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Abstract. We present a deflated version of the conjugate gradient algorithm for solving linear
systems. The new algorithm can be useful in cases when a small number of eigenvalues of the
iteration matrix are very close to the origin. It can also be useful when solving linear systems with
multiple right-hand sides, since the eigenvalue information gathered from solving one linear system
can be recycled for solving the next systems and then updated.
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1. Introduction. A number of recent articles have established the benefits of
using eigenvalue deflation when solving nonsymmetric linear systems with Krylov
subspace methods. It has been observed that significant improvements in convergence
rates can be achieved from Krylov subspace methods by adding to these subspaces
a few approximate eigenvectors associated with the eigenvalues closest to zero [2,
4, 7, 8, 13, 14]. In practice, approximations to the eigenvectors closest to zero are
obtained from the use of a certain Krylov subspace; then these approximations are
dynamically updated using the new Krylov subspace. Results of experiments obtained
from these variations indicate that the improvement in convergence over standard
Krylov subspaces of the same dimension can sometimes be substantial, especially when
the convergence of the original scheme is hampered by a small number of eigenvalues
near zero; see, e.g., [2, 8].

In this paper we consider extensions of this idea to the conjugate gradient (CG)
algorithm for the symmetric case. Our starting point is an algorithm recently pro-
posed by Erhel and Guyomarc’h [5]. This is an augmented subspace CG method
aimed at linear systems with several right-hand sides. Erhel and Guyomarc’h [5] pro-
pose an algorithm which adds one specific vector obtained from a subspace related
to a previous right-hand side. We first extend this algorithm to one which handles
an arbitrary block W of vectors. We note that introducing an arbitrary W into
the Krylov subspace of CG has already been considered by Nicolaides in [9]. The
algorithm introduced in this paper is mathematically equivalent to the one in [9].
Nicolaides’s algorithm is directly derived from a deflated Lanczos procedure and uses
the 3-term recurrence version of the conjugate gradient algorithm. The algorithm
in this paper exploits the link between the Lanczos algorithm and the standard CG
algorithm. The LDLT factorization of the projected system obtained from the same
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deflated Lanczos procedure leads to a procedure that is closer to the standard CG
algorithm.

In the second part of the paper, we apply this technique to the situation when
the block W of added vectors is a set of approximate eigenvectors. This, in turn, is
used for solving linear systems with sequential multiple right-hand sides. This kind
of system was also discussed in [15] for GMRES.

2. The deflated Lanczos algorithm. Consider a symmetric positive definite
(SPD) matrix A ∈ Rn×n, and let k real vectors w1, w2, . . . , wk be given, along
with a unit vector v1 that is orthogonal to wi for i = 1, 2, . . . , k. Define W =
[w1, w2, . . . , wk]. We assume that [w1, w2, . . . , wk] is a set of linearly independent
vectors. Since A is SPD, the matrix WTAW is then nonsingular.

The deflated Lanczos algorithm builds a sequence {vj}j=1,2,... of vectors such that

vj+1 ⊥ span{W, v1, v2, . . . , vj}(2.1)

and

‖vj+1‖2 = 1.(2.2)

To obtain such a sequence, we apply the standard Lanczos procedure [12, p. 174]
to the auxiliary matrix

B := A−AW
(
WTAW

)−1
WTA(2.3)

with the given initial v1. The matrix B is symmetric but not necessarily positive
definite. Then we have a sequence {vj}j=1,2,... of Lanczos vectors which satisfies

BVj = VjTj + σj+1vj+1e
T
j ,(2.4)

where

Tj =




ρ1 σ2

σ2 ρ2 σ3

. . .
. . .

. . .

σj−1 ρj−1 σj

σj ρj




and where Vj := [v1, v2, . . . , vj ] and ej is the last column of the j×j identity matrix Ij .
It is guaranteed by the Lanczos procedure that the vectors vj are orthonormal to

each other. From (2.4), it follows that

σj+1vj+1 = Bvj − σjvj−1 − ρjvj .

Using induction and noting that WTB = 0, we have vTj+1W = 0 for j = 1, 2, . . ., and
hence the sequence {vj}j=1,2,... of Lanczos vectors has the properties (2.1) and (2.2).

Substituting B in the Lanczos algorithm applied to B with the right-hand side of
(2.3) gives the following algorithm.

Algorithm 2.1. Deflated Lanczos algorithm.
1. Choose k vectors w1, w2, . . . , wk. Define W = [w1, w2, . . . , wk].
2. Choose an initial vector v1 such that v

T
1 W = 0 and ‖v1‖2 = 1. Set σ1v0 = 0.

3. For j = 1, 2, . . . ,m, Do:
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4. Solve WTAWν̂j = WTAvj for ν̂
5. zj = Avj −AWν̂j
6. ρj = vTj zj
7. v̂j+1 = zj − σjvj−1 − ρjvj
8. σj+1 = ‖v̂j+1‖2; If σj+1 == 0 Exit.
9. vj+1 = v̂j+1/σj+1

10. EndDo
The Deflated-CG algorithm proposed by Nicolaides [9] can be readily obtained

from the above algorithm by deriving a sequence of iterates whose residual vectors
are proportional to the v-vectors.

3. The Deflated-CG algorithm. We now turn to the linear system

Ax = b,(3.1)

where A is SPD. Based on the deflated Lanczos procedure described in section 2,
we wish to derive a projection method, following a standard technique used in the
derivation of the CG algorithm [12, p. 179] from the standard Lanczos procedure.

Here, the wi’s and vj ’s are as defined in the deflated Lanczos procedure and we
use the notations W and Vj introduced in section 2. Assume an initial guess x0 to
(3.1) is given such that r0 := b−Ax0 ⊥ W . We set v1 = r0/‖r0‖2. Define

Kk,j(A,W, r0) ≡ span{W,Vj}.

At the jth step of our projection method, we seek an approximate solution xj

with

xj ∈ x0 + Kk,j(A,W, r0)(3.2)

and

rj = b−Axj ⊥ Kk,j(A,W, r0).(3.3)

Lemma 3.1. If xj and rj satisfy (3.2) and (3.3), then

rj = cjvj+1(3.4)

for some scalar cj. Thus Kk,j(A,W, r0) = span{W, r0, r1, . . . , rj−1} and the residuals
rj are orthogonal to each other.

Proof. Using (3.2), the approximate solution xj can be written as

xj = x0 + Wξ̂j + Vj η̂j(3.5)

for some ξ̂j and η̂j . Moreover, from (2.3) and (2.4) we have

AVj = AW∆j + VjTj + σj+1vj+1e
T
j ,

where ∆j :=
(
WTAW

)−1
WTAVj . Hence

rj = r0 −AWξ̂j −AVj η̂j

= r0 −AWξ̂j −
(
AW∆j + VjTj + σj+1vj+1e

T
j

)
η̂j .(3.6)
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Multiplying (3.6) with WT , and using the orthogonality conditions (2.1) and (3.3),

immediately leads to the following system of equations for ξ̂j and η̂j :

WTAWξ̂j + WTAW∆j η̂j = 0.

Since WTAW is nonsingular, we get ξ̂j = −∆j η̂j . Then (3.5) and (3.6) become

xj = x0 −W∆j η̂j + Vj η̂j

and

rj = r0 − VjTj η̂j − σj+1vj+1e
T
j η̂j .(3.7)

Moreover, since r0 = ‖r0‖2v1 by definition and V T
j rj = 0 by (3.3), we have

V T
j rj = V T

j r0 − Tj η̂j = ‖r0‖2e1 − Tj η̂j = 0,

where e1 is the first column of Ij . Hence

η̂j = ‖r0‖2T
−1
j e1.(3.8)

Substituting (3.8) into (3.7), one can see that rj = cjvj+1 for some scalar cj .
Let Tj = LjDjL

T
j be the LDLT decomposition of the symmetric matrix Tj .

Define

Pj ≡ [p0, p1, . . . , pj−1] = (−W∆j + Vj)L
−T
j Λj ,(3.9)

where Λj = diag{c0, c1, . . . , cj−1}.
Proposition 3.2. The solution xj, the residual rj, and the descent direction pj

satisfy the recurrence relations

xj = xj−1 + αj−1pj−1,

rj = rj−1 − αj−1Apj−1,(3.10)

pj = rj + βj−1pj−1 −Wµ̂j

for some αj−1, βj−1, µ̂j. Thus Kk,j(A,W, r0) = span{W,p0, p1, . . . , pj−1}.
Proof. Let

ζ̂j = ‖r0‖2 (LjDjΛj)
−1

e1.

The approximate solution is then given by

xj = x0 + ‖r0‖2 (−W∆j + Vj)T
−1
j e1

= x0 + Pj ζ̂j .

Because of the lower triangular structure of LjDjΛj , we have the relation

ζ̂j =

[
ζ̂j−1

αj−1

]

for some scalar αj−1. The recurrence relation for xj immediately follows.
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Now, rewriting (3.9) as

PjΛ
−1
j LT

j Λj = −W∆jΛj + VjΛj

and noting that Λ−1
j LT

j Λj is unit upper bidiagonal, we have by comparing the last
columns of both sides of the above equation

pj−1 − βj−2pj−2 = −Wµ̂j−1 + cj−1vj ,

where βj−2 = −cj−1uj−1,j/cj−2 and µ̂j−1 = cj−1ν̂j . Thus, the recurrence for the pj ’s
is obtained.

Proposition 3.3. The vectors pj are A-orthogonal to each other, i.e., PT
j APj

is diagonal. In addition, they are also A-orthogonal to all wi’s, i.e., W
TAPj = 0.

Proof. Indeed,

PT
j APj = PT

j (−AW∆j + AVj)L
−T
j Λj

= PT
j

(
VjTj + σj+1vj+1e

T
j

)
L−T
j Λj

= ΛT
j L

−1
j (−W∆j + Vj)

T (
VjTj + σj+1vj+1e

T
j

)
L−T
j Λj

= ΛT
j L

−1
j TjL

−T
j Λj

= ΛT
j DjΛj

is diagonal and

WTAPj = WT (−AW∆j + AVj)L
−T
j Λj

= WT
(
VjTj + σj+1vj+1e

T
j

)
L−T
j Λj

= 0.

By using the orthogonality of rj ’s and the A-orthogonality of pj ’s, the coefficients
in (3.10) can be expressed via the vectors W, rj and pj .

Proposition 3.4. The coefficients in Deflated-CG satisfy the relations

αj =
rTj rj

pTj Apj
,

µ̂j =
(
WTAW

)−1
WTArj ,(3.11)

βj =
rTj+1rj+1

rTj rj
.

Proof. Multiplying (3.10) with rTj−1 yields

αj−1 =
rTj−1rj−1

rTj−1Apj−1
=

rTj−1rj−1

(βj−2pj−2 + rj−1 −Wµ̂j−1)
T
Apj−1

=
rTj−1rj−1

pTj−1Apj−1
.

Similarly, the expressions for µ̂j and βj−1 are obtained as follows by applying (AW )
T

and (Apj−1)
T

to (3.10), respectively,

µ̂j =
(
WTAW

)−1
WTArj ,
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βj−1 = − pTj−1Arj

pTj−1Apj−1
= − 1

αj−1

(rj−1 − rj)
T
rj

pTj−1Apj−1

=
1

αj−1

rTj rj

pTj−1Apj−1
=

rTj rj

rTj−1rj−1
.

Putting relations (3.10) and (3.11) together gives the following algorithm.
Algorithm 3.5. Deflated-CG.

1. Choose k linearly independent vectors w1, w2, . . . , wk. DefineW = [w1, w2, . . . , wk].
2. Choose an initial guess x0 such that W

T r0 = 0, where r0 = b−Ax0.
3. Solve WTAWµ̂0 = WTAr0 for µ̂ and set p0 = r0 −Wµ̂0.
4. For j = 1, 2, . . . ,m, Do:
5. αj−1 = rTj−1rj−1/p

T
j−1Apj−1

6. xj = xj−1 + αj−1pj−1

7. rj = rj−1 − αj−1Apj−1

8. ¿βj−1 = rTj rj/r
T
j−1rj−1

9. Solve WTAWµ̂j = WTArj for µ̂
10. pj = βj−1pj−1 + rj −Wµ̂j

11. EndDo
To guarantee that the initial guess x0 satisfies WT r0 = 0, we can choose x0 in

the form

x0 = x−1 + W
(
WTAW

)−1
WT r−1,(3.12)

where x−1 is arbitrary and r−1 := b − Ax−1. In fact, x0 with WT r0 = 0 must have

the form (3.12). To see this, we write x0 = x−1 +W
(
WTAW

)−1
WT b for some x−1.

Since WT r0 = 0, we have WTAx−1 = 0 and hence x0 = x−1+W
(
WTAW

)−1
WT r−1.

Formula (3.12) was also used in [5, 10, 11, 16].
A preconditioned version of Deflated-CG can be derived in a straightforward way.

Suppose we are solving the split-preconditioned system

L−1AL−T y = L−1b, x = L−T y.

Set M = LLT . Directly applying the Deflated-CG algorithm to the system L−1AL−T y =
L−1b for the y-variable and then redefining the variables,

L−TW → W,

L−T yj → xj ,

Lrj → rj ,

L−T pj → pj ,
(3.13)

yields the following algorithm.
Algorithm 3.6. Preconditioned Deflated-CG.

1. Choose k linearly independent vectors w1, w2, . . . , wk. Define W = [w1, w2, . . . , wk].
2. Choose x0 such that W

T r0 = 0, where r0 = b−Ax0. Compute z0 = M−1r0.
3. Solve WTAWµ̂0 = WTAz0 for µ̂ and set p0 = −Wµ̂0 + z0.
4. For j = 1, 2, . . . ,m, Do:
5. αj−1 = rTj−1zj−1/p

T
j−1Apj−1

6. xj = xj−1 + αj−1pj−1

7. rj = rj−1 − αj−1Apj−1

8. zj = M−1rj
9. βj−1 = rTj zj/r

T
j−1zj−1
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10. Solve WTAWµ̂j = WTAzj for µ̂
11. pj = βj−1pj−1 + zj −Wµ̂j

12. EndDo
When W is a null matrix, Algorithm 3.6 reduces to the standard preconditioned

CG algorithm; see, for instance, [12, p. 247]. In addition to the matrices A and M ,
five vectors and three matrices of storage are required: p, Ap, r, x, z, W, AW , and
WTAW .

4. Theoretical considerations. We observe that Deflated-CG is a generaliza-
tion of AugCG [5] to any subspace W . Since the theory developed in [5] did not use
the fact that W was a Krylov subspace, the convergence behavior of the Deflated-CG
algorithm can be analyzed by exploiting the same theory. Define

H = I −W
(
WTAW

)−1
(AW )

T

to be the matrix of the A-orthogonal projection onto W⊥A and

HT = I −AW
(
WTAW

)−1
WT

to be the matrix of the A−1-orthogonal projection onto W⊥. These matrices satisfy
the equality

AH = HTA = HTAH.(4.1)

We first prove that the Deflated-CG algorithm does not break down, and it con-
verges. Then we derive a result on the convergence rate and some other properties.

Proposition 4.1. Algorithm 3.5 is equivalent to the balanced projection method
[6], defined by the solution space condition

xj+1 − xj ∈ Kk,j(A,W, r0),(4.2)

and the Petrov–Galerkin condition

r0 ⊥ W and rj ⊥ Kk,j(A,W, r0).(4.3)

Proof. It is easy to show by induction that pj ∈ Kk,j(A,W, r0) hence the solution
space condition is satisfied in Algorithm 3.5. It satisfies by construction the Petrov–
Galerkin condition.

Conversely, the BPM defined with (4.2) and (4.3) satisfies all the recurrence
relations stated in the Deflated-CG algorithm.

The following result follows immediately.
Theorem 4.2. Let A be a symmetric positive definite matrix and W be a set of

linearly independent vectors. Let x∗ be the exact solution of the linear system Ax = b.
The algorithm Deflated-CG applied to the linear system Ax = b will not break down
at any step. The approximate solution xj is the unique minimizer of the error norm
‖xj − x∗‖A over the affine solution space x0 + Kk,j(A,W, r0) and there exists ε > 0,
independent of x0, such that for all k

‖xj − x∗‖A ≤ (1 − ε) ‖xj−1 − x∗‖A.

Proof. See Theorems 2.4, 2.6, and 2.7 in [6] and Theorem 2.2 in [5].
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We can now directly apply the polynomial formalism built in [5] to obtain con-
vergence properties.

Theorem 4.3. Let κ be the condition number of HTAH. Then

‖x∗ − xj‖A ≤ 2

(√
κ− 1√
κ + 1

)j

‖x∗ − x0‖A.(4.4)

Proof. See Theorem 3.3 and Corollary 3.1 in [5]. Theorem 3.3 proves that rj =
Pj(AH)r0, where Pj is a polynomial of degree j so that, using (4.1), we get rj =
Pj(H

TAH)r0. Then the minimization property leads to the desired result.
Deflated-CG can also be viewed as a preconditioned conjugate gradient (PCG)

but with a singular preconditioner. Define

C = HHT .

We use the taxonomy defined in [1], where two versions of PCG are denoted by
Omin(A,C,A) and Odir(A,C,A).

Lemma 4.4. The Deflated-CG algorithm is equivalent to the version Omin(A,C,A)
of PCG applied to A with the preconditioner C = HHT and started with r0 such that
r0 ⊥ W .

Proof. The relations p0 = −Wµ̂0 + r0 and pj = −Wµ̂j + βj−1pj−1 + rj can
be rewritten, respectively, as p0 = Hr0 and pj = Hrj + βj−1pj−1 . However, since
rj ⊥ W , we have rj = HT rj so,

p0 = Cr0 and pj = Crj + βj−1pj−1.

These are exactly the same relations as those of Omin(A,C,A). We must now prove
that the coefficients αj and βj are the same. It is sufficient to show that (rj , Crj) =
(rj , rj). We have (rj , Crj) = (rj , HHT rj) = (HT rj , H

T rj) = (rj , rj).
Here the preconditioner C is singular so that convergence is not guaranteed.

However, since the initial residual is orthogonal to W , the following result can be
proved.

Theorem 4.5. Deflated-CG is equivalent to the version Odir(A,C,A) of PCG
applied to A and C and started with r0 ⊥ W . Therefore Deflated-CG converges.

Proof. Since αj = (rj , rj), we have αj = 0 except the case when xj is the
exact solution. Hence Deflated-CG does not break down and, as shown in [1], both
versions Omin and Odir are equivalent. Now, using Theorem 3.1 in [1], we infer that
Deflated-CG converges.

To derive the convergence rate, we prove another equivalence.
Theorem 4.6. Deflated-CG is equivalent to CG version Omin (A,I,A), applied

to the linear system HTAHx̃ = HT b. Therefore, the convergence rate is governed by
the condition number κ of HTAH and given by (4.4).

Proof. Deflated-CG starts with x0 = Hx̃0 +Wy0 given by formula (3.12). There-
fore,

r0 = HT r0 = HT (b−Ax0) = HT b−HTAHx̃0 −HTAWy0 = HT b−HTAHx̃0.

Algorithm Omin(A,I,A) applied to HTAHx̃ = HT b is as follows:

1. Choose x̃0. Define r̃0 = HT b−HTAHx̃0 and p̃0 = r̃0.
2. For j = 1, 2, . . ., until convergence Do:
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3. α̃j−1 = r̃Tj−1r̃j−1/p̃
T
j−1H

TAHp̃j−1;
4. x̃j = x̃j−1 + α̃j−1p̃j−1;
5. r̃j = r̃j−1 − α̃j−1H

TAHp̃j−1;

6. β̃j−1 = r̃Tj r̃j/r̃
T
j−1r̃j−1;

7. p̃j = r̃j + βj−1p̃j−1;
8. EndDo

Now, define xj = Hx̃j+Wy0 and pj = Hp̃j . Using rj = HT rj and HTAWy0 = 0,
we get

rj = HT (b−Axj) = HT b−HTAHx̃j = r̃j .

Now

p̃Tj−1H
TAHp̃j−1 = (Hp̃j−1)TA(Hp̃j−1) = pTj Apj .

Putting everything together, we get α̃j = rTj rj/p
T
j Apj and β̃j−1 = rTj rj/r

T
j−1rj−1. If

we rewrite the above algorithm using xj , rj , pj we get exactly algorithm Deflated-CG.
Therefore, the classical result on the convergence rate of CG can be applied; see, e.g.,
[12, p. 194].

5. Systems with multiple dependent right-hand sides. In this section, we
present a method which applies the Deflated-CG algorithm to the solution of several
symmetric linear systems of the form

Ax(s) = b(s), s = 1, 2, . . . , ν,(5.1)

where A ∈ Rn×n is SPD and where the different right-hand sides b(s) depend on the
solutions of their previous systems. This problem has been recently considered by
Erhel and Guyomarc’h [5]. The main idea in [5] is to solve the first system by CG and
to recycle the Krylov subspace Km (A, x0) created in the first system to accelerate the
convergence in solving the subsequent systems. The disadvantage of this approach
is that the memory requirements could be huge when m is large [3] since it requires
keeping a basis of an earlier Krylov subspace Km (A, x0). An alternative whose goal
is to maintain a similar convergence rate, is to adopt the idea of eigenvalue deflation,
as used in the Deflated-GMRES algorithm; e.g., see [2, 4, 8]. Deflated GMRES injects
a few approximate eigenvectors into its Krylov solution subspace. These approximate
eigenvectors are usually selected to be those hampering the convergence of the original
scheme. Imitating the approach of Deflated-GMRES, we will add some approximate
eigenvectors, usually corresponding to eigenvalues nearest zero, to the Krylov solution
subspace when we solve each, except the first, system of (5.1). The eigenvectors are
refined with each new system (5.1) being solved. In this way, we may expect that the
convergence will be improved as more systems are solved. The memory requirements
for this approach are fairly low, since only a small number of eigenvectors, typically
4 to 10, are required.

We start by deriving the convergence rate from section 4 when W is a set of
eigenvectors. We label all the eigenvalues of A in increasing order:

λ1 ≤ λ2 ≤ · · · ≤ λn.

In the special case where the column vectors, w1, w2, . . . , wk, of W are exact eigen-
vectors of A associated with the smallest eigenvalues λ1, λ2, . . . , λk, then clearly

κ(HTAH) = λn/λk+1.
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In this special case, the improvement on the condition number of the equivalent system
solved by Deflated-CG is explicitly known. When the column vectors of W are not
exact but near eigenvectors associated with λ1, λ2, . . . , λk, one can only expect that

κ(HTAH) ≈ λn/λk+1.

5.1. Computing approximate eigenvectors. There are several ways in which
approximate eigenvectors can be extracted and improved from the data generated by
the successive conjugate gradient runs applied to the systems of (5.1). Let

W (s) = [w
(s)
1 , w

(s)
2 , . . . , w

(s)
k ]

be the desired set of eigenvectors to be used for the sth system. Initially W (1) = ∅.
In what follows vector and scalar quantities generated by Deflated-CG applied to
the sth system of (5.1) are denoted by the superscript s. Ideally, W (s) is the set
of eigenvectors associated with the k eigenvectors corresponding to the eigenvalues
λ1, λ2, . . . , λk, of A. Deflated-CG is used to solve each of the systems of (5.1) except
the first which is solved by the standard CG.

After the sth system of (5.1) is solved, we update the set W (s) of approximate
eigenvectors to be used for the next right-hand side, yielding a new system W (s+1).
In [2], three projection techniques are described to obtain such approximations. Here
we only describe one of them, suggested by Morgan [8] and referred to as harmonic
projection. This approach yielded the best results in finding eigenvalues nearest zero.
Given l linearly independent vectors { z1, z2, . . . , zl }, the method computes the k
desired approximate eigenvectors by solving the generalized eigenproblem

Gy − θFy = 0,

where Z := [z1, z2, . . . , zl] , G = (AZ)
T
AZ and F = ZTAZ. For each new system,

the matrix Z is defined as follows:

Z(s) = [W (s), P
(s)
l ],(5.2)

where1

P
(s)
l =

[
p
(s)
0 , p

(s)
1 , . . . , p

(s)
l−1

]
.

The generalized eigenvalue problem

G(s)yi − θiF
(s)yi = 0, i = 1, . . . , k,(5.3)

is solved, where

F (s) =
(
Z(s)

)T
AZ(s), G(s) =

(
AZ(s)

)T
AZ(s)(5.4)

and where θ1, . . . , θk are the k smallest Ritz values. Then the new approximate set
of eigenvectors to be used for the next system is defined as

W (s+1) = Z(s)Y (s),(5.5)

1One may keep the system of residual vectors r
(s)
i instead of the search directions p

(s)
i . But the

formulas (5.7)–(5.9) become more complex.



A DEFLATED CG ALGORITHM 1919

where

Y (s) ≡ [y
(s)
1 , . . . , y

(s)
k ].

This describes the method mathematically. From the implementation point of
view, it is possible to avoid the matrix-matrix multiplication AZ(s) in G(s) and F (s)

in (5.4).
Lemma 5.1. Let

R
(s)
l =

[
r
(s)
0 , r

(s)
1 , . . . , r

(s)
l−1

]
, ∆̃

(s)
l+1 =

[
µ̂

(s)
0 , µ̂

(s)
1 , . . . , µ̂

(s)
l

]
,

and

L̃
(s)
l =




1

α
(s)
0− 1

α
(s)
0

1

α
(s)
1

− 1

α
(s)
1

. . .

. . . 1

α
(s)

l−1

− 1

α
(s)

l−1



, Ũ

(s)
l =




1 −β
(s)
0

1 −β
(s)
1

. . .
. . .

1 −β
(s)
l−1

1




.

Then the matrix AP
(s)
l can be computed by

AP
(s)
l = R

(s)
l+1L̃

(s)
l =

(
W (s)∆̃

(s)
l+1 + P

(s)
l+1Ũ

(s)
l

)
L̃

(s)
l .(5.6)

Proof. The result follows immediately from the following two relations of Algo-
rithm 3.5:

r
(s)
j = p

(s)
j − β

(s)
j−1p

(s)
j−1 + W (s)µ̂

(s)
j ,

Ap
(s)
j =

1

α
(s)
j

r
(s)
j − 1

α
(s)
j

r
(s)
j+1.

Next, the relation established in the following proposition enables us to solve the
harmonic problem (5.3) without requiring additional products with the matrix A.

Theorem 5.2. Define

D̃
(s)
l = diag{ d(s)

0 , d
(s)
1 , . . . , d

(s)
l−1 }, where d

(s)
j =

(
p
(s)
j

)T
Ap

(s)
j ,

and

G̃(s) =




d
(s)
0

α
(s)
0

(
1 + β

(s)
0

)
− d

(s)
1

α
(s)
0

− d
(s)
1

α
(s)
0

d
(s)
1

α
(s)
1

(
1 + β

(s)
1

)
− d

(s)
2

α
(s)
1

− d
(s)
2

α
(s)
1

. . .
. . .

. . .
. . . − d

(s)

l−1

α
(s)

l−2

− d
(s)

l−1

α
(s)

l−2

d
(s)

l−1

α
(s)

l−1

(
1 + β

(s)
l−1

)



.
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Then the matrices G(s), F (s), and AW (s) are given by

G(s) =


 (

AW (s)
)T

AW (s)
(
W (s)

)T
AW (s)∆̃

(s)
l+1L̃

(s)
l(

∆̃
(s)
l+1L̃

(s)
l

)T (
W (s)

)T
AW (s) G̃(s)


 ,(5.7)

F (s) =

((
W (s)

)T
AW (s) 0

0 D̃
(s)
l

)
,(5.8)

AW (s+1) = [AW (s), AP
(s)
l ]Y (s),(5.9)

where AP
(s)
l is given by (5.6).

Proof. The desired results can be obtained by using (5.5), (5.4), (5.6), and the
A-othorgonality of P against W .

In order to use this approach we must save d
(s)
i , α

(s)
i , β

(s)
i , µ̂

(s)
i , and p

(s)
i of the

first l steps of the algorithm as well as the matrices W (s), AW (s), and (W (s))TAW (s).

5.2. Deflated-CG algorithm for dependent multiple right-hand sides.
In summary the deflated algorithm for multiple right-hand sides works as follows.
Assume we want to deflate with k eigenvectors. In a first run, the standard CG is

run with a number of steps l which is no less than k. The data d
(1)
i , α

(1)
i , β

(1)
i for

i = 0, 1, . . . , l − 1, and P
(1)
l = [p

(1)
0 , . . . , p

(1)
l−1] are saved. Then G(1) and F (1) are

computed according to (5.7) and (5.8) with s = 1. The eigenvalue problem (5.3)
is solved for k eigenvectors which will constitute the columns of Y (1) and W (2) is

computed as W (2) = [P
(1)
l ]Y (1) since W (1) = ∅. In subsequent steps, the deflated

algorithm is used instead of the standard CG using the set W ≡ W (s). The matrices
AW (s) and (W (s))TAW (s) are computed using (5.9). We proceed as before except

that W (s+1) is now defined by W (s+1) = [W (s), P
(s)
l ]Y (s). The matrices G(s) and F (s)

to compute the eigenvectors y
(s)
i are computed according to the formulas (5.7)–(5.9).

A preconditioned version of the method described above can be readily obtained
by considering the split-preconditioned systems

L−1AL−T y(s) = L−1b(s), x(s) = L−T y(s), s = 1, 2, . . . , ν.

As in the case of preconditioned Deflated-CG, we apply the method to systems
L−1AL−T y(s) = L−1b(s) for the y-variable and then redefine the original variables
according to (3.13). Everything in (5.3) remains the same except G(s) which now
becomes

G(s) =


 (

AW (s)
)T

M−1AW (s)
(
W (s)

)T
AW (s)∆̃

(s)
l+1L̃

(s)
l(

∆̃
(s)
l+1L̃

(s)
l

)T (
W (s)

)T
AW (s) G̃(s)


 ,(5.10)

where M = LLT .
Also the computation of AP

(s)
l in (5.6) now becomes

M−1AP
(s)
l = M−1R

(s)
l+1L̃

(s)
l =

(
W (s)∆̃

(s)
l+1 + P

(s)
l+1Ũ

(s)
l

)
L̃

(s)
l .(5.11)

Putting these relations together we obtain the following algorithm.
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Algorithm 5.3. Deflated PCG for multiple right-hand sides.
1. Select l and k with l ≥ k.
2. Solve the first system of (5.1) with the standard PCG.
3. Compute G(1) and F (1) using (5.10) and (5.8). Set W (1) = ∅.
4. For s = 2, 3, . . . , ν, Do:

5. Solve (5.3) for k eigenvectors y
(s−1)
1 , y

(s−1)
2 , . . . , y

(s−1)
k . Set W (s) =[

W (s−1), P
(s−1)
l

]
Y (s−1).

6. Choose l ≥ 0.
7. Solve the sth system of (5.1) by preconditioned Deflated-CG with W = W (s).

Compute G(s) and F (s) according to (5.10), (5.7), (5.8), and (5.11).
8. EndDo

In addition to the memory required by the preconditioned Deflated-CG algo-

rithm, l + 1 vectors µ̂
(s)
0 , µ̂

(s)
1 , . . . , µ̂

(s)
l must be stored along with the three matrices

L̃
(s)
l , U

(s)
l , and D̃

(s)
l .

6. Practical considerations. We now consider the memory and computational
cost requirements of the deflated CG algorithm. We assume that k � n so that we
can neglect terms not containing n.

In Deflated-CG, we must store W and AW in addition to the usual vectors of
CG. This means an additional storage of 2k vectors of length n. Deflated-CG requires
computing Hrj at each step. This can be done using common BLAS2 operations
in zj = (AW )T rj and rj −W (WTAW )−1zj . The cost of these operations is O(kn)
so that the CPU overhead is not too high. There remains to consider the cost of
computing W . In AugCG, which can be viewed as a particular case of Deflated-
CG, W is the set of descent directions from the first system, so that the set W is
A-orthogonal. The method has at least two advantages: Only the last column of
W needs to be saved instead of all W . The projection H simplifies into only one
orthogonalization (for only the last vector wk). However, if s is greater than 2, then
it is not easy to refine W . The only solution would be to store all consecutive sets of
direction descents W (s) at a cost of a high memory requirement.

From a computational point of view, it is advantageous to have a set of vectors W
that is A-orthogonal, in which case, the matrix WTAW becomes diagonal. However,
this is not essential and the difference in cost involved is minimal.

Approximate eigenvectors are computed from the generalized eigenproblem (5.3).

We need to store not only W and AW but also l vectors P
(s)
l , amounting to 2k + l

vectors of length n. The computation of W using (5.5) and AW using (5.9) re-
quire mainly BLAS3 operations of complexity O(n(l + 1)k) and the computation of
WT (AW ) is a BLAS3 operation of complexity O(nk2). If k and l are kept small, the
overhead is modest.

7. Numerical experiments. In this section, we present some examples to illus-
trate the numerical convergence behavior of Algorithm 5.3 and the analysis in section
5. All the experiments were performed in MATLAB with machine precision 10−16.
The stopping criterion for Examples 1–3 is that the relative residual ‖b−Axj‖2/‖b‖2

be less than 10−7. All the figures except Figure 7.4 plot the true relative residual
versus the number of iterations taken.

Example 1. The purpose of this example is to test the analysis of section 5. We
considered the matrix A = Lapl(20, 20), a matrix of size n = 400 generated from a 5-
point centered difference discretization of a Laplacian on a 22×22 mesh (20 points in
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Fig. 7.1. Example 1.

each direction). The right-hand side b of (3.1) was chosen to be a random vector with
independent and identically distributed (iid) entries from a normal distribution with
mean 0 and variance 1 (N(0, 1)). The largest eigenvalue of A is 7.9553 and the four
smallest ones are 0.0447, 0.1112, 0.1112, 0.1777. We first computed the exact eigenvec-
tors w1, w2, w3 associated with the three smallest eigenvalues 0.0447, 0.1112, 0.1112,
respectively, and then applied the standard CG with x0 = 0, the Deflated-CG with
x−1 = 0 in (3.12), and W = [w1], [w1, w2], [w1, w2, w3], respectively, to the system
(3.1). Their convergence behaviors are plotted in Figure 7.1 with solid, dashdot, plus,
and dashed curves, respectively.

From Figure 7.1, we can see that the convergence behavior of Deflated-CG with
W = [w1] is better than that of CG. Deflated-CG with W = [w1] solves a sys-
tem with the condition number κ = 7.9553/0.1112. On the other hand, the con-
vergence rates of Deflated-CG with W = [w1] and W = [w1, w2], respectively, are
almost the same since they are solving systems with the same condition numbers
κ = 7.9553/0.1112. It can be understood that Deflated-CG with W = [w1, w2, w3]
has the best behavior since the corresponding condition number κ = 7.9553/1.777 is
the smallest.

Examples 2 and 3 demonstrate the efficiency of our algorithm when applied to
(5.1). We always choose the initial guess x0 = 0 in solving the first system and
x−1 = 0 in (3.12) for the remaining systems solving. The number of right-hand sides
of (5.1) is 10 and the b(s)’s are independent random vectors with iid entries from
N(0, 1). Although we have selected the right-hand sides independently, we believe
same conclusions can be made when they are dependent. Also, we kept the data in
the first l = 20 steps, and k = 5 approximate eigenvectors associated with smallest
eigenvalues were calculated via the QZ algorithm in Matlab when we solved each
system. We compared our algorithm with Algorithm AugCG [5] with m = 30 for
the second system (s = 2). All the test matrices were from the Harwell–Boeing
collection.2

2http://math.nist.gov/MatrixMarket/data/



A DEFLATED CG ALGORITHM 1923

0 10 20 30 40 50 60 70 80
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

bcsstk15

(b) Iterations

tr
ue

 r
el

at
iv

e 
re

si
du

al

0 50 100 150
10

− 8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

1138bus

(a) Iterations

tr
ue

 r
el

at
iv

e 
re

si
du

al

Fig. 7.2. (a) Convergence curves for matrix BCSSTK15 of Example 2. (b) Convergence curves
for matrix 1138bus of Example 3.

The convergence behavior of system s = 1, corresponding to the standard pre-
conditioned CG algorithm, is plotted with a dotted line. The convergence behaviors
of systems s = 2, . . . , s = 10 using Algorithm 5.3 are plotted with a dashed line.
The convergence behavior of system s = 2 using Algorithm AugCG is plotted with a
solid line.

Example 2. This example is the second matrix named BCSSTK15 from the BC-
SSTRUC2 group of the Harwell–Boeing collection. The order of the matrix is 3948.
The system was preconditioned by incomplete Cholesky factorization ic(1). Results
are shown in Figure 7.2 (a).

Example 3. The matrix is the fourth one named 1138BUS from the PSADMIT
group. The order of the matrix is 1138. The ic(0) preconditioner was used and the
results are shown in Figure 7.2 (b).

For both Examples 2 and 3, we observe that the number of iterations decreases
significantly after the first few systems solving and quickly tends to its lower bound.
This phenomenon is more remarkable when l and k are increased. It is because the
approximate eigenvectors we chose quickly approach to their corresponding limits
in the first few rounds of refinements. When these approximate eigenvectors have
reached their limits, the number of iterations no longer decreases. The convergence
speed of the approximate eigenvectors may depend on the distribution of eigenvalues.
We computed several extreme eigenvalues of the matrices L−1AL−T in both examples
and found that the condition number λn/λ1 and the number λk+1/λ1 in Example 2
are both less than the corresponding ones in Example 3. To some degree, the number
λk+1/λ1 may reflect the conditions of the matrices F (s) and G(s) given by (5.4). This
observation may help to explain why the approximate eigenvectors in Example 2 have
faster convergences than those in Example 3.

In practice, we may omit line 5 or vary k and l when we find that the approxi-
mate eigenvectors are no longer improved when running Algorithm 5.3. However, the
question of how to define a criterion to characterize the situation when eigenvectors
no longer improve is still an open problem.

The algorithm does not always behave so well as demonstrated in the last two
examples. The one below illustrates this situation.



1924 Y. SAAD, M. YEUNG, J. ERHEL, AND F. GUYOMARC’H

0 50 100 150 200 250 300 350
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

s3rmt3m3

(a) Iterations

tr
ue

 r
el

at
iv

e 
re

si
du

al

0 50 100 150 200 250 300 350
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

s3rmt3m3

(b) Iterations

tr
ue

 r
el

at
iv

e 
re

si
du

al

Fig. 7.3. (a) Convergence curves for matrix S3RMT3M3 of Example 4. (b) Convergence curves
with correction of rj for matrix S3RMT3M3 of Example 4.

Example 4. The test matrix is the one named S3RMT3M3 from the CYLSHELL
group of Independent Sets and Generators.3 In this experiment, we chose l =
k = 10 for Algorithm 5.3 and m = 30 for Algorithm AugCG. Moreover, the in-
complete Cholesky preconditioner ic(2) was used and we set the stopping criterion
‖b− Axj‖2/‖b‖2 < 10−8 and the number of right-hand sides of (5.1) to be 5. Every-
thing remained the same as in Examples 2 and 3 and the convergence behaviors were
plotted in Figure 7.3 (a).

We observe from the experiment that systems 2, 3, and 5 solved by Deflated-
CG and system 2 solved by AugCG do not converge. What is worse is that their
convergence seems to be subject to instability. The situation is even worse for larger l
and k. Theoretically, the residuals rj in both Deflated-CG and AugCG are orthogonal
to all the columns of W . In practice, however, this orthogonality is gradually lost as
the algorithms progress. In fact, Figure 7.4 shows a plot of the function

othor(j) = min

(
wT

i rj
‖wi‖2‖rj‖2

, i = 1, 2, . . . , k

)

for system 2 solved by AugCG and system 5 solved by Deflated-CG. Both curves of the
function othor(j) show that loss of orthogonality is so high that it ruins convergences.

One remedy to recover orthogonality is to add the reorthogonalization step

rj := rj −W
(
WTW

)−1
WT rj(7.1)

right after rj is computed in the algorithms. According to the analysis in section 6,
the computational cost of the step is O(kn). We ran Algorithm 5.3 and Algorithm
AugCG again with this correction included and plotted the results in Figure 7.3 (b).
This time, only systems 3 and 5 solved by Deflated-CG and system 2 solved by AugCG
do not converge and all of them have decreasing convergence curves. By comparison,
we also plotted the function othor(j) after correcting rj with (7.1) in Figure 7.4. Note
that the curves with correction are much lower than those without correction.

The derivation of Deflated-CG is basically parallel to that of CG. In Deflated-CG,
the standard Lanczos procedure is applied to the auxiliary matrix B in (2.3) and the

3http://math.nist.gov/MatrixMarket/data/
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Fig. 7.4. Orthogonality of rj against W of Example 4. Dashed: system 2 solved by AugCG;
dashdot: system 5 solved by Deflated-CG; solid: system 2 solved by AugCG with correction; dotted:
system 5 solved by Deflated-CG with correction.

matrix Tj in (2.4) is splitted into LDLT decomposition. Unlike the case of CG, both
B and Tj are not necessarily positive definite. As a result, we cannot expect that
Deflated-CG will have the same robust behavior as CG does.

8. Conclusion. An algorithm was presented which incorporates deflation to the
conjugate gradient algorithm with arbitrary systems of vectors. The method can be
used for solving linear systems with multiple and dependent right-hand sides. The
main advantage of this approach is that the size k of the subspace to be kept can be
kept small without loss of efficiency relative to methods which require saving whole
previous Krylov subspaces. Another advantage is that it is easy to refine the set W as
each new system is solved. Theoretical results as well as experimentation confirm that
convergence which results from the deflation improves substantially as the number of
systems increases. As is expected, as soon as the set W of approximate eigenvectors
is computed accurately, there is no further improvement for each new system to be
solved unless the dimension of W is increases.
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