophisticated DEBCNN [64] method in the Gaussian deblurring
problems.

In Fig. 14, the Butterfly image is degraded by a moderate size 13× 13 motion blur kernel with random Gaussian noise
of standard deviation 7.65. Our proposed model for retrieving original image quality is significantly better than other
competitors. For example, IDD-BM3D [5], FDN [67], and VEMNet [30] fail to properly restore the pattern on the butterfly’s
wings and body, and show many distortions in the restored images, as visible in the zoomed boxes. Compared to its rivals,
our model has the capability to restore these subtle attributes like patterns on the wings and body, and preserves the sharp
edges with finer precision, as shown in the zoomed boxes.

Thus, under both Gaussian and motion blur kernels the overall visual quality of the recovered deblurred images by our
proposed model is the best among all the tested methods.

8.2.2 Single Image Super-Resolution (SR)

The visual inspections of Figs. 15, 16 and 17 illustrate the potential of our method for SR. Figs. 15 and 16 display the
restored high-resolution (HR) images from the low-resolution (LR) bicubic down-sampled City-building and Fish images
with scale factors of 3 and 4, respectively. The visual effects of HR images recovered by our method are better than others
and higher in accuracy. For example, in our retrieved HR City-building image the sharp edges of the windows, in Fish image
the patterns on the fish and the shapes of the seagrass have better specifications than the other methods, such as LapSRN
[69], MemNet [66], CARN [65]. Although, the benchmark DRLN [42] provides better quantitative data in some aspects, the
proposed DIVA-A not only gives comparable results but also outperforms DRLN [42] in terms of quantitative and visual
assessments in some cases.

Fig. 17 shows the reconstructed HR images from the LR Flowers image obtained by Gaussian downsampling with scale
factor of 3. In the degraded image, the small-scale details are nearly unrecognizable. Observation reveals that our method
efficiently recovers the edges and patterns of the original image from LR data compared to the state-of-the-art IRCNN [31],
DFAN [70] and RDN [32] methods. Moreover, our method strongly competes with the benchmark DRLN [42] and beats it
in some respects, especially in terms of overall visual quality and preservation of the image structure.

Hence qualitatively, our method is always among the best two approaches in this context. These results can be explained
by the ability of DIVA-A to exploit the local structures/attributes via the interaction layer. This layer enables our DL
network to efficiently conduct super-resolution tasks while correclty restoring patterns, sharp edges and other small-scale
details.
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Fish image Zoomed LR image DIVA-A

PSNR 26.04dB/SSIM 76.44% PSNR 32.87dB/SSIM 94.89%Ground truth

DRLN

PSNR 33.11dB/SSIM 93.41%

Bicubic interpolated

PSNR 28.76dB/SSIM 84.64%

Fig. 16. The restored HR Fish images from LR images generated by bicubic downsampling with scaling factor 4.

Flowers image Zoomed LR image IRCNN DIVA-A

PSNR 23.29dB/SSIM 68.23% PSNR 26.26dB/SSIM 82.39% PSNR 30.76dB/SSIM 89.27%Ground truth PSNR 28.73dB/SSIM 86.95%

DFAN RDN DRLN

PSNR 30.89dB/SSIM 88.75% PSNR 31.33dB/SSIM 89.90%

Fig. 17. Restored HR Flowers images from LR images generated by Gaussian downsampling under a 7 × 7 Gaussian blur kernel of standard
deviation 1.6 with scaling factor 3.

Boat image Masked image IRCNN DIVA-A

PSNR 6.31dB/SSIM 5.80% PSNR 27.97dB/SSIM 81.17% PSNR 28.99dB/SSIM 91.01%Ground truth

Fig. 18. Restored Boat images, when 80% pixels’ are missing.

8.2.3 Image Inpainting
The visual analysis of Fig. 18 confirms the excellence of our DL model in inpainting tasks. In the Boat image, despite 80%
of data missing our model recovers minute details like the ropes and structures on the deck. On the contrary, the image
restored by IRCNN [31] is more blurry and loses/distorts many details, such as the borders, sharp edges, and ropes in the
restored output. Hence, our model can gather local information from the image neighborhood quite promisingly through
the quantum interaction layer and delivers a high-quality restored image even with limited pixels available.
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