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NEW VARIANTS OF BUNDLE METHODS
NOUVELLES VARIANTES DES METHODES DE FRISCERUX
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In this paper, we study bundle-type methods for convex optimization,
based on successive approximations of the optimal value. They enjoy optimal
efficiency estimates; furthermore, they provide attractive alternatives to
solving convex constrained optimization problems, convex-concave saddle-
point problems, and variational inequalities. We present a number of possible
variants, establish their efficiency estimate, and give some illustrative
numerical results.

Cet article concerne des méthodes de type faisceaux pour
l'optimisation convexe, construisant des approximations successives de la
valeur optimale. Leur vitesse de convergence est optimale; de plus elles
fournissent d'intéressantes méthodes pour le cas contraint, les problémes de
point-selles, et les inégalités variationnelles. Nous présentons plusieurs
variantes possibles, établissant leur vitesse de convergence, et nous les
ilustrons sur quelques exemples numériques.
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0. Introduction
0.1. Consider the basic problem of minimizing a convex func-
: " n .
tion f over a "simple" convex set @ < R . Having generated the

iterates x,,...,xX, € Q and using an oracle to compute function-
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values f(x) and subgradient-values f’(x), a fruitful object is the

cutting-plane model

P J))T(x-x plisi=o

under-estimating f. To exploit it, the very first idea is the

fi(x) = max{f(x

classical cutting~plane algorithm of [Ke. 1960], [CG 1959], in

which x,
i+l

from the theoretical and practical viewpoints; see [NYu 1983] for

minimizes f[ over Q; it is known as very slow, both

example.

More recently, some refinements of this idea have been propo-
sed, under the wording of bundle methods. In their simplest form
[Le. 1978), [Mi. 1982}, {Ki. 1983}, the next iterate is

x = argmin{f.(x) + 1 u Ix-x+|2 | x € Q) (0.1}
i+l i 2 1 i )

+
where the current prox-center x

) is a certain point from the set

{xl,...,xi} and u, is the current penalty parameter. If f(xi+1)
turns out to have “sufficently decreased" (descent step), the
+

otherwise (null step), x\ .= x..

rox-center is updated to x .
P © P ) i+1 i

{+1'
This idea looks natural: the model accumulates all the information
about f obtained so far, and the penalty term reduces the influen-
ce of the model's inaccuracy, thereby reducing instabilities. A
bundle method is thus determined by two rules: (1) to define a
"sufficient” decrease, and (2) to select the penalty parameter.

Satisfactory rules have been developed for (1}, based on a compa-

rison between the actual value f(xl +1) and the "ideal” value



fi(xiﬂ) of the model. As for (2), the question is not so clear:
the simplest choice u; = ] is theoretically possible but experien-
ce demonstrates that efficiency requires "on line" adjustments, as
in [Ki. 1990}, (SZ 1991l

0.2. Alternatives to (0.1) can be considered, which have the
same stabilizing effect. Let us mention two of them: the "trust-
region approach"

X1 argmin(ft(x) | x € Q, lx-x{l = ri},
which does not seem to have been studied, and the proposal of [LSB
1981], in which the control parameter is a certain € whose choi-
ce implies a detour in the dual space. In what follows, we study a
fourth variant: instead of u, T, or g, we control the value of
the model at the next iterate: we choose a level li and replace
(0.1) by
X, , = ar‘gmin(-llx'«xfl‘2 | x € Q, F,(x) =1} (0.2)
i+1 2 i i i

it turns out that the level-sets of the model are rather "stable",
so that extremely simple rules can be used for updating the level
Li' This property also allows us to forget about the concepts of
prox-center and null-step: x: may be systematically set to the
last iterate x; in (0.2).

Our basic strategy works as fallows: at the i-th step, compu-
te the minimal value f (1) of the model over Q (assumed bounded);
also, let

FUD =minif(x ) | 1s jsi)= f(x:)

J

be the best value of the objective obtained during the first i

steps, and call

) = £ - £ 00 (0.3)



* . . : .
the i-th gap (xi certainly minimizes f within A(i) and our aim is

to force A(i) - 0). Then, having A € (0,1), solve (0.2) with the

value
L= A () + (170 £ (1) = £00 + A 80, (0.4)
0.3. Needless to say, the value A = 1 in (0.4) would result
in X T x:_ﬂ; a value close to 1 would mimic a pure subgradient

method with very short Steps. possibly converging to a wrong
point. By contrast, A = 1 would yield the convergent (even though
slow) pure cutting plane methods; this suggests that small values
should be less dangerous than large values of A, i.e., of the le-
vel.

An arbitrary but fixed A € (0,1) gives the following effici-
ency estimate: to obtain a gap smaller than €, it suffices to per-
form

M(e) s ¢ (LD/e)? (0.5)
iterations (here, L and D are the Lipschitz constant of f and the
diameter of Q respectively, ¢ is a constant depending only on A).
Such an efficiency is optimal in a certain sense (see [NYu 1983]):
suppose Q is a ball of radius D/2, the dimension is n =2
4_1(LD/€)2, take an arbitrary method but usé at most 4"1(LD/€)2
evaluations of f and f’ (and ‘no other information from the prob-
lem); then, there exists a function for which this method does not
obtain an accuracy better than €. As a result, our method cannot
be improved uniformly with respect to the dimension by more than
an absolute constant factor.

To obtain the estimate (0.5), the key argument is as follows:

consider, for a given io, the maximal sequence I =



{io,i0+1,...,i1} of iterations (we call it a group), at the end of
which the gap has not been reduced much, namely,

A(i]) 2z (1-2) A(i) for all i € I.
Then, all level-sets characterising (0.2) with { € I have a point
in common. This crucial property allows the following ma joration
of the number of iterations in the group:

11 s c(LD/aCi)Y,

where ¢ is a constant depending only on A. Then, using the fact
that the gap is reduced by (1-A) at the iteration i1+1, repeated
use of this argument results in the majoration (0.5).

In Section 2 .we present a number of variants of the above al-
gorithm, all enjoying the same efficiency property (0.5).

0.4. The subsequent sections are devoted to problems for
which the same idea can be considered. After all, the above "le-
vel" principle gives an implementable mechanism to solve a system
of inequations (via a method resembling Newton’s method, see [Ro.
1972)): we want to find x € Q such that

fi(x’') + (f’(x’))T(x—x’) [= f(x)] = f* for all x’ € Q.
Here, there are infinitely many indices, so they are accumulated

one after the other: x' = x, x

1 2,...; and f* is unknown, so the

level-strategy takes care of it.

The essential feature to make the method work is to define an
appropriate nonnegative gap as in (0.3), which is 0 when the prob-
lem is solved. The whole approach is therefore to minimize this
gap, an idea which can actually be extended to several problems.

A. Saddle-point problems (Section 3): given a convex-concave

function f(x,y) defined on the direct product of Q and H {(convex



and compact), find a saddle point (x*,y*) € QxH, i.e. a point sa-
tisfying

max{f(x*,y) | vy € HY = f(x*,y*) = min(f(x,y*) | x € Q).

This just amounts to minimizing the convex function

F(x,y) = max f(x,*) - mino f(,y)
over QxH. The difficulty is that we have no oracle computing the
values and the subgradients of F; nevertheless, a set of iterates
((xj’yj) | 1= j = i} yields the model

F(x,y) = ?i(x) - £,(0), (0.6)
where the standard first-order information is used:
700 = max{f(xuy )+ (£l y ) Gex ) 1 15§ s 0,
£ily) = mindfCx iy )+ (e y DNey-y ) 1 15§ = iy

thus, Fi underestimates F. We know that the minimal value of F is
zero; the minimal value of each Fi is therefore nonpositive and
provides the gap Ai=_Fi' This enables us to define a method of the
type (0.2} for saddle-point problems with the efficiency estimate
(0.5).

It is interesting to note the decomposed property of the mo-
det (0.6): to minimize it, it suffices to solve successively the
two linearized optimization problems

min,, f(x) and then max, f.(y).
This suggests an interpretation of our app‘roach in terms of games:
there are two players x and y, in charge of minimizing f and -f,
respectively; ?i and (-f i) can be interpreted as under-
approximations of their worst-case loss-functions.

We recall that the usual algorithms for saddle-points are ba-

sed on subgradient optimization [Er. 1966]. In [Au. 1972], approa-



ches similar to ours were considered, but of course based on pure
cutting-plane approximations.
B. Convex constrained problems (Section 4). Given the functi-

on G, convex on the compact convex set Q, our approach to solve

min{f(x) | G(x) = 0, x € Q}
is via the equivalent problem

min{max[f(x)—f*,G(x)] | x € Q. (0.7
(it is to alleviate notations that we assume just one inequality
constraint). The optimal value f* is of course unknown, which int-
roduces a new difficulty: no oracle can compute the function-~value
in (0.7). We therefore under-estimate f* by the' optimal value
f*(i) of |

min(fi(x) | Gi(X) =0, x € Q}
(Gi being the cutting-plane approximation of G), and we propose
two approaches.

First, duality theory tells us that (0.7) is equivalent to
max{h(cc)-af* | 0 =a=1 (0.8)
where
h{e) = mindef(x) + (I-2)G(x) | x € Q)

can be over-estimated by the function

hi(oc) = min{af(xj) + (1-~a)G(x ) | 1= j =i}

J
Thus, a gap is obtained:

Ai = max{hi(a) - ocf*(i) | 0O0sas1]
which must be reduced to the optimal value in (0.8), i.e. in
(0.7), namely O.

»
In our second approach, f is replaced by a parameter t, and

the problem is to solve the equation



k(t) = min{max{f(x)-t,G(x)} | x € Q} = O
(this is close to the method of "loaded functional” [Lb. 1977]).
Here again, x cannot be computed exactly. A gap is therefore defi-
ned, by way of cutting-plane approximations in k, and t is updated
to the current f *( i) whenever this gap diminishes by a sufficient
amount.

In both methods, the need to identify f while solving the
saddle point problem (0.7) is paid by an extra cost in the effici~
ency estimate, which becomes as follows: to reach a point x satis-
fying

f(x) = f* + € and G(x) = &,
its suffices to ber‘f orm
Mce) = ¢ (LD/e)In(LD/e)
iterations. Note, however, that no Slater assumption is needed; as
a result, the efficiency is not affected by large Lagrange multi-
pliers, as is the case with methods involving exact penalty.

C. Variational inequalities with monotone operators (Section
5) also admit a solution procedure of the type (0.2) with effici-
ency estimate (0.5). Indeed, consider again Section O0.l: in the
definition of the model fi’ replace the values f(xi) by the cur-
rent best value f*( i). The result is a further underestimate of
the model:

8,x) = £ rmaxi(s (e o) | 15 j = b = £ (%),
so a variant of the level algorithm is readily obtained if we rep-
lace the function fz‘ by ¢i (note the similarity with the conjugate
subgradient approach of {Le. 1975}, [Wl. 1975]). The interest of

this variant is that function-values are no longer involved, so it



can be used to solve the problem
find x € Q s.t. (F(x’'),x’-x) =20 for all x’ € Q (0.9)
(F is a (possibly multivalued) monotone mapping and Q is again
closed and convex). Here, the monotone mapping F plays the role of
f’ and ¢i allows the definition of a gap Ai associated with the
function
f(x) = sup{(F(x’ ), x-x’') | x’' € Q).

The resuiting method is reminiscent of [MD 1989], but conti-
nuity of F(-) is not assumed (although we require both F and Q to
be bounded).

Recall that the standard formulation of a variational inequa-
lity is )l

find x € Q s.t. (F(x),x'-x) z 0 for all x’ € Q, {0.10)
which is not the same as (0.9). It can be proved, however, that
(0.9) and (0.10) are equivalent in the maximal monotone case (see
Appendix for precise formulations).

An important computational advantage of (0.9) as compared to
(0.10) is that we have to minimize the function f which is convex,
but so would not be the case when dealing with the gap

f#(x) = sup{(F(x),x-x’') | x’ € Q}
associated with (0.10).

A final comment: solving the applications described above was
made possible thanks to the introduction of levels into the bundle
approach. In return, the same applications can be solved by the
other variants of bundle methods, such as those alluded to in Sec-
tions 0.1, 0.2. This may be useful to remove any compactness as-

sumptions; furthermore, the similarity between bundle methods and



sequential quadratic programming (see [PD 1978]) opens the way to
attractive alternatives to the exact penalty approach {cf. the end
of Section B above).

In this technical report, we describe the methods and
establish their theoretical efficiency estimates. We also give a
number of nmerical illustrations (Section 6).

Main notations. |+| denotes the standard Euclidean norm on
n

R . If Q@ is a nonempty closed convex subset in R” and x e [Rn, then

n(x,Q) denotes the (unique) point of Q closest to x.

1. Problems

We consider the following four problems:
(Min) minimize f(x) s.t. x €Q
Notation and assumptions on the data: f is convex Lipschitz conti~
nuous on the bounded closed convex set Q < IRn. L denotes the Lip-
schitz constant of f, D denotes the diameter of Q with respect to
the norm |+| and V = L D. f* denotes the minimal value of f on Q.
Oracle: given an input x € Q, computes f(x) and the support
functional f’(x) of f at x, |f'(x)| = L.

Accuracy measure: e(x) = { te, x € Q

f(x)-min

Qf, x €Q
(Sad) find a saddle point of f(x,y) on QxH

Notation and assumptions on the data: f is convex in x € Q, conca-
ve in y € H and Lipschitz continuous on the direct product of bo-
unded closed convex sets Q ¢ an, H ¢ ant Lx (Ly) denotes the Lip-
schitz constant of f with respect to x (resp., y); Dx (Dy) denotes

the diameter of Q (resp., H) with respect to the norm |+|; V deno-

tes the quantity L D+ L D_.
x x y y



Oracle: given an input (x,y) € QxH, computes f(x,y) and the
support functionals f)’c(x,y) of f(-,y) at x and f;,(x,y) of f(x,+)
at y, |f (ey)l =L, Ify(x,y)l = Ly-

Accuracy measure: €(x,y) = { to, (x,y) & QxH

mafo(x,-)-min fle,y), (x,y) € QxH

Q
(CMin) minimize f(x) st. x € Q, gi(X) =0,i=1..m
Notation and assumptions on the data: f is convex Lipschitz conti-
nuous on the bounded closed convex set @ ¢ !Rn; gi, i = 1,...,m,
are convex Lipschitz continuous on Q. L denotes the maximum of the
Lipschitz constants of f, gl,...,gm; D denotes the diameter of Q@
with respect to the norm l-|; V = DL, G = max(gl,...,gm). The pro-
blem is assumed to be consistent, and f* denotes the optimal value
of the objective over the feasible set.

Oracle: given an input x € Q, computes f(x), gl(x),..., gm(x) and
the support functionals f’(x), g’z(x),..., g,;_l(x) of f, &ppr8,, at

x such that |f’(x)| = L, Ig’i(x)l <L, i=1,..,nm.

Accuracy measure: £(x) = { to, x € Q "
max{f(x)-f ,G(x)}, x € Q
(Var) find x € Q such that FT(y)(x-y) 20,yeQ

Notation and assumptions on the data: F is a monotone bounded-
valued operator on the bounded closed convex set Q c R". L denotes

the quantity sup,, |F(-)|, D denotes the diameter of Q with respect

Q
to the norm |+|, and V denotes the quantity L D.

Oracle: given an input x € @, computes F(x).

to, X € Q
Accuracy measure: £(x) = { T
max{F (y)(x-y) | y € Q}, x € Q

10



2. Methods for (Min)
2.1. Notation. Assume we have called the oracle at the points

X ppeesX; € Q. Then the following objects are defined:

Model: f,(x) = max(f(x ) + (f'(x ))T(x-xj) L 1= j=i)

J
Remark 2.1.1. Clearly,

fI(X) < f2(x) < .. = fi(X) = f(x), x € Q, (2.1)

all fj are Lipschitz continuous with Lipschitz constant L and
(x,))=f(x), 1= js=i 2.2
f ¥ fz XJ J (2.2)

e-subdifferential of the model at x € Q:
i.
8 (x) = {p | f(y) =z fi(x) -+ Pl(yx) ¥y eRY = (p = Zt,
t, J=1
i
- . T, _
z 0, '}: tj =1, tj (f(xj) + (f (xj)) (xi xj)} Z

J J=1 J

™Mo

’ . t.
f(xJ) | 1

fi(x) - ¢}
Remark 2.1.2. From (2.1) - (2.2) it follows immediately that
aefi(xi) c 6€f(xi). (2.3)

Model’s best value: f (i) = min ft(')

Q
Function’s best value: f*(i.) = min(f(xl),...,f(xi))
Gap: A(D) = £(i) - f (1)

Best point: x: € Argmin{f(x) | x € {xl,...,xi})

Remark 2.1.3. In view of (2.1) one has

FD=f s sfi)=s
* * x * } (2.4)

fzfE@z.zf)zrf

Remark 2.1.4. In view of (2.4) we have
.3 E.
f(xi) - f = A (2.5)
and

A = A2) = 2 A1)z 0 (2.6)

Truncated model: ¢i(X) max((f’(xj))T(x-xJ.) | 1= j = i)

Remark 2.1.5. Clearly,

11



¢1(x) = ¢2(x) s ... 2.7

and all ¢J.(-) are Lipschitz continuous with Lipschitz constant L.

Truncated model’s best value: ¢ (i) = mino ¢i(°)
Truncated gap: 8(i) = - ¢ (i)
Remark 2.1.6. The following relations hold:
8 =z 82)=z .. z28(i)=z0 (2.8)
* *
¢i(xi) z 0; f(xi) - f = &(i). (2.9)

a Monotonicity of &(+) immediately follows from (2.7). To
*
prove nonnegativity of &(i), let x be an optimal solution to
»*
(Min). Then (f’(xj))T(x -xJ.) = 0 for all j, so that ¢i(x*) = 0.
"(2.8) is proved. The first relation in (2.9) is evident. To prove
the second relation, note that f(x*) z f(xj) + (f’(xj))T(x*—xJ.) z
* , T . * *
f(xi) + (f (xj)) (x -xj), J = L., i, whence f(x ) = f(xi) +

B.0x7) = FO) + B (0.

2.2. Methods
2.2.1. Level Method (LM)
A. Description of LM
Parameters: A € (0,1)
Initialization: X, is an arbitrary point of Q
i-th step:
1) Call the oracle, x; being the input
2) Compute £, (i), £ (i), x (i)
3) Set
Wi) = £ (1) + A AL,
Xy = n(xi,(x [ x € Q, £,0c) = WOD

B. Efficiency estimate. We claim that

12



e(x}) = ML),
i>c(A) (V/c)2 » e(x:) = g,
where
e = =02 a7 @™
(note that min c(+) = 4 = c(0.29289...)).
Proof.
B.1. The efficiency estimate
e(x}) = B(1) (LM.1)
was established in (2.5).
B.2. Set S, = [f*(i),f*(i)]. Then (see (2.4))
;28,2 .., 151 = AL, (LM.2)
where |S| denotes the length of the segment S.
B.3. Lemma. Let i” > i’ be such that
A(L") = (1-A) A(L). (LM.3)
Then
L7 = 1), (LM.4)
o Indeed, the length of the segment {s € Si, | s = (i)} is
(1-A) A(i’) and, since Si’ 2 Si” ((LM.1)), the converse of (LM.4)
would imply A(i") = ISi,,I < (1-A) A(i’), which is impossible. m
B.4. Let us fix € > O and assume that for certain N and all i
< N we have A(i) > e. Let us split the integer segment I = 1,.. N

in groups II""’ Ik as follows. The last element of the first

group is jl N, and this group contains precisely those i € I for

which A(i)

A

(I-A)_IA(J'I). The largest element of I, which

Jor
does not belong to the group Il’ if such an element exists, is the

last element of 12, and the latter group consists precisely of

those i = jz, for which A(i) s (I—A)_I A(jz). The largest element

13



of I, j3, which does not belong to I, is the last element of 13,

2)

and this group consists of those i = satisfying A(i) = (1—)\)-1

3
A(j3), and so on. Let u(l) be the minimizer of the function fj ()
l

over Q. Lemma B.3, applied with an arbitrary i’ e IL and with

i" = jl‘ demonstrates that f*(jl)) = fj (u(l)) = (i) for all i €
l

I.. (2.1) shows that fj(u(L)) = I(i) for all i,j € I

! Thus, we

Tz
have established the following:

the (clearly convex) level sets Q, = {x € Q| fi(x) = l(i)} asso-

ciated with ieIl, have a common point (namely, u(l)). (LM.5)

B.5. By virtue of standard properties of the projection
mapping, (LM.5) imply

_ 2 2 :
T = Ixi+1 w()|” = T, dist (xi,Qi), ie Il' (LM.6)

i+l
We also have f(x) - Ui = f(x) - Ui) = ) - W =

(1-A)A(i) and fi(xiﬂ) = I(i). From the Lipschitz property of fi'

. . _ B -1 _
it follows that dlst(xi,Qi) = lxi x, .| z L Ifi(xi) fi(xiﬂ)l

i+1
= 17! (1-2)A(i). Thus,

=t - L2 (1-a)% 2%i) =

-2 2.2, . .
Tiel i i L “(1-2)°a (Jl), tel

1
Because 0 = T, = DZ (evident), the latter inequality immediately

implies that the number Nl of elements in I ) satisfies the estima-

te

N, = DZLZ(z-A)'ZA'Z(jl). (LM.7)

B.6. Form the definitions of N and of a group, we have
Sy . S O
A(Jl) = A(N) > ¢, A(J“]) > (1-A) A(Jl).

These relations combined with (ILM.7) imply N = £ N, = DZLZ(I--M_‘2
=1

=wre -0 Azl -

l
s c—-2 (I-A)Z(l-v
lz]

14



2.2.2. Proximal Level Method (PLM)
A. Description of PLM
Parameters: A € (0,1); u = (1-1)
Initialization: X, is an arbitrary point of Q; 4’(0) = »
i-th step:
1) Call the oracle, X, being the input
2) Compute f,(i), £ (i), x (i)
3) Set
(i) = f, (1) + X AL,

(D) = { L(i), if ACL) < pA’ (i-1)

min{l(i),l’(i-1)}, otherwise

ATCL) = { ACD), if A(L) < pA’(i-D
A’ (i-1), otherwise
»*
X1 = n(xi,(x | x € @, fi(X) = 1"()h

Remark. The difference between PLM and LM is first that, in

PLM, x,

*
i+1 is the projection of the i-th best point x, (and not the

i-th iterate xi) onto the level set of the i-th model fi,; second,
the levels defining the above level sets are different: in LM this
quantity, (i), divides in a fixed vratio the segment
[f*(i),f*(i)]. and it can increase as well as decrease, as i vari-
es, while in PLM the corresponding quantity is forbidden to incre-
¥*
ase until the gap r (i) - f*(i) decreases "substantially".
B. Efficiency estimate. We claim that
*
e( xi) = M),
, 2 *
i >cdA) (V/e)” = s(xi) = g,
e = (a-0™F -

(note that min c(+) = 6.75 = ¢(0.18350...)).
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Proof.
B.l. The efficiency estimate
e(x7) = ACD) (PLM.1)
was established in (2.5).
B.2. Set S, = [£,(1),f (D]. Then (see (2.4))

51 2 52 2 .., lsil = A(i), (PLM.2)

where |S| denotes the length of a segment S.
B.3. Let us fix £ > 0 and assume that for certain N and all i
= N we have A(i) > e£. Let us split the integer segment I = 1,...,N

in groups 11,..., Ik as follows. The first element of the first

group is i, = 1, and this group contains precisely those i € I for

1

which A(i) = p.A(iI). The smallest element of I, i_, which does not

2I
if such an element exists, is the first

belong to the group II’

element of 12, and the latter group consists precisely of those i

z iZ, for which A(L) = uA(iz). The smallest element of I, i3,

is the first element of I and

which does not belong to IIUIZ’ Py

this group consists of those i = i satisfying A(i) = ul‘.\(i3), and
so on. Note that the following relations come from the description

of the method:

A (L) = A(il), { e Il; (PLM.3)
l'(il) = l(il), (i) = min{l’' (i-D,I(i)}, i € Il\{il}' (PLM.4)
Lemma 2.2.1.B.3 implies that, for all t’, i" € Il’ i o= i,

we have f*(i") = (i’). Combined with (PLM.4), this observation
means that f*(i") = '(i') if i', i" € Il and i’ = i". In particu-
lar, the level sets Qi = {x € Q | fi(x) s l’(i)} are nonemply, so

that the method is well-defined.

Now note that Oi 2 Oi+1’ if i, i+l e Il' since fi+1(-) =
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fi(') and 1’ (i+1) = L’ (i). Thus,
the (clearly convex) level sets Oi ={x € Q | fi(X) = 1l'(i)} asso-~
ciated with i € Il are nonempty and contain Oj . (PLM.5)
l
B.5. For a fixed 1, let us divide the group Il into the

sequential subgroups JI""'Jq in such a way that the best points

x: associated with i € Jr coincide with each other and differ from

*
the remaining best points associated with other i € I,. Thus, x, =

l

x(r) for i € Jr' and the points x(1),..,x(q) are

mutually different. In view of the description of the method we

have

x, ,=mx(r),Q.), it € J_,
i+ ¢ r } (PLM.6)
% o,

x(r+1) = = n(x(r),Qi(_r)), if Jr_+

Xitr)+1

where i(r) is the last element of Jr.

1

B.6. By virtue of the standard properties of the projection

mapping, from the inclusions Qi € Q it follows for for i € Jr:

i-1
2

IZ = T + |x.-x, .|, (PLM.T7)

T = |x(r)-x, 7% i1

i+1 i+1

We also have f(x(r)) - () = £(i) - U'(1) = f() - W) = (1
- A) A(i) > 0, so that x(r) does not belong to Oi; it immediately
follows that f(x;,)) = 1'(i) = WD), while f(x) = fx) = £ (i)
= (1-A) A(i) + U(i). Thus, fi(xi) - fi(xiﬂ) = (1-a)A(L), and sin-
ce fi. is Lipschitz continuous with constant L, we conclude that

x| = Lo = L"(:—A)Zml). This inequality, combi-
2

. -2 4
ned with (PLM.7), means that |x(r) xi(’_)”] z IJ’_IL (1-2)

Ag(il), where lJrI denotes the cardinality of Jr'

Now let us minorize the quantity RZ = |x(1) ~ xJ. HIZ, where
l

jl is the last element of Il' We have: x(1) is a certain point of

Q; x(2) is the projection of x(1) onto Oi(l); x(3) is the projec-
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tion of x(2) onto Oi(Z)""' x(q) is the projection of x(q-1) onto

Oi(q-—l)' and le+1 is the projection of x(gq) onto le. The sets Q,

involved in the latter family are included the next into the pre-

vious, so that RZ = Ix(D) - x(2I% + .. + Ix(q-D - (@] +

Ix(q) - xJ. +1|2; the latter sum, as it was proved, is not less
1
tan L 2a-0%%i) = 11 = Pt II,1. On the other
r
2 2
hand, we clearly have R~ = D", whence
11,1 = < 12 D% (-a)” A_Z(il). (PLM.8)

We have A(ik) > £ (k is is the number of the last group Il in the

segment I = 1L..N) and A ) > TSR (i) (the latter

inequality is a' consequence of our definition of the groups I).
k k
11 =% II Z p?

_ -2,
Therefore N = 1 ] L 1 K+1- ll = L D" (1- A) A (Lk) sz (1

l
<122 -t e v Al = con) wre) m

N ™Mx

)2(1 -

2.2.3. Dual Level Method (DLM)

A. Description of DLM

Parameters: A, p € (0,1)

Initialization: X, is an arbitrary point of Q
i-th step:

1) Call the oracle, x; being the input

2) Compute f*(i), £, x:

3) Set
i) = £, + A A (= £7(0) = (1-A) AL,
e'(1) = flx) - WD) - p (1-2) (D)
(note that e'(1) = 0, since fGx) = L) = f() - WD =

(1-A) A(i)). Define p; as the solution to the problem

18



P(i): minimize IpI2 subject to p € 8 . f.(x.)
MO

. -2
X, = n(xi - u(1-A)A01) Ipil Pi.Q).
B. Efficiency estimate. We claim that
e(x}) = B(D),
2 *
i > ca,u) (Ve)™ » e(xi) =< g,
e = pla-02 a7 @

(note that min c(A,u) = 4 “-2 = ¢(0.29289...,11)).
A

Proof.
B.l. The efficiency estimate
e(x) = 1) (DLM.1)
was established in (2.5).
B.2. Set S, = [£,(),f ()] Then (see (2.4))
51 2 5‘2 2 .., ISiI = A(i), (DLM.2)
where |S| denotes the length of a segment S.
B.3. Let us fix € > 0 and assume that for certain N and all i
< N we have A(i) > €. Let us split the integer segment I = 1,...,N
in groups Il""' Ik as follows. The last element of the first
group is ‘jI = N, and this group contains precisely those i € I for
which A(i) = (I—A)-IA(J'I). The largest element of I, jz, which

does not belong to the group I, if such an element exists, is the

1
last element of IZ' and the latter group consists precisely of
those { = j2, for which A(i) = (1-?\)—1 A(jz). The largest element
of I, j3, which does not belong to 12, is the last element of 13,
and this group consists of those { = j3 satisfying A(i) = (1—?\)_1
A(j3), and so on.

Let u(l) be the minimizer of the function fj (+) over Q. Lem-
l
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ma 2.2.1.B.3, applied with an arbitrary i’ e Il and {" = jl' de~

monstrates that f*(Jl)) = fJ. (u(l)) = (i) for all i € Il' (2.1)
l

shows that fj(u(L)) = (i) for all i,j € I,. Thus, we have estab-

l
lished the following:

the (clearly convex) level sets Oi = {x ¢ Q | fi(X) = I(i)} asso~
ciated with i € Il’ have a common point (namely, u(l)). (DLM.3)

B.4. Let i € Il' The definition of p; implies

fix) = fle) + pl Gemx) - €7 = £ ). In particular, £iu(i)
< FuD) = 10, while fix) = fx) - €7 = WD + w AN
A(L) =z l(i). We conclude that fi(xi) - fi(u(L)) =z u(1-A)A(L), so

that pTi-(xi—u(’l)) = p(1-A)A(L). Since x4 = n(xi - u(l-Aa)aci)
Ipil-2 pi,O), it follows that

]

. Ix,,, - wDI® = 1 - 1p, 72 P

L+1 i+

clearly, Ipil = L (since fi is Lipschitz continuous with constant
L) and A(i) = A(jl)’ and we obtain

_ _ 2 -2 2, 22
Tipp 0, - u@WIT =1, = L7 @ (-A)°87°()), i e I, (DLM.4)

Because 0 = T, = D‘2 {evident), the latter inequality immediately

implies that the number N, of elements in Il satisfies the estima-

l
te

N, = DZsz'Z(J—A)'ZA'Z(jl). (DLM.5)

B.5. From the definitions of N and of a group, we have
Sy : vl
A(JI) = A(N) > &, A(JHZ) > (1-A) A(Jl).

These relations combined with (DLM.5) imply N =2Nl <
l=]

2D _ e -0 A -0

D18 %08 7% (-n)
121
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2.2.4. Truncated Level Method (TLM)

A. Description of TLM

Parameters: A € (0,1)

Initialization: X, is an arbitrary point of Q

i-th step:

1) Call the oracle, x; being the input

3 * . *
2) Compute ¢ (1), f (i), X,
3) Set
(i) = =(1-1) &(i),
X LEME | x € Q, ¢, (x) = 11¢9));

Remark. The difference between LM and TLM is that the latter
method uses an artificial model which involves only subgradients,
not the values of the objective. This feature of TLM is not
valuable in the case of (Min), but it will be useful for (Var).

B. Efficiency estimate. We claim that

*
e(xi) = &(i),
2 *
i>c(d) (Vie)” s e(xi) < g,
cn) = (=078 a7 e-a)7!
{(note that min c(+) = 4 = ¢(0.29289...)).
Proof'.
B.1. The efficiency estimate
*
e(xi) = &(i) (TLM.1)
was established in (2.9).
B.2. Set Si. = [¢,(i),0]. Then (see (2.7), (2.8)) Si # @ and
S;25,2 ., Isil = 8(i), (TLM.2)

where |S| denotes the length of a segment S.

B.3. Let us fix € > 0 and assume that for certain N and all i
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< N we have &8(i) > €. Let us split the integer scgmen:. I = 1,...,N

in groups I]""' Ik as follows. The last element ot the first

group is j1 = N, and this group contains precisely those i € I for
which &(i) = (J—A)_Ia(jl). The largest element of I, jZ’ which
does not belong to the group II’ if such an element exists, is the

last element of 12, and the latter group consists precisely of

those t = for which &(i) = (I—A)_I 6(j2). The largest element

Jo

of I, _j3, which does not belong to I is the last element of 13,

2,

and this group consists of those i = satisfying 8(i) = (I-A)_I

I3
6(j3), and so on.

B.4. From (TLM.2) it immediately follows that ¢ (J)) = L),

i e Il' Let u(l) be the minimizer of the function ¢j (+) over Q;
l
then for { € Il one has ¢i(u(l)) = ¢j (u(l)) = l(i). Thus, we have
l

established that

the (clearly convex) level sets Q; = {x € Q | ¢i(x) = (i)} asso-

ciated with [ € IL' have a common point (namely, u(l)). (TLM.3)
B.S. The standard properties of the projection mapping and

(TLM.3) imply

_ _ 2 . .2 .
T = lxi” u(l)|” = T dist (xi,()i), ilel (TLM.4)

i+1 U

We also have ¢i(xi) - Wi) =z - I(i) (see (2.9)), so that ¢i(xi) -
W)= (1-2)8(i), and ¢i(xi+1) = I(i). Since ¢, is Lipschitz
continuous with the constant L, it follows that dist{xi,Qi) = Ixi
-1 -1 .

- xi.+1| = L |¢i(xi) - ¢i(xi+1)| = L~ (1-A)8(i). Thus,

=1 ~L2a0% 8% =t - L21-00%% ), i e 1,

i+1 i i l L
Because 0 = T = D2 (evident), the latter inequality

immediately implies that the number Nl of elements in Il satisfies

the estimate
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N, = pPrPa-07%s 7% ). (TLM.5)
B.6. From the definitions of N and of a group, we have
Sy . sy Lo
5(J1) = &8(N) > &, 5(JL+1) > (1-1) 5(Jl).

These rela