Rapport
(Rapport De Recherche)
Année : 1993
Résumé
This paper concerns power series of an arithmetic nature that arise in the analysis of divide-and-conquer algorithms. Two key notions are studied : that of B-regular sequence and that of Malherian sequence with their associated power series. Firstly we emphasize the link between rational series over the alphabet {x0, x1,....,xB-1} and B-regular series. Secondly we extend the theorem of Christol, Kamae, Mendes France and Rauzy about automatic sequences and algebraic series to B-regular sequences and Malherian series. We develop here a construtive theory of B-regular and Malherian series. The examples show the ubiquitous character of B-regular series in the study of arithmetic functions related to number representation systems and divide-and-conquer algorithms.
Domaines
Autre [cs.OH]Rapport De Recherche Inria : Connectez-vous pour contacter le contributeur
https://inria.hal.science/inria-00074743
Soumis le : mercredi 24 mai 2006-16:13:01
Dernière modification le : mardi 7 février 2023-03:40:42
Archivage à long terme le : mardi 12 avril 2011-18:51:04
Dates et versions
- HAL Id : inria-00074743 , version 1
Citer
Philippe Dumas. Algebraic aspects of B-regular series. [Research Report] RR-1931, INRIA. 1993. ⟨inria-00074743⟩
Collections
98
Consultations
99
Téléchargements