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Optimal WSN Deployment Models for Air
Pollution Monitoring

Ahmed Boubrima, Walid Bechkit and Hervé Rivano

Abstract—Air pollution has become a major issue of mod-
ern megalopolis because of industrial emissions and increasing
urbanization along with traffic jams and heating/cooling of
buildings. Monitoring urban air quality is therefore required
by municipalities and by the civil society. Current monitoring
systems rely on reference sensing stations that are precise
but massive, costly and therefore seldom. In this paper, we
focus on an alternative or complementary approach, with a
network of low cost and autonomic wireless sensors, aiming at a
finer spatiotemporal granularity of sensing. Generic deployment
models of the literature are not adapted to the stochastic nature
of pollution sensing. Our main contribution is to design integer
linear programming models that compute sensor deployments
capturing both the coverage of pollution under time-varying
weather conditions and the connectivity of the infrastructure. We
evaluate our deployment models on a real data set of Greater
London. We analyze the performance of the proposed models
and show that our joint coverage and connectivity formulation is
tight and compact, with a reasonable enough execution time. We
also conduct extensive simulations to derive engineering insights
for effective deployments of air pollution sensors in an urban
environment.

Index Terms—Air pollution monitoring, Detection of threshold
crossings, Atmospheric dispersion modeling, Wireless sensor
networks (WSN), Deployment, Coverage, Connectivity.

I. INTRODUCTION

A IR pollution affects human health dramatically. Accord-
ing to World Health Organization (WHO), exposure to

air pollution is accountable to seven million casualties in 2012
[1]. In 2013, the International Agency for Research on Cancer
(IARC) classified particulate matter, the main component
of outdoor pollution, as carcinogenic for humans [2]. Air
pollution has become a major issue of modern megalopolis,
where the majority of world population lives, adding industrial
emissions to the consequences of an ever denser urbanization
with traffic jams and heating/cooling of buildings. As a con-
sequence, the reduction of pollutant emissions is at the heart
of many sustainable development efforts, in particular those
of smart cities. Monitoring urban air pollution and detecting
pollution peaks is therefore required by both municipalities
and the civil society, wanting to design and assess, or ask for,
pollution mitigation public policies.

Most of actual air quality monitoring is operated by inde-
pendent authorities [3]. Conventional measuring stations are
equipped with multiple lab quality sensors. These systems are
however massive, inflexible and expensive. An alternative – or
complementary – solution would be to use wireless sensor net-
works (WSN) which consist of a set of lower cost nodes that
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can measure information from the environment, process and
relay them to some base stations, denoted sinks [4]. The main
advantages of a WSN infrastructure, namely self-organization
and healing as well as energetic autonomy of the nodes, for
air pollution monitoring is to obtain a finer spatiotemporal
granularity of measurements, thanks to the resulting lighter
installation and operational costs [5]. Pollution monitoring
may target two objectives: i) the periodic air quality sampling
and mapping; and ii) the detection of threshold crossings in
order to trigger adequate alerts [6]. In this paper, we focus on
the second application where sensors are deployed to control
concentrations of pollutants released by pollution sources
like factories, sewage treatment plants and urban traffic [7].
We investigate on the computation of minimum-cost optimal
deployments that ensure both pollution coverage and network
connectivity while considering the phenomenon dispersion.

Minimizing the deployment cost is a major challenge in
WSN design. The problem consists in determining the optimal
positions of sensors and sinks so as to cover the environment
and ensure the network connectivity while minimizing the
deployment cost [8]. The deployment is constrained by the
cost of the nodes and sinks, but also by operational costs such
as the energy spent by the nodes [9][10][11]. The network is
said connected if each sensor can communicate information to
at least one sink [12]. Many papers on the deployment issue
have assumed that two nodes are able to communicate with
each other if the distance between them is less than a radius
called the communication range [13]. The coverage issue has
often been modeled as a k-coverage problem in which at least
k sensors should monitor each point of interest [14]. The
majority of deployment approaches uses a simple detection
model which assumes that a sensor is able to cover a point in
the environment if the distance between them is less than a
radius called the detection range [14], [15]. This can be true
for some applications like presence sensors but is not suitable
for pollution monitoring. Indeed, a pollution sensor detects
pollutants that are brought in contact by the wind. The notion
of detection range is therefore irrelevant in this context. In
order to define a realistic formulation of pollution coverage, we
consider pollution propagation models that take into account
the inherently stochastic weather conditions.

In this paper, we propose two optimization models for the
deployment of WSN for air pollution monitoring based on
a preliminary work and few discussions that were presented
in [16]. The expected deployment should ensure pollution
coverage and network connectivity while minimizing the de-
ployment cost. Based on the pollution dispersion modeling and
the related work on ILP formulations of WSN coverage and
connectivity, we first propose an optimization model where
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pollution coverage and network connectivity are modeled inde-
pendently. Then, we propose an enhanced and more effective
model in which we give a joint formulation of coverage and
connectivity using only the flow concept. The enhanced model
is compact and tighter than the first one. The computation time
is therefore reduced so that scenarios at the scale of large cities
are tractable. The two proposed models take into account the
probabilistic sensing of pollution sensors and are designed to
handle multiple scenarios of weather conditions.

The remainder of this paper is organized as follows. We
first review some related works on ILP formulations of WSN
coverage and connectivity in section II. Then, we present and
analyze the atmospheric dispersion modeling of pollutants in
section III. Section IV details our two proposed optimization
models while section V presents the simulation dataset and
the obtained results. Finally, we conclude and propose some
perspectives in section VI.

II. RELATED WORK

Progress in Operational Research has made solvers of Inte-
ger Linear Programs so efficient that mathematical modeling
is a widely used approach for network optimization despite
the theoretical complexity of the underlying combinatorial
problems [17]. Several integer linear programming formula-
tions have been proposed in the literature to model wireless
sensor networks deployment [9][10][11]. The problem consists
in determining the optimal node positions while ensuring
the coverage of the deployment field and the connectivity
of the network [18]. The objective may be to minimize
the deployment financial cost or to maximize the lifetime
of the network. Coverage and connectivity constraints have
been sometimes modeled separately. In some related works
[8], authors assume that coverage involves connectivity by
considering that the communication range is a multiple of
the detection range. In other works, authors assume that
coverage is already ensured with some existing sensors, and
thus formulate only the connectivity constraint [13].

The majority of the existing optimization strategies formu-
late the coverage of points of interest based on the distance
between sensor locations and the coordinates of points [8].
This cannot be applied to the air quality monitoring where
electrochemical sensors are usually used. In this kind of
sensors, the pollutant must touch the sensor in order to be
detected. Therefore, works that consider a detection range
around sensors cannot be used in our application.

Chakrabarty et al. [15] were the first to give an ILP formu-
lation to the deployment problem of WSN. They represent the
deployment field as a two or three dimensional grid of points.
They first propose a nonlinear formulation for minimizing the
cost of sensor deployment while ensuring complete coverage
of the sensor field. Then, they apply some transformations
to linearize the first model and obtain an ILP formulation.
The authors formulate coverage based on the distance between
the different points of the deployment field. Each sensor has
a circular detection area, which defines the points that the
sensor can cover. Unfortunately, this measure of coverage
is inadequate to the air quality monitoring since a sensor

positioned at a point A cannot cover a neighboring point B if
there is a difference between pollution concentrations at the
two points. Altinel et al. [19] proposed another formulation
based on the Set Cover Problem, which is equivalent to the
aforesaid model but less complex. They also extend their
formulation to take into account the probabilistic sensing of
sensor nodes while assuming that a node is able to cover
a given point with a certain predefined probability. Despite
that, this new formulation is still generic since the dependency
between the errors of the deployed sensors is not considered.

Works that are more recent have targeted the connectivity
and multi-objective deployment issues. The authors of [9]
formulate connectivity based on the flow problem while as-
suming that sensors generate flow units in the network and
verify if sinks are able to recover them. Another connectivity
formulation has been introduced in [11] where authors base
on an assignment approach. They introduce in their ILP
formulation new variables to define the communication paths
between sensors and sinks. However, this model involves
more variables than the one based on the flow problem and
is therefore more complex. In another work [10], authors
study the trade-off between coverage, connectivity and energy
consumption. They formulate the problem as an ILP model
and then propose a multi-objective approach to optimize
coverage, the network lifetime and the deployment cost while
maintaining the network connectivity.

Most of the previously mentioned models trying to be
generic, they do not take into account the specific character-
istics of the environment in which the sensors are deployed
and the nature of the phenomenon they cover. It is often
assumed that each node can cover interest points within a
given detection range. This hypothesis does not hold in the
setting of air pollution monitoring because pollutants cannot be
detected if they do not touch sensors. Moreover, the coverage
and connectivity constraints are modeled independently in
the sense that coverage is formulated by analogy to the Set
Covering Problem and connectivity formulation is based on
the network flow problem.

In section IV, we address these issues while proposing two
ILP formulations based on real pollutants dispersion modeling.
While coverage and connectivity are independent in the first
formulation, they are jointly formulated as a network flow
problem in the second one.

III. ATMOSPHERIC DISPERSION MODELING

The theoretical study of pollution atmospheric dispersion is
mainly based on fluid mechanics theory [20]. For the sake of
clarity, we focus in this work on steady state dispersion, in
particular on Gaussian dispersion. However, our approach can
be used with any other dispersion model that is able to take
into account pollution sources like crossroads and highways
or the effect of buildings on the dispersion of pollutants.

The basic Gaussian model estimates the concentrations of
a pollutant gas released by a pointwise pollution source in a
free space environment [21]. The estimated value C (g/m3) at
a measurement location (x, y, z) is given by Formula (1). Table
I details the parameters of the model. The pollution source
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is located at the point (0, 0, hs) and the measurement point
location is given according to a 3D coordinate system where
the x-axis is oriented in the wind direction Dw . Parameters
σy and σz describe the stability of the atmosphere and can
be approximated using Briggs formulas: σy = ay .|x |by and
σz = az .|x |bz . The parameter H, which represents the pollutant
effective release height, is equal to the sum of the pollutant
source height hs and the plume rise ∆h. The pollution plume
is located above the pollution source and ∆h is the vertical
distance between the source and the center of the pollution
plume. Briggs formulas are commonly used for the calculation
of the ∆h parameter. To simplify the analysis, we only consider
the case where the temperature of the pollutant Ts is greater
than the ambient air temperature T , which is usually the case.
The value of ∆h is given by Formula (2) where F, the pollutant
gas buoyancy, is computed using Formula (3).

C(x, y, z) = Q
2πVwσyσz

e
− y2

2σy (e−
(z−H )2

2σy + e
− (z+H )

2
2σy ) (1)

∆h =
1, 6 · F1/3 · x2/3

Vw
(2)

F =
g

π
· V · (Ts − T

Ts
) (3)

Measurement location
x Downwind distance from the pollution source (m)
y Crosswind distance from the pollution source (m)
z Hight (m)

Pollution emission parameters
hs Pollutant source height (m)
Q Mass flow rate at the emission point (g/s)
V Volumetric flow rate at the emission point (m3/s)
Ts Pollutant temperature at the emission point (K)

Weather
T Ambient air temperature (K)
Vw Wind velocity (m/s)
Dw Wind direction (degree)

Constants
ay, by Horizontal dispersion coefficients
az, bz Vertical dispersion coefficients
g Gravity constant (9.8m/s2)

TABLE I: Parameters of the Gaussian dispersion model

The Gaussian model considers only one scenario of weather
conditions at a time to compute pollution concentrations.
Simulations of the Gaussian model on three scenarios of
weather conditions are depicted in Fig. 1. Pollution con-
centrations are given in µg/m3 and grouped in 5 intervals.
Common values used for simulation are depicted in table II. By
comparing Fig. 1(a) to Fig. 1(b), we notice that wind direction
affects the direction of the pollution plume since pollutants
are transported by wind. Moreover, variations of the ambient
temperature and the wind velocity between Fig. 1(b) and Fig.
1(c) have affected the concentrations of the pollution plume.

IV. DEPLOYMENT MODELS

A. Basic Model
In smart cities applications, some restrictions on node

positions may apply because of authorization or practical

Parameter value
hs 25m
Q 5g/s
V 1.9mm3/s
Ts 30oC
ay 1.36
by 0.82
az 0.275
bz 0.69

TABLE II: simulation params of the Gaussian model

issues. For instance, in order to alleviate the energy constraints,
we may place sensors on lampposts and traffic lights as
experimented in CitySense [22]. In the following, we consider
a set of a pre-defined potential positions, denoted P, which
is obtained using a discretization of the deployment field
restricted to allowed positions. In free space environments
without deployment restrictions, that would be a regular grid.
We denote N = |P | the number of potential positions. The
locations of pollution sources, e.g. factories, sewage treatment
plants, crossroads, highways..., is denoted I. M denotes the
number of pollution sources. The binary decision variables xp ,
resp. yp , define if a sensor, resp. a sink, is placed at position
p.

We consider that sinks are equipped with pollution sensors.
They are also connected to a backbone network. Deploying a
sink is therefore more expensive than a regular sensor node.
The cost of deploying a sensor, resp. a sink, at position p
is denoted csensorp , resp. csinkp . Since a sink embeds sensing
capabilities, a sink and a sensor cannot be deployed at the
same potential position p as formulated in constraint 4. Our
optimization models minimize the sensors and sinks overall
deployment cost. Thus, we get the objective function in
formula 5.

xp + yp ≤ 1, p ∈ P (4)

F =
∑
p∈P

csensorp · xp +
∑
p∈P

csinkp · yp (5)

Before tackling the formulation of the coverage and con-
nectivity constraints, we summarize in table III the notations
used in the ILP models.

1) Probabilistic pollution coverage: The coverage con-
straints rely on the modeling of the atmospheric dispersion. We
assume that pollution sources release pollutants independently
and may have simultaneous release. Our formulation ensures
the coverage of threshold crossings in all cases. As shown
in section III, pollution concentrations vary depending on
weather conditions. Hence, we consider a set of possible
weather scenarios S that can be obtained based on statistical
data or weather forecast. A scenario corresponds to a tuple of
ambient temperature T , wind velocity Vw and wind direction
Dw: s = (T s,V s

w,D
s
w). Each scenario s has probability αs to

happen. We assume that S is a partition of the space of weather
conditions, i.e.

∑
s∈S αs = 1 and s1 ∩ s2 = ∅, ∀s1, s2 ∈ S.

Using an atmospheric dispersion model, we determine the
set of generated pollution zones. Each zone Zs

i corresponds
to the geographical area, i.e. set of positions, where the
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(a) T = 25◦C,Vw = 5m/s,Dw = 0◦ (b) T = 25◦C,Vw = 5m/s,Dw = 25◦ (c) T = 5◦C,Vw = 8m/s,Dw = 25◦

Fig. 1: Simulation of the Gaussian dispersion model with a single pollution source (red point) and different weather conditions.

Sets
P Set of potential positions of sensors and sinks
N Number of sensors and sinks potential positions
I Set of pollution sources
M Number of pollution sources
S Set of weather scenarios

Parameters
Zs

i The pollution zone formed by source i under scenario s

Bs
ip Define whether the position p belongs to the zone Zs

i or not
Γ(p) The neighborhood of the potential position p
csensorp The cost of deploying a sensor at position p

csinkp The cost of deploying a sink at position p

β Minimum coverage probability to ensure for each zone
Ws

ip The probability of detecting the zone Zs
i at position p

δ Percentage of scenarios that have to be taken into account
αs Probability that scenario s is realized
C0 Pollutant concentration threshold

Variables
xp Define whether a sensor is deployed at position p or not

xp ∈ {0, 1}, p ∈ P
yp Define whether a sink is deployed at position p or not

yp ∈ {0, 1}, p ∈ P
tsi Define whether the zone Zs

i is covered or not
tsi ∈ {0, 1}, i ∈ I, s ∈ S

gpq Flow quantity transmitted from node p to node q
gpq ∈ {0, 1, ...}, p ∈ P, q ∈ Γ(p)

f sip Flow quantity transmitted from zone Zs
i to node p

f sip ∈ {0, 1}, i ∈ I, s ∈ S, p ∈ Zs
i

TABLE III: Notations used in deployment models.

pollution threshold is crossed when the pollution source i
is releasing pollutants under the weather scenario s. Let the
binary parameter Bs

ip denote whether a position p belongs
to Zs

i or not. A pollution zone Zs
i is therefore the set

{p ∈ P where Bs
ip = 1}. When using the pointwise Gaussian

dispersion model, the value of Bs
ip is calculated using Formula

(6) where σy , σz , Q and H are the parameters presented in
Section III, p = (x, y, z) and C0 is the threshold of pollutant
concentration above which a point is considered as polluted.

Bs
ip =


1 if

Q
2πV s

wσyσz
e
− y2

2σy (e−
(z−H )2

2σy + e
− (z+H )

2
2σy ) ≥ C0

0 otherwise
(6)

A sensor exposed to a given pollutant will detect its
concentration with a probability depending on the sensing
accuracy. We denote Ws

ip ∈]0, 1[ the probability of detecting
the pollution source i under the weather scenario s at position
p, p ∈ Zs

i . TheWs
ip parameters are mainly due to the technical

characteristics of pollution sensors and are not related to the
dispersion model.

Once the pollution zonesZs
i are identified and the probabil-

ity parameters Ws
ip are computed, we formulate the coverage

of each pollution source i under each weather scenario s with
a probability β in constraint 7.

∏
p∈Zs

i

(1 −Ws
ip · (xp + yp)) ≤ (1 − β), i ∈ I, s ∈ S (7)

When a sensor or a sink is placed at position p, i.e. xp+yp =
1, 1−Ws

ip · (xp + yp) is then equal to 1−Ws
ip , the probability

that the node deployed at p do not cover the pollution zone
Zs
i at position p. Assuming that the detection events are

independent among all potential positions, constraint 7 ensures
therefore that each zone Zs

i is covered with a probability
β ∈]0, 1[.

Partial coverage: Constraint 7 ensures that each pollution
source is covered with a probability β under each scenario s.
One could want to relax this constraint and ask only for the
coverage of each pollution source under δ percent of weather
scenarios, with a β probability for each scenario. For that,
we introduce the binary variable tsi that define whether source
i is covered during weather scenario s. Therefore tsi = 1 if a
sufficient number of sensors is placed in the pollution zone Zs

i .
The percentage of weather conditions where i can be detected
is the sum of the probabilities that a scenario in which i is
detected happens. As a result, the coverage formulation of
the partial coverage case is given by the constraints 8 and
9. Constraint 8 should be linearized in order to get an ILP
formulation. We first apply the log function to get constraint
11. Since xp + yp and tsi are binary, the log can be rewritten
to get a linear form as shown in constraint 12.

∏
p∈Zs

i

(1 −Ws
ip · (xp + yp)) ≤ (1 − β · tsi ), i ∈ I, s ∈ S (8)
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∑
s∈S

tsi · αs ≥ δ, i ∈ I (9)

log
∏

p∈Zs
i

(1 −Ws
ip · (xp + yp)) ≤ log(1 − β · tsi ), i ∈ I, s ∈ S (10)

∑
p∈Zs

i

log(1 −Ws
ip · (xp + yp)) ≤ log(1 − β · tsi ), i ∈ I, s ∈ S (11)

∑
p∈Zs

i

(xp + yp) · log(1 −Ws
ip) ≤ tsi · log(1 − β), i ∈ I, s ∈ S (12)

Uniform detection probability: If the probabilistic sens-
ing values Ws

ip are identical among all the points that are
within the same pollution zone Zs

i , i.e.Ws
ip =Ws

i ∀p ∈ Zs
i ,

constraint 7 can be simplified as in 13. Using the same binarity
argument as before to get the variables out of the log, we get
the linear formulation in constraint 17.∏

p∈Zs
i

(1 −Ws
i · (xp + yp)) ≤ (1 − β), i ∈ I, s ∈ S (13)

∏
p∈Zs

i where (xp+yp=1)
(1 −Ws

i ) ≤ (1 − β), i ∈ I, s ∈ S (14)

(1 −Ws
i )
(∑

p∈Zs
i
(xp+yp )) ≤ (1 − β), i ∈ I, s ∈ S (15)

(
∑

p∈Zs
i

(xp + yp)) · log(1 −Ws
i ) ≤ log(1 − β), i ∈ I, s ∈ S (16)

∑
p∈Zs

i

(xp + yp) ≥
log(1 − β)

log(1 −Ws
i
), i ∈ I, s ∈ S (17)

2) Connectivity: As in [13], [9] and [23], we formulate in
this first model the connectivity constraint as a network flow
problem. In contrast to these works, we consider the same
potential positions set P for sensors and sinks and we do not
assume that potential positions of sinks are known or different
from those of sensors. We first denote by Γ(p), p ∈ P the
set of neighbors of a node deployed at the potential position
p. This set can be computed using any adequate propagation
models. Then, we define the decision variables gpq as the flow
quantity transmitted from a node located at potential position
p to another node located at potential position q. We suppose
that each sensor of the resulting WSN generates a flow unit
in the network, and verify if these units can be recovered by
sinks. The following constraints ensure that deployed sensors
and sinks form a connected wireless sensor network; i.e. each
sensor can communicate with at least one sink.∑

q∈Γ(p)
gpq −

∑
q∈Γ(p)

gqp ≥ xp − N · yp, p ∈ P (18)∑
q∈Γ(p)

gpq −
∑

q∈Γ(p)
gqp ≤ xp, p ∈ P (19)∑

q∈Γ(p)
gpq ≤ N · xp, p ∈ P (20)∑

p∈P

∑
q∈Γ(p)

gpq =
∑
p∈P

∑
q∈Γ(p)

gqp (21)

Constraints 18 and 19 are designed to ensure that each
deployed sensor, i.e. such that xp = 1, generates a flow unit in
the network. These constraints are equivalent to the following.

∑
q∈Γ(p)

gpq −
∑

q∈Γ(p)
gqp


= 1 i f xp = 1, yp = 0
= 0 i f xp = yp = 0
≤ 0, ≥ −N i f xp = 0, yp = 1

The first case corresponds to deployed sensors that should
generate, each one of them, a flow unit. The second case,
combined with constraint 20, ensures that absent nodes, i.e.
xp = yp = 0, do not participate in the communication. The
third case concerns deployed sinks, and ensures that each sink
cannot receive more than N units. The case xp = yp = 1
is not possible because of constraint 4. Constraint 20 ensures
also that deployed sinks cannot transmit flow units, and only
act as receivers. Constraint 21 means that the overall flow is
conservative. The flow sent by deployed sensors has to be
received by deployed sinks.

3) ILP model: At the end, our general basic optimization
model can be written as follows.

[Basic model]
Minimize (5)

Subject to. (4), (9), (12), (18), (19), (20)
and (21)

B. Enhanced Model

The basic formulation cannot deal with large-scale in-
stances. One of the main reasons is that the two sub-problems,
namely connectivity and coverage, are formulated as set of
constraints of different natures. To cope with this, we propose
in this section a more efficient modeling. By considering
pollution sources as a part of the network, we obtain a
homogeneous coverage/connectivity formulation as a network
flow problem. In the second model, each pollution source i
should transmit some flow units to potential nodes p which
are located within the pollution zone corresponding to each
weather scenario s i.e. p ∈ Zs

i . In addition, sensors are flow
conservative and the sinks receive the flow units generated
by pollution sources. Therefore, the definition of the joint
coverage/connectivity is to ensure that sinks will be informed
each time that a threshold crossing occurs. In this regard, a
sensor has to receive at most one unit from a given pollution
zone. We hence define the binary decision variable f sip as the
flow quantity from the pollution source i to the potential node
p in the case of weather scenario s. The following constraints
ensure coverage and connectivity for pollution monitoring.∑

s∈S
tsi · αs ≥ δ, i ∈ I (22)∑

p∈Zs
i

f sip · log(1 −Ws
ip) ≤ tsi · log(1 − β), i ∈ I, s ∈ S (23)

∑
i∈I,s∈S:p∈Zs

i

f sip +
∑

q∈Γ(p)
gqp − gpq ≤ NM|S|yp, p ∈ P (24)
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∑
i∈I,s∈S:p∈Zs

i

f sip +
∑

q∈Γ(p)
gqp − gpq ≥ 0, p ∈ P (25)

∑
q∈Γ(p)

gpq ≤ NM|S|xp, p ∈ P (26)

f sip ≤ xp + yp, p ∈ P, i ∈ I, s ∈ S (27)

Coverage is formulated in constraints 23 and 23. Constraint
23 is similar to the basic model and ensures coverage of each
pollution source under a δ percentage of weather scenarios.
Constraint 23 is derived from constraint 12 and ensures that
each pollution source i generates a sufficient number of flow
units in the network. Constraint 27 enforces that all the flow
units are received by deployed nodes. Thanks to constraints
24 and 25, when a sensor is deployed on point p (case yp = 0
and xp=1), we ensure that the inflow of sensor p is equal to
its outflow; i.e. The flow is conservative on deployed sensors.
In addition, constraints 24 and 25 also ensure that the sinks
are allowed to gather all the flow units that are generated in
the network (case yp = 1 and xp=0). Constraints 26 and 27
combined with constraints 24 and 25 ensure that absent nodes
do not participate in the communication. As a results, the
deployed sensors have to send the flow units gathered from
pollution sources to the sinks in order to get the connectivity
constraints verified. The enhanced optimization model can
then be written as follows.

[Enhanced model]
Minimize (5)

Subject to. (4), (23), (23), (24), (25),
(26) and (27)

Particular cases: As in the basic model, some simplifica-
tions can be made in some particular cases. First, binary vari-
ables tsi can be avoided when covering all the pollution zones
is required, in which case all tsi variables will be replaced by
1. Then, when considering homogeneous probabilistic sensing
among potential positions of sensors, i.e. Ws

ip =Ws
i for all

p ∈ P, constraint 23 can be transformed to constraint 28 using
the same transformations done with the basic model.∑

p∈P
f sip ≥

log(1 − β)
log(1 −Ws

i
), i ∈ I, s ∈ S (28)

Finally, considering the case of mono sink WSN, constraints
24 and 25 can be grouped and replaced by the following
constraint 29.

∑
i∈I,s∈S:p∈Zs

i

f sip+
∑

q∈Γ(p)
gqp−gpq =

∑
i∈I,s∈S

Ks
i ·yp, p ∈ P (29)

V. SIMULATION RESULTS

A. Greater London dataset

We evaluate our deployment models on a data set provided
by the Greater London community [24]. London is one of the
most polluted cities in Europe [25]. The data set corresponds
to the locations of urban pollution sources. In this data set,
mostly urban facilities have the potential to affect the air
quality such as petrol stations, waste oil burners, cement
works, etc. The set of pollution sources is spread over the 32
boroughs of Greater London. Overall, 1090 pollution sources
are considered. Pollution sources are depicted in Fig. 2. The
distribution of pollution sources per borough depends on the
surface of the borough and ranges from 6 sources to 161
sources.

Fig. 2: Pollution sources (squares) and weather station (disk).

In addition to pollution sources locations, we compute the
weather scenarios leveraging statistical data gathered by a
weather station of London [26]. The location of this station
is depicted in Fig. 2. We consider weather conditions of each
month of the year averaged over the last past 10 years. The set
of weather conditions is depicted in table IV, each scenario
corresponds to values of ambient temperature, wind direction
and wind velocity. As proof of concept and without loss of
generality, we assume that weather scenarios provided by the
considered weather station are homogeneous in all the area of
Greater London.

ILP formulations are implemented using the IBM ILOG
CPLEX Optimization Studio and executed on a PC with
Intel Xeon E5649 processor under Linux. The ILP solver
is executed with a time limit of 30 minutes. The default
values of simulation parameters are summarized in Table V.
We generate the pollution inputs of our deployment models
using the Gaussian model presented in section III while
considering the same pollutants characteristics as discussed
in section III. We define the nodes neighboring Γ based on
a given transmission range. Moreover, we assume that the
cost of nodes is independent of the position of the node,
i.e. csensorp = csensor and csinkp = csink . Furthermore, we
investigate the coverage of pollution sources with respect to all
the considered scenarios, i.e. δ = 1.0. In addition, we consider
that the probabilistic sensing valueWs

ip is constant and equal
to 90%.
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Month of year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Ambient temperature (oC) 7 7 9 13 15 19 21 20 18 14 9 7
Wind velocity (m/s) 5 5 5 5 5 5 5 5 5 5 5 5
Wind direction (degree) 225 247 270 270 270 225 225 225 225 202 225 247

TABLE IV: Weather statistics of London.

Parameter Value
Nodes transmission range 100m
Nodes height 10m
Sensors cost (csensorp ) 1 monetary unit
Sinks cost (csinkp ) 10 monetary units
Coverage requirements of pollution zones (β) 0.98
Coverage requirements of weather conditions (δ) 1.0
Detection sensitivity of sensors (Ws

ip ) 0.9
Ambient Temperature (T ) 7oC
Wind velocity (Vw ) 5m/s
Wind direction (Dw ) 225o
Pollution threshold (C0) 20µg/m3

TABLE V: Summary of default simulation parameters.

B. Application to the London Borough of Camden

As a proof of concept, we first execute our models on the
London Borough of Camden. We use streetlights as potential
positions of sensors in order to alleviate the energy constraints.
The streetlights data set was provided by the Camden DataS-
tore [27]. Camden is spread over an area of around 8km×6km
and contains 19 pollution sources. Fig. 3 depicts the pollution
zones obtained by running of the Gaussian dispersion model
while taking into account weather conditions of the month of
January. Fig. 3 also shows the obtained positions of wireless
sensor network nodes computed by the deployment models.
We notice that sensors are placed at the intersections of the
different pollution zones in order to minimize the coverage
deployment cost. Moreover, the resulting network consists of 7
sub-networks, a sink is deployed in each one and some sensors
are added to ensure connectivity.

The following results have been obtained by running our
deployment models on a hundred of 1200m × 1200m blocks
extracted from the Greater London map. The density of
pollution sources varies between 3 and 18 sources per block.
We discretize each block with a resolution of 100m to get a
2D grid of points that we consider as potential positions of
WSN nodes.

C. Tractability evaluation

1) Compactness and tightness: Despite the fact that the
models are to run offline, a better model formulation allows
the execution on large-scale instances. Integer programming
formulations are usually compared in terms of compactness
and tightness [28], [29]. The compactness of a model is given
by the size of the instances mainly the number of variables
and the number of constraints. A compact formulation, i.e.
a formulation that allows for small size instances, is not
sufficient to get better performances. A good formulation
should be compact and tight at the same time. The tightness
of a model allows for a reduced search space and is usually
measured using the integrality gap [28]. This is the gap

between the optimal objective value of the ILP ZILP and the
optimal objective value of the relaxed formulation ZLP . In the
case of a minimization problem, the integrality gap is equal
to (ZILP − ZLP)/ZILP . When considering two models with
more or less the same compactness, the fastest model is the
one that has the lowest integrality gap.

2) Metric of computational complexity: In order to show
the impact of the complexity of the block instances on the
tractability of our models, we consider the area of interest
as a complexity metric. For a given block b, let Cb be the
set of potential positions of sensors that are at least within
a pollution zone generated by the block pollution sources
under the weather scenarios that are considered. The metric
value is defined as the area of the convex envelope of the
set Cb . This means that the area of interest includes all the
potential positions needed for pollution coverage, i.e. Cb , and
also the area where relay nodes may be placed. Indeed, neither
coverage sensors nor relay nodes will be placed in the block
area that is not included in the area of interest.

3) Comparison results: As mentioned before, we execute
the deployment models using formulations with respect to
the simulation parameters. The two models gave the same
objective values; this was expected since the enhanced model
is derived from the basic one. We depict in table VI the
compactness, the tightness and the execution time of the
models depending on the area of interest of block instances.
Results have been averaged with respect to the complexity
metric class of each instance. We also plot in Fig. 4 the
distribution of execution time within the classes of the area
of interest using a boxplot.

We notice that the instances that are more complex take
more time to be resolved when using both of the two models.
Moreover, Basic Model and Enhanced Model have nearly the
same compactness, the difference is due to f sip variables added
to the enhanced formulation to define a link between pollution
sources and WSN nodes. However, the enhanced model is
much tighter than the basic one with lower integrality gaps.
This difference in tightness impacts well CPU time and allows
to enhance the total mean execution time with a factor of
around 8.

We now plot in Fig. 5 the histogram of the ratio of
execution time between the enhanced model and the basic
model. We notice that for around 40% of the block instances,
the enhanced model is at least 10 times faster than the basic
model. Fig. 5 also shows the density function of the ratio
of integrality gap between the enhanced model and the basic
model. The density function of integrality gap ratio fits well
with the histogram of execution time ratio; this is explained
by the fact that the integrality gap and the execution time are
highly correlated.

Based on the results obtained in this section, we execute
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(a) Camden in Greater London (b) Pollution sources and zones (c) Sensors (discs) and sinks (triangles)

Fig. 3: Application of our deployment models to the London Borough of Camden

Area of Compactness (nb. of vars. and consts) Tightness (int. gap) CPU time (seconds)
interest (km2) Basic Model Enhanced Model Basic Model Enhanced Model Basic Model Enhanced Model
[0.00 − 0.20[ 2193 2275 0.880 0.070 7.460 0.890
[0.20 − 0.45[ 2194 2354 0.870 0.080 20.400 2.810
[0.45 − 0.70[ 2195 2429 0.850 0.120 29.830 3.360
[0.70 − 0.95[ 2196 2474 0.830 0.180 68.200 8.820

Mean 2194.5 2383 0.860 0.110 31.470 3.970

TABLE VI: Basic Model VS Enhanced Model.

Fig. 4: Impact of the area of interest on the execution time.
Red squares represent the means of the classes and "plus"
signs represent the outliers.

Fig. 5: Relationship between the integrality gap and the
execution time.

only the enhanced model in the following simulations where
we investigate the impact of some decision parameters on the
deployment results.

D. Analysis of the network connectivity

1) Evaluation of the number of nodes: In this simulation
case, we analyze the number of sinks and sensors in the
resulting networks while varying the ratio between sink cost
and sensor cost. We plot in Fig. 6 the impact of the cost ratio
on the optimal number of sensors and sinks. The cost ratio
ranges from 1 to 12 and the results are averaged over all the
London blocks defined in the previous section. On one hand,
we notice that sensors are less used when their cost is close
to the sinks cost. For instance, only sinks are used when the
cost ratio is equal to 1. On the other hand, when the cost ratio
increases, more sensors are used and the number of required
sinks tends to one. As a result, the network is usually formed
by only one sink when the cost ratio is greater than 10. This
is explained by the fact that adding some relay sensor nodes
to ensure connectivity has a less cost than using a lot of sinks
that are equipped with pollution sensors.

In the following simulations, we execute the deployment
models with a default value of sink/sensor cost ratio equal
to 10 as shown in table V. Thus, we use formulations corre-
sponding to the mono-sink case.

2) Evaluation of the number of hops to sink nodes: In this
simulation case, we evaluate the obtained networks in terms
of the number of hops to sink nodes, which is a measure
of the network lifetime and communication delay [30]. As
formulated in our connectivity constraints, the positioning of
sink nodes does not take into account the length of sensor-to-
sink paths. However, sinks can be relocated on the obtained
network when the network is monosink, which is the case
as shown in the previous subsection. The sink node can be
relocated in such a way that the maximum distance to the
sink in terms of hops is minimized. This distance is called the
radius of the network and describes how much the network
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Fig. 6: Number of nodes depending on the cost ratio.

is well connected when considering the best position of the
sink node. If the sink position is given randomly, the maximum
distance to the sink is bounded by the diameter of the network,
which is the distance to the sink node when choosing the worst
position of the sink.

We depict in Fig. 7 the cumulative distribution functions of
the network radius and diameter. Results show that the network
radius is as at most equal to 5 for more than 96% of the
instances. This means that the number of hops to the sink node
after relocation is at most equal to 5 in almost all instances.
Moreover, we notice that the network radius is nearly equal
to the diameter of the network for the rest of the instances,
which means that the sink relocation does not improve much
the network connectivity in this case.

Fig. 7: Cumulative distribution functions of the network radius
and diameter.

E. Analysis of the coverage results

1) Impact of nodes height: We now study the impact of the
height at which are placed sensors and sinks on the deployment
cost. We assume that the height of pollution sources is equal
to 25m, and all the sensors and sinks are deployed at the same
height, which is considered in the range from 5 to 40 meters.
We plot in Fig. 8 the sensors and sinks overall deployment cost
depending on their height when applying two different weather
scenarios, those corresponding to January and December. The
results are averaged over all the London blocks. On one
hand, we notice that the deployment cost is minimal when
the nodes height is close to the effective release height of
pollution sources H, which is nearly equal to 25.1 in our case.
This is explained by the fact that pollution concentration gets

the highest values when being near to the pollutant effective
release height H. On the other hand, pollutants are more
likely to drop than to increase, which is due to gravitation.
Indeed, the deployment cost at 40m is much greater than the
deployment cost at 5m. Fig. 8 also shows that when using
different weather scenarios, the deployment cost is not the
same. Indeed, weather conditions impacts the disposition of
pollution zones allowing for more or less intersections. As a
result, the obtained WSN topology depends on the weather
conditions taken into account.

Fig. 8: Deployment cost average depending on nodes height
with different weather conditions.

2) Impact of pollution sources density: In this scenario,
we study the impact of pollution sources density on the
deployment cost. For this purpose, we take the results of the
previous scenario corresponding to January weather conditions
and averaged with respect to the number of pollution sources
of each instance, i.e. the number of pollution sources within
each block instance. We plot in Fig. 9 the deployment cost
variations depending on the nodes height while considering
three different densities: 4, 5 and 6 pollution sources per
instance. Fig. 9 shows that more there are pollution sources
in the environment, more there are sensors required and thus
higher is the deployment cost. This can be explained by the
number of pollution zones that increases with the number of
pollution sources, and thus requires much sensors to ensure
the coverage requirements. In addition, the increasing in the
deployment cost from 5 sources density to 6 sources density
is less than the increasing from 4 sources density to 5 sources
density. This is because when the number of pollution sources
increases, more intersections between pollution zones appear
and affect the increasing of the deployment cost.

3) Impact of probabilistic sensing: The probabilistic sens-
ing of pollution sensors is one of the most important factors
that affect the topology of sensor networks used for pollution
monitoring. Fig. 10 depicts the average cost of the resulting
deployments of the block instances while considering two
values of the detection sensitivity of sensors: Ws

ip = 0.9 and
Ws

ip = 0.8. As expected, using sensors with better detection
sensitivity yields less deployment cost. We notice that the ratio
between the two curves is around 1.1. This is explained by
the intersection existence between the different polluted zones,
which means that in some cases a sensor can monitor more
than one pollution source.

4) Impact of the number of weather conditions: In this
simulation case, we study the impact of using a small number
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Fig. 9: Deployment cost average depending on nodes height
and pollution sources density.

Fig. 10: Deployment cost average depending on nodes height
and probabilistic sensing values.

of weather scenarios on the deployment results. It is clear
that when considering all the possible weather scenarios, the
resulting WSN ensures better pollution monitoring. However,
when there is a huge number of weather scenarios, considering
a less number of these scenarios alleviates the deployment
models allowing their application on large-scale instances.

We recall that S is the set of the monthly weather scenarios
presented in table IV. Given a subset S′ of S, we define
the missed pollution zones percentage as the percentage of
pollution zones that cannot be covered by the WSN resulting
from executing the models under only weather scenarios S′.
Fig. 11 illustrates the variations of the missed pollution zones
percentage depending on the number of weather scenarios
taken into account starting from January weather scenario in
the first curve and starting from December weather scenario is
the second one. Fig. 11 shows that the percentage of missed
pollution zones usually decreases when considering more
weather scenarios, this is expected since the number of pol-
lution zones depends on the weather scenarios set. However,
in some cases, the missed pollution zones percentage remains
the same when considering additional scenarios of weather
conditions. Indeed, additional weather scenarios involve new
pollution zones that may be, in some cases, already included in
the set of pollution zones formed without taking into account
the additional scenarios. This may happen for instance when
additional weather scenarios are slightly different from those
already taken into account.

In addition to the impact of the number of weather sce-
narios, their similarity has also to be taken into account. As

Fig. 11: Average percentage of missed pollution zones depend-
ing on weather scenarios.

shown in Fig. 11, considering only weather scenarios from
December to May meaning only 8 scenarios allows to cover
the whole set of pollution zones in contrary to the scenarios
set from January to October that requires 10 scenarios.

5) Impact of the spatiotemporal variation of weather con-
ditions: In this last simulation case, we study the impact
of spatial and temporal variations of weather conditions on
the deployment results. In order to do so, we use the data
of a network of 12 weather stations distributed in all the
Greater London [31]. Raw data consist of hourly values of
temperature, wind direction (12 possible directions in the range
from 0o to 360o) and wind velocity of June 2016. We use this
data in order to construct the set of weather scenarios of our
deployment model. For each weather station, we have got 672
weather scenarios (28 days and 24 scenarios for each day).

In order to take into account the spatial variation of weather
conditions, we propose to consider different weather condi-
tions for each pollution source. When applying the pollution
dispersion model on a given pollution source, we use the
weather conditions corresponding to the weather station that
is the nearest to the given pollution source. Indeed, the
Gaussian dispersion model assumes that weather conditions
are homogeneous in each pollution zone. We mention that the
diameter of pollution zones is at most equal to 2 km as shown
in Figure 1.

Before the execution of our deployment models, we first
eliminate, for each weather station, the weather scenarios that
occur more than one time while leaving only one occurrence.
We plot in Figure 12(a) the number of weather scenarios of
some weather stations while varying the aggregation window
of data (in the range from 1 hour to 24 hours). We use the
mean function for aggregation. We notice that station 3 has the
highest temporal variation and station 4 has the lowest one.
We did not depict the curves of all the 12 stations for clarity
reasons.

We consider in simulation three cases of spatial variation of
weather conditions: i) heterogeneous case: we use the data of
all the 12 weather stations; ii) 1st homogeneous case: we use
only the data of the station that has lowest temporal variation
(station 4); iii) 2nd homogeneous case: we use only the data
of the station that has highest temporal variation (station 3).
We depict in Figure 12(b) the mean deployment cost of block
instances depending on the temporal aggregation window
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while considering the 3 spatial cases. Results show that, for
all the spatial cases, larger aggregation window involves less
number of sensors. This is because the number of weather
scenarios is reduced when performing aggregation on larger
temporal windows as shown in Figure 12(a), i.e. some weather
information may be deleted when aggregation is performed on
larger temporal windows.

Results also show that on the one hand, when considering
the weather data of all the stations (the heterogeneous case),
we place more sensors than when considering only the data
of the station that has the lowest weather variability (1st
homogeneous case, station 4). On the other hand, when
considering only the data of the station that has the highest
weather variability (2nd homogeneous case, station 3), we
place more sensors than when considering the weather data of
all the stations (the heterogeneous case). This is due to the fact
that station 3 (respectively station 4) involves the maximum
(respectively minimum) number of weather scenarios as shown
in Figure 12(a).

VI. CONCLUSION AND FUTURE WORK

Air pollution is becoming a major problem of smart cities
due to the increasing industrialization and the massive urban-
ization. In this work, we focused on the use of wireless sensor
networks for air pollution monitoring and in particular the
detection of threshold crossings. We addressed the deployment
issue and proposed two optimization models ensuring pollu-
tion coverage and network connectivity with the minimum
cost. Unlike the inadequate related works, which rely on a
simple and generic detection model, we based on atmospheric
dispersion modeling to take into account the nature of the
addressed phenomenon. Our deployment models are designed
in such a way to handle multiple weather scenarios and take
into account the probabilistic sensing of nodes. In addition to
the coverage formulation based on atmospheric dispersion, we
proposed in the second model a joint formulation of coverage
and connectivity based only on flows. This allows reducing
the computational burden according to our simulation results.

We evaluated the impact of the model parameters on the
deployment results. We concluded that sensors should be
placed at a height close to the one of pollution sources. We also
studied the impact of the weather scenarios set on the coverage
quality and showed that this latter depends on the similarity of
scenarios, their number, the aggregation temporal window and
the spatial heterogeneity of weather conditions. In addition to
the weather heterogeneity, the emission variability would also
affect the deployment results: The higher the emission rates,
the more intersections and hence the less number of sensors.

Future work

In this paper, we tried to focus on what the literature lacks
in WSN deployment for air pollution monitoring, which is
an appropriate coverage formulation of thresholds detection.
We have also shown how connectivity and coverage can be
merged into one constraint in order to improve the execution
time. Our models can be extended in order to take into account
the network lifetime and mobile deployment.

a) Optimization of the network lifetime: One possible
solution is to base on the work of [9] where authors define
the energy constraints based on the flow concept. This solution
is viable since our model is also based on the flow concept.
The idea is to split the lifetime of the network into a sequence
of timeframes (a sequence of minutes for instance) and enforce
each sensor node to send a flow unit in each timeframe. Then, a
new constraint should be added to the model in order to ensure
that for each sensor, the sum of the energy that is consumed
in the set of timeframes is less than the energy of the battery
of the sensor. The lifetime objective function corresponds to
the maximum number of timeframes where the network is
operating.

b) Mobile deployment: Indeed, our models are designed
for static networks, which is argued by the fact that pollution
sensors operate well when they are static [32]. However, sinks
can be considered as mobile nodes and this can be integrated
in our model based on existing mobile-sinks formulations such
as the work of [9]. The idea is to consider a set of timeframes
as in the model extension of network lifetime. The mobile
sink changes its positions in each timeframe. Then, the flow
constraints should be formulated in order to ensure that the
flow is conservative in the network in each timeframe. This
means that in each timeframe, each sensor generates a flow
unit and the sink node receives all the generated units.

Another perspective of our work would be to consider the
impact of the nature of pollutants and the urban topography
on the coverage results. We are also working on the validation
of our deployment models.
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