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The security of essentially all public-key cryptography currently in common use today is based on the
presumed computational hardness of three number-theoretic problems: integer factoring (required for the
security of RSA encryption and digital signatures), discrete logarithms in finite fields (required for Diffie-
Hellman key exchange and the DSA digital signature algorithm), and discrete logarithms over elliptic curves
(required for elliptic curve Diffie-Hellman and ECDSA, Ed25519, and other elliptic curve digital signature
algorithms).

In this column, we will review the current state of the art of cryptanalysis for these problems using
classical (non-quantum) computers, including in particular our most recent computational records for integer
factoring and prime field discrete logarithms.

1 Integer Factoring and RSA
Integer factorization is probably the most well known of the computational problems we discuss in this article.

The RSA cryptosystem is “based on” the hardness of integer factoring in that if an adversary can factor
the public modulus N contained in an RSA public key into its prime factors p and q, they can easily compute
the private key. Interestingly, although factoring the public modulus N appears to be the best approach to
break RSA, these problems are not known to be equivalent: there might be an algorithm to efficiently decrypt
RSA ciphertexts or forge digital signatures that does not require or reveal the factorization of the modulus.

Factoring small numbers via trial division is easy: decomposing 91 into 7 times 13, or 2701 into 37 times 73.
Even finding factors of large numbers may also be easy: one can see that the integer 26674 is divisible by 2.
But an algorithm that can efficiently factor any integer with hundreds of decimal digits is still not known.

The integer factorization problem is easy to state, and mathematicians had already developed factorization
algorithms that ran much faster than brute force before the 1970s, when the problem of factorization became
a cornerstone of public-key cryptography. There is a wide variety of classical algorithms that can factor
integers of various forms: Pollard’s rho algorithm can find a factor p of an integer in time O(

√
p), Pollard’s

p− 1 algorithm can efficiently find a factor p of an integer if the value p− 1 has only “small” prime factors,
Fermat factorization can efficiently factor an integer N = a2 − b2 if a and b are “close” to

√
N , and so on.

The construction of the RSA modulus N is designed to evade these “special-purpose” factoring algorithms.
This leaves the cryptanalyst no choice but to use a so-called “general purpose” factoring algorithm, which we
will consider next.

Currently, the most efficient algorithm to factor RSA moduli is called the General Number Field Sieve
(GNFS, or sometimes just NFS). GNFS is described in [8], but its ancestry can be traced to a few years
earlier as a means to factor integers of a particularly suitable form [8, 7].
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1.1 Sketch of the NFS algorithm
Let N = pq be a composite number. We will illustrate the algorithm by factoring the toy example N = 2701.
Observe that modulo N , a number has up to four square roots; for example (±119)2 = (±1287)2 = 656 mod N .
A suitable pair of these square roots can be used to factor N : we have 1192−12872 = (119+1287)(119−1287) =
0 mod N . If we are lucky, the factors of this difference of squares split the factors of N , and we can use the GCD
algorithm to find these factors. In our example, we have gcd(119+1287, N) = 37 and gcd(119−1287, N) = 73.
If we got unlucky, we can simply look for more congruences of the form X2 = Y 2 mod N until we find one
such that X ̸= ±Y mod N .

This basic idea dates back to Fermat factorization, but a linear search for congruences of squares does not
lead to an efficient factoring algorithm. To improve the running time, one can instead construct squares as
products of congruences of known factorization modulo N .

This results in a two-stage algorithm. First, in the relation collection step, one collects many multiplicative
relations modulo N . The desired relations are smooth, meaning that each side factors completely into
relatively small primes. Next, to construct a relation of squares, the algorithm observes that a square integer
has even exponents in its prime factorization, and thus once enough relations have been collected, one can do
linear algebra over the vector of exponents modulo 2 to solve the system and obtain a congruence of squares.

Returning to our toy example N = 2701, one has 522 = 3 mod N and 532 = 22 · 33 mod N , so that
(52 · 53)2 = 552 = 182 mod N , and gcd(55 + 18, N) = 73.

The Quadratic Sieve and CFRAC (Continued FRACtion method) factoring algorithms follow the general
approach outlined above. The expected running time of these algorithms depends on optimizing the chosen
smoothness bound for desired relations. A lower smoothness bound means that the algorithm does less work
to test a candidate relation, and less work in the linear algebra phase, but one must iterate through more
candidate relations in order to find suitably smooth relations.

The Number Field Sieve also uses the above approach, but it takes advantage of more advanced number
theory. In particular, by constructing integer relations by factoring elements in a number field, this reduces
the size of the integer relations to be tested for smoothness, thus increasing the probability that a candidate
relation is smooth, and resulting in less work to find the desired number of relations. Decreasing the size of
the integers to be tested makes a dramatic difference overall: as a concrete example, 0.5% of 32-bit integers
are 8-bit smooth, but only 0.0025% of 48-bit integers are.

This results in an algorithm divided into five stages: polynomial selection, in which one chooses a number
field to work in, followed by relation collection, a filtering stage in which one reduces the size of the next
phase, linear algebra, and a final phase called the square root phase in the factoring context (see Figure 1).
The relation collection and linear algebra phases, which are described in general terms above, occupy the
bulk of the running time.

1.2 Asymptotic running time
The running time of GNFS is not easy to express. Heuristically, it is possible to derive an asymptotic formula
from coarse asymptotic estimates of the number of smooth integers. The cost of factoring N with GNFS, as
N grows, is

exp
(
(64/9)1/3(logN)1/3(log logN)2/3(1 + o(1))

)
.

This running time is subexponential, meaning that it is faster than a purely exponential-time algorithm in
logN would be, but slower than a polynomial-time algorithm.

However, the 1 + o(1) factor hides a significant amount of performance for concrete parameters. An
algorithmic improvement can bring a polynomial speedup to the algorithm (that is, a polynomial in logN),
without leaving this broad complexity class. While this general asymptotic running time for the number field
sieve has not been improved since the algorithm was developed in the early 1990s, there has been algorithmic
progress that has had a dramatic impact on the actual running time of the algorithm, all of which is hidden
by the “o(1)” term.
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The recommended key sizes for RSA in practice are selected based on this asymptotic estimate of running
time. This subexponential running time of the NFS algorithm is why RSA key sizes are so much larger than
symmetric key sizes at the same security level. The best attacks against the AES cipher take only slightly less
than 2128 time for a 128-bit key, so 128-bit AES is expected to provide nearly 128 bits of security. However,
for RSA, the usual estimate is that in order to have 128 bits of security, one should use at least a 3072-bit
modulus.

1.3 Practical progress
Although the general structure of the number field sieve algorithm has remained roughly the same for 30
years, there have been many refinements during that time that have improved performance by significant
constant factors. At a high level, the number field sieve is a complex algorithm with a large number of
adjustable parameters that affect algorithm stages in different and not always well understood ways.

Below, we touch on a handful of recent refinements to the most time-consuming steps of NFS: polynomial
selection, relation collection, and linear algebra.

In the polynomial selection step, an implementation uses analytic estimates and experimental sampling
to find a good choice of number field. The properties of the chosen polynomial have a significant effect on
the overall running time of the algorithm, so it can be worthwhile to expend effort on this step. Our recent
795-bit and 829-bit factoring records took advantage of improvements to polynomial selection to achieve
relatively faster running times than extrapolations from previous records would suggest [3]. Yet there is
reason to expect that further progress is possible: if “ideal” polynomials in the sense of [5] could be found,
relation collection could be made almost twice as fast. An efficient method of finding such “ideal” polynomials
remains an open problem.

The relation collection step is generally the computationally most expensive part of the NFS algorithm.
Fortunately, it is embarrassingly parallel, and recent computations have been able to make extensive use of
idle time on large clusters. There are a variety of algorithms that can be applied to this problem, which can
vary in speed and memory requirements. The recent factoring records spent a good deal of effort in exploring
the relative benefits of many of these algorithms, some of which had never been used before. The choice and
parameterization of algorithms in relation collection also interacts with the NFS algorithm in general (with
linear algebra, for example), which necessitates some fine-tuning. In our latest record computations, this
fine-tuning work was supported by extensive use of simulations to estimate the running time of each stage of
NFS and optimize the complex interactions between parameters, which proved tremendously useful.

Historically, the linear algebra phase was believed to be a major barrier to scaling factoring to crypto-
graphically relevant numbers because of prohibitively large memory requirements. It was also believed that
this phase could not effectively be parallelized, and thus it would be a bottleneck. Research progress has
shown that both of these statements are false. The block Wiedemann algorithm, which is used for NFS sparse
linear algebra, has evolved both algorithmically and in practice into a very versatile tool. It can effectively be
parallelized, and recent record computations parallelized this phase across multiple remote computational
resources. And on modern computing systems, the memory requirements do not seem to be limiting the scale
of current computations at all.

All of these refinements are specific to the number field sieve algorithm. A brand new algorithm might
yet be discovered in the future, which could completely change the integer factoring landscape.

1.4 The state of the art
By convention, factoring records are often measured using the RSA challenges published by RSA Labs in
1991, although the cash prizes expired years ago.

The latest factoring (and discrete logarithm) records are depicted in Figure 2, culminating with the
factorization of RSA-250 (a 829-bit composite number) in February 2020, for a computation cost of about
2,700 core-years.

These academic results are far from the limit of feasibility, especially for a state-level attacker. It is obvious
that larger computations are possible, and it is widely accepted that 1024-bit factoring and discrete logarithm
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The number field sieve algorithm for discrete logarithm is closely related to the NFS algorithm for factoring.

Figure 1: Main steps of NFS and NFS-DL.

are feasible now, with hardware and software that currently exist. A ballpark estimate is that factoring a
1024-bit key would be about 200 times harder than RSA-250, or around 500,000 core-years of computation.
The associated sparse matrix is expected to have about 4 billion rows and columns. Dealing with such a
matrix would mobilize tens of thousands of CPU cores over several months, which is certainly feasible. The
challenge of computing discrete logarithms for this size is a step further in terms of difficulty and resource
requirements, but would still be feasible. Nobody has done such a computation yet in public, since academic
research teams don’t have access to that much computing power. From an academic standpoint, carrying
out such a computation would not surprise the research community. However, carrying out these types of
concrete cryptanalytic computations appears to be necessary to encourage users to move to stronger key sizes
and algorithms in the real world. Recent history has shown that in the context of hash functions, work on
rogue MD5 certificates [11] or the computation of actual collisions on SHA-1 [10] were both instrumental in
the deprecation of these insecure hash functions.

2 Finite field discrete logarithms and Diffie-Hellman
In the discrete logarithm problem over prime fields, g and p are public integers, and the problem is, given
some input y = gx mod p, to find the discrete logarithm x.

More generally, we can consider the discrete logarithm problem over finite fields GF(pn) of pn elements,
where p is a prime (the characteristic) and n is an integer (the extension degree). Mathematically, there
are three general algorithmic classes: the prime field case GF(p) where n = 1, the small-characteristic case
where p is very small (typically p = 2 or p = 3), and the medium characteristic, which lies between these two
extremes.

The security of Diffie-Hellman key exchange is “based on” the discrete logarithm problem in the sense
that if an attacker can compute the discrete logarithm of one of the publicly transmitted key exchange values,
they can use this value to easily compute the shared secret. However, like the relationship between factoring
and RSA, it is not known whether the two problems are equivalent: although discrete logarithm is the best
attack known to solve the Diffie-Hellman problem, there may be some yet-undiscovered algorithm to compute
the shared secret that does not reveal the discrete logarithm of the public values.

The discrete logarithm problem seems to be closely related to the problem of integer factoring, and a
number of algorithms for solving integer factorization have analogues to solve the discrete logarithm problem.
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Strangely, this eerie connection between the two problems does not seem to have been formally understood.

2.1 Discrete logarithms in prime fields
The most common case of discrete logarithm-based cryptography takes place when the public modulus p is a
prime, and g is a generator of a prime-order multiplicative subgroup modulo p. As in the case of RSA, the
prime structure and size of these parameters are chosen to avoid a number of elementary discrete logarithm
algorithms that work for small, composite-order, or otherwise structured groups like the Pollard rho algorithm,
parallel collision search, and Pohlig-Hellman algorithm.

Once these elementary algorithmic attacks have been thwarted by proper parameter choices, the best
algorithm in general to solve the discrete logarithm problem is the number field sieve algorithm for discrete
logarithms, or NFS-DL for short. Its complexity depends on the modulus p. The asymptotic running time
for NFS to factor an integer N is the same as the asymptotic running time for NFS-DL for a modulus p of
the same size as N .

The NFS-DL algorithm, like the NFS algorithm for factoring, has five main stages: polynomial selection,
sieving, filtering, linear algebra, and finally the computation of individual logarithms (see Figure 1).

The first three stages have a similar structure to the analogous algorithm for factoring, but there are
some important differences. In the polynomial selection phase, the fact that the general setup of NFS-DL
targets a field instead of a ring permits an improved strategy that yields much better results for current
record computational sizes: in our most recent record, this allowed a 5-fold speedup [3].

Second, the linear system to be solved is no longer modulo 2, but instead modulo a larger prime, in
particular the order of the subgroup generated by g. This makes linear algebra more expensive than in
the factoring case. The final difference is that polynomial selection, relation collection, and linear algebra
depend only on the prime modulus p, and not on the target value to compute the discrete logarithm of. This
is different from the case of factoring, where all stages of the NFS algorithm depend on the integer N to
be factored, and means that an attacker could carry out the most expensive parts of a discrete logarithm
computation offline, and reuse them for many different key exchanges using the same parameters [1].

2.2 Current records and comparison with factoring
The current record for largest discrete logarithm computation in a prime field was done modulo a 795-bit
prime [3]. This computation took 3,100 core-years and little over 1 calendar year of computational time.

While the asymptotic running time of the NFS algorithm is the same for discrete logarithm and factoring,
discrete logarithm has generally been perceived as somewhat more difficult, mainly because of the increased
cost for the linear algebra phase. This can be seen empirically in Figure 2, as discrete logarithm records have
historically lagged several years behind the size of record factorizations. However, recent computations have
shown that the improved flexibility in polynomial selection can result in much closer practical running times:
for 795-bit factoring and discrete logarithms, [3] shows that computing discrete logarithms is about three
times harder than factoring.

2.3 The small characteristic case
One can also consider the problem of computing discrete logarithms in finite fields of order 2n and 3n, or more
generally pn for small p. It has a close relationship to the discrete logarithm problem in “large-characteristic”
fields of order p described above. For more than two decades, the best algorithm to solve discrete logarithm
in the small-characteristic case was the function field sieve, an algorithm closely related to the number field
sieve, and the best estimates of its asymptotic running time were similar to those for large-characteristic
discrete logarithms using the number field sieve.

However, starting in 2013, a series of algorithmic advances led to dramatic improvements in running time
for the small characteristic case, culminating in new algorithms of quasi-polynomial (nO(logn)) running-time [2].
(Remarkably, this line of research has recently led to a proven algorithm [6] achieving quasi-polynomial
complexity, a unique feat among algorithms for factoring and discrete logarithms in finite fields.) The
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immediate consequence of this breakthrough was that the discrete logarithm problem in fields of the form
GF(2n) was no longer hard enough for cryptography. While these fields had rarely been considered for
cryptographic use, their demise also discarded other cryptographic constructions that implicitly relied on
their hardness, such as supersingular elliptic curves over binary fields, which used to be part of the zoo of
curves potentially useful in pairing-based cryptography.

The specific advances used to achieve these results do not seem to apply to the large-characteristic case.
At the same time, as in the case of RSA, parameter sizes for discrete logarithm-based cryptography including
Diffie-Hellman key exchange, DSA digital signatures, and ElGamal encryption are set based on extrapolations
of the running time of NFS-DL for large-characteristic fields. The main evidence for the security of these
parameter choices is the lack of asymptotic improvements in the large characteristic case during the last
three decades. However, as the significant improvement in the small-characteristic case shows, previously
overlooked improvements can be found after decades of stasis.

2.4 Discrete logarithms in small to moderate degree extension fields
Between the “easy case” of fields of extremely small characteristic and the more challenging case of prime fields
detailed above, the discrete logarithm problem in extension fields is also an interesting research area. This
topic is of particular interest to pairing-based cryptography, which implicitly relies on the hardness of the DLP
in moderate-degree extensions of prime fields. In turn, this problem also matters for some cryptocurrency
applications that use succinct and efficient zero-knowledge proofs built from elliptic curve pairings.

Special variants of NFS are well adapted in this case, notably the “Tower” Number Field Sieve (TNFS).
Several new algorithms have emerged in recent years, and practical progress has been steady. The current
record is a 521-bit computation in a degree-6 field [4]. As a result of this ongoing progress, accurate
assessments of feasibility limits for the DLP in such fields are much harder to obtain, as they rely on fragile
and fast-changing empirical evidence.

3 Elliptic curve discrete logarithms
The discrete logarithm problem on elliptic curve (ECDLP) has seen considerably less cryptanalytic progress
than factoring or finite-field discrete logarithms. The case of highest cryptographic interest (for elliptic curve
Diffie-Hellman or elliptic curve digital signature algorithms, for example) is that of ordinary elliptic curves of
almost-prime group order over a prime field.

Elliptic curve parameters for cryptography are generally chosen to avoid attacks via particular structures
in elliptic curves, or generic group attacks like the Pohlig-Hellman algorithm that exploit composite group
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orders. Thus for cryptographically relevant curves, the best cryptanalytic algorithms are the Pollard Rho
or parallel collision search algorithms. The expected runtime of these algorithms is well known, and equal
to O(

√
n) elliptic curve operations, where n is the order of the group, and the O() constant can be made

explicit. This runtime is exponential in the size of the public key. Since elliptic curve parameter sizes for
cryptography are chosen based on the running time of the best attacks, this is why cryptography using a
256-bit elliptic curve is considered to offer 128 bits of security. The lack of faster attacks for well-constructed
curves is why elliptic curve cryptography offers much shorter keys, and thus improved performance, over RSA
or finite-field discrete-logarithm based cryptography.

The progress of records for ECDLP cryptanalysis has remained fairly predictable over the past several
decades. The current computational record is 114 bits, with progress attributed largely to Moore’s law,
improvements in hardware, and fast implementations.

Since the current best discrete logarithm algorithms for ECDLP over cryptographically relevant curves
are algorithms that apply to any generic cyclic group, it remains an open question whether there is some
algorithmic approach that can somehow take advantage of algebraic structure in order to achieve improved
cryptanalytic performance. However attempts to mount “index-calculus”-like algorithms (as in NFS) for
ECDLP have led to mixed results. No overarching structure like the number field structure in NFS has yet
been able to be exploited in this case. Research has proven that ECDLP over composite degree extension
fields must be avoided. Beyond this case, some ad hoc algorithms have been proposed. However, bar some
claims relying on unconvincing heuristics, they have not been proven to have greater cryptanalytic potential
than the generic algorithms.

Over binary fields of prime extension degree, no dramatic progress akin to the quasi-polynomial time
algorithm for DLP in GF(2n) has appeared. As such, current ECDLP records in this case are also in the
same size range as for curves over a prime field.

Pairing-friendly curves are also an interesting special case. By construction, these curves allow one to
transfer the elliptic curve DLP to a finite field, whose size is dependent on the curve being chosen. This gives
two distinct avenues for cryptanalysis. On the elliptic curve side, the problem is mostly identical to the case
of general curves (with mostly identical practical scaling as well), with the exception that automorphisms
might reduce the security level by one bit. On the finite field size, recent developments show that some
pairing-friendly curve choices might provide a security level that is several bits short of the claimed security
level. This area is currently evolving with the practical developments of NFS-like algorithms for moderate-size
extension fields (see §2.4).

4 Prospects for the future
We are at the cusp of a great transition in public-key cryptographic algorithms. All of the computational
number theory problems described above that appear to be challenging to solve with a classical computer
can, in theory, be broken in polynomial time on a quantum computer. However, it remains an open question
whether scaling physical quantum computers to the sizes and error tolerances necessary to run Shor’s algorithm
can ever be achieved [9].

Efforts to standardize new “post-quantum” public-key cryptographic algorithms are underway, and will
result in algorithm recommendations within the next few years. Future adoption of these algorithms is likely
inevitable even if a quantum computer capable of Shor’s algorithm is never built. These new algorithms will
have a very different mathematical structure from the existing common public-key cryptographic algorithms,
opening the door to decades of new research in cryptanalysis.

In the meantime, our existing public-key algorithms will continue to be used, and may have a long half-life
when used in conjunction with these newer post-quantum algorithms. Research on classical cryptanalysis
will remain relevant because of the long lifetimes of cryptographic algorithms, and because mathematical
breakthroughs can result in fast progress. While there is currently no consensus among experts on a timeline
for building a quantum computer capable of implementing Shor’s algorithm, or whether such a quantum
computer will ever be feasible to build, experts do agree that the sheer scale of the engineering effort required
is large enough that it would not likely be possible for a single government, say, working alone, to achieve
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such a feat entirely in secret in a short timeline and take the world by surprise. [9] In contrast, progress
in classical cryptanalysis sometimes requires as little as a single mathematical insight and some software
development. We have no evidence that the current running time of the number field sieve is optimal for
factoring and discrete logarithm, and as we have seen in the small-characteristic discrete logarithm case,
practical mathematical progress can happen rapidly after new insights even after decades of stability, taking
even experts by surprise.
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