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Analysis of a global reactive transport model and results

for the MoMaS benchmark

Jocelyne Erhela,∗, Souhila Sabita

aInria, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

Reactive transport models are very useful for groundwater studies such as water

quality, safety analysis of waste disposal, remediation, and so on. The MoMaS

group de�ned a benchmark with several test cases. We present results obtai-

ned with a global method and show through these results the e�ciency of our

numerical model.

Keywords: reactive transport, global method, MoMaS benchmark.

1. Introduction

It is quite challenging to develop a numerical model for deep storage of nu-

clear waste. The time interval is very large (several thousands years), models

are coupled and simulations must be accurate enough to be used for risk assess-

ment. In most cases, chemistry must be included in models of deep geological5

storage. In addition to radioactive decay, chemical phenomna are numerous and

include aqueous reactions, oxydo-reduction reactions, precipitation and dissolu-

tion reactions, ions exchanges, surface exchanges. These reactions can be either

kinetic or at equilibrium.

Models must handle species which are in groundwater systems and take into10

account the mobile property of these species. It is thus necessary to consider a

coupled model, where chemistry equations and radioactive decay are combined
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with transport of contaminants. These models are partial di�erential equations

(for transport, one equation for each species), and algebraic or di�erential equa-

tions (for chemistry, a system at each grid point).15

The MoMaS benchmark was designed as a set of academic examples, in order

to run experiments with several methods and software [2], [4]. Several authors

participated in the exercise [1], [7], [13],[14], [15]. A synthetic comparison of

their results indicate that, for this benchmark, the fastest results were obtained

with global approaches [3].20

In this paper, we show original results obtained with a global approach for

the so-called 2D easy test case of the MoMaS benchmark. The model propo-

sed in MoMaS is based on the introduction of total analytical concentrations,

thanks to the linearity of the transport equation. It is a set of Partial Algebraic

Di�erential Equations. We use the method developed in [6, 8] and improved25

in [10, 18], where we �rst discretize in space, using a Finite Di�erence scheme,

then discretize in time, using an implicit multistep scheme, of the BDF family

(Backward Di�erentiation Formula). Thus at each time step, we have to solve

nonlinear equations which we keep coupled.

Compared with [8], three improvements were brought in [10, 18, 9]. First,30

a substitution technique, similar to global DSA methods, allows reducing the

size of nonlinear or linear systems. The di�erential variables are kept in the

semi-discrete system, in order to use adaptive time steps and adaptive Jacobian

updates. Logarithmic variables are very convenient to ensure the positivity of

the concentrations and to compute the derivatives, but they can lead to severely35

ill-conditioned Jacobian matrices [18]. Thus, the second improvement consists

in using non logarithmic variables, at the price of ensuring positivity during

nonlinear iterations. In the benchmark, the �rst component is inert, so the third

improvement is to remove this component from the coupled equations.

The paper is organized as follows. In section 2, we describe the mathema-40

tical model of the MoMaS test case studied and provide our simulation results

for �ow and transport of the �ve main species. The numerical method is de�-

ned in section 3, as well as three versions of our software GRT3D [18]. Finally,
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we analyse in section 4 the e�ciency of the improvements brought to the ori-

ginal global method. We discuss these results and outline future work in the45

concluding section 5.

2. MoMaS benchmark

The MoMaS group studies mathematical models and numerical simulations

for nuclear waste disposal. A set of test cases were de�ned for transport reactive

problems [4]. Here, we make experiments with the so-called easy test case, in50

2D. The computational domain is a rectangle with two porous media, see Figure

1. All dimensions are normalized, with length unit L and time unit T .

Figure 1: Computational domain for MoMaS Benchmark (dimensions are in the unit length

L).

2.1. Flow simulations

The benchmark considers a steady saturated one-phase �ow, with no source

term. Flow is governed by Darcy's law and mass conservation, giving mathe-55
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matical equations (1) where the pressure h and the Darcy's velocity q are the

unknowns and K is the hydraulic conductivity.

 q = −K∇h,

∇q = 0.
(1)

Darcy's velocity is related to the porosity ε and to the pore velocity v by

q = εv.

Medium A has a high conductivity and a low porosity, whereas medium B60

has a low conductivity and a high porosity, see Table 1.

Medium A Medium B

Porosity ε 0.25 0.5

Conductivity K (L.T−1) 10−2 10−5

Table 1: Flow conditions for MoMaS benchmark.

Boundary conditions must be prescribed to complete the PDE system. At

out�ow, the pressure is given by h = 1L. At both in�ows, the �ow velocity is

given by q = 2.25 × 10−2L.T−1, whereas no �ow condition is applied at other

boundaries.65

We simulate the �ow equations with the software MODFLOW [11]. Figures

2 et 3 show the velocity and the pressure computed with a mesh of 40× 84 cells

[6], [18].

2.2. Transport simulations

Transport of mass in groundwater is governed by advection and dispersion.70

There is no source term in the benchmark test. The concentration c of an inert

solute is the solution of the PDE (2) expressing a mass conservation law.

ε
∂c

∂t
= ∇.(D ∇c)−∇.(q c), (2)

where the dispersion tensor D is given by

D = εdmI + αT ‖q‖I + (αL − αT )
qqT

‖q‖
.
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Figure 2: Velocity �eld with a mesh of 40× 84 cells.

Figure 3: Pressure head with a mesh of 40× 84 cells.

We consider the advective test case of the MoMaS benchmark, without molecu-

lar di�usion, see Table 2.

Initial conditions at time t = 0T are applied to the geochemistry system, see75

Table 5. The �nal time is t = 6000T .

At impermeable boundaries, a no total �ux condition is imposed. At ou�ow,

a zero concentration gradient is imposed. At both in�ows, concentration is pres-

cribed, with values given in Table 6. Injection occurs during a �rst period of

time until t = 5000T , followed by a leaching period until the end.80
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Medium A Medium B

Molecular di�usion dm (L2T−1) 0 0

Longitudinal Dispersion αL(L) 10−2 6× 10−2

Transverse Dispersion αT (L) 10−3 6× 10−3

Table 2: Transport conditions for MoMaS benchmark.

The �rst chemical component is a spectator ion, which behaves like a inert

solute. For this component, we can simulate the transport equations with the

software MT3D [20]. Figure 4 represents the concentration at various times,

obtained with a �ne mesh of 80× 168 cells.

2.3. Geochemistry simulations85

In the MoMaS test case, the geochemical system has Nc = 4 aqueous com-

ponents cj and Ns = 1 �xed component sj . They react with Nα = 5 aqueous

secondary species αi and Nβ = 2 �xed secondary species βi. There is no pre-

cipitation dissolution. All the coe�cients of activities are equal to 1 and the

variables cj , sj , αi, βi are the concentrations of the species.90

Stoichiometric coe�cients and equilibrium constants are given in Table 3. In

the original benchmark, the constant Kα5 is equal to 10+35 but we replace it by

10+6. Indeed, with such a very large constant, the chemical nonlinear system is

highly ill-conditioned and inaccuracies may appear for some values of c and s.

For example, we succeeded to run 1D simulations with Kα5 = 10+35 [18], but95

we experienced numerical di�culties in 2D.

Table 3 is summarized in Table 4 by using algebraic notations, with the

matrices S,A,B and the vectors c, s, α, β,Kα,Ks.

Secondary species can be computed thanks to the mass action laws (3) des-

cribing the chemical reactions. Moreover, the concentrations of the components100
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c1 c2 c3 c4 s K

α1 0 -1 0 0 0 10−12

α2 0 1 1 0 0 1

α3 0 -1 0 1 0 1

α4 0 -4 1 3 0 0.1

α5 0 4 3 1 0 10+6

β1 0 3 1 0 1 10+6

β2 0 -3 0 1 2 10−1

Table 3: Stoichiometric coe�cients and equilibrium constants for MoMaS benchmark (with

Kα5 modi�ed).

c s K

α S 0 Kα

β A B Ks

Table 4: Algebraic representation of Table 3.

must be positive.

αi(c) = Kαi

∏Nc

j=1 c
Sij

j , i = 1, . . . Nα,

βi(c, s) = Kβi

∏Nc

j=1 c
Aij

j

∏Ns

j=1 s
Bij

j , i = 1, . . . Nβ ,

cj ≥ 0, j = 1, . . . Nc,

sj ≥ 0, j = 1, . . . Ns.

(3)

Then the model applies the mass conservation law to the chemical system. c+ STα(c) +ATβ(c, s) = T,

s+BTβ(c, s) =W,
(4)

where T and W are respectively the total analytical concentrations for mobile

and �xed components. In a closed system, these quantities are known, but they

vary in time and space when the species are transported by water.105
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2.4. Reactive transport

Transport is now governed not only by advection and dispersion, but also by

reaction. A mass conservation equation can be written for each component and

each secondary species, where the reaction terms are unknowns in the context

of reactions at equilibrium. However, because the dispersion tensor is the same110

for all the species and the transport terms are linear, it is possible to compute

a linear combination of all the equations. This ends up to mass conservation

equations (5) applied to the total analytical concentrations T , where the reaction

terms cancel and disappear. Moreover, the total analytical concentrations W

remain constant and given.115

ε
∂Tj
∂t

= ∇.(D ∇Cj(c))−∇.(q Cj(c)), j = 1, . . . Nc, (5)

where C(c) = c+ STα(c) is the total mobile concentration.

Equations (5) are coupled with the mass action laws (3) and the mass conser-

vation laws (4) written at each point of the computational domain.

Initial conditions for the 5 components are given in Table 5. It can be noted

that T3 = 0 implies that c3 = α2 = α4 = α5 = β1 = 0, because all the associa-120

ted stoichiometric coe�cients are strictly positive. Therefore, the equilibrium

constants Kα2,Kα4,Kα5,Kβ1 have no mathematical e�ect on the initial equi-

librium. Thus the original initial conditions of components remained the same

when we changed the value of Kα5.

Boundary conditions at both in�ows are given in Table 6 for the injection and125

leaching periods. Again, it can be noted that T3 = 0 during the leaching period,

and T4 = 0 during the injection period. Since the stoichiometric coe�cients

associated to c4 are also strictly positive, c4 = α3 = α4 = α5 = β2 = 0 during

the injection period. Thus, at in�ow, the equilibrium constants Kα4,Kα5,Kβ2

have no mathematical e�ect on the equilibrium.130

Figure 5 shows the concentrations of the aqueous components c4 at various

times, using a mesh of size 80 × 168. They cannot be compared exactly to the

results of the literature [2, 13, 14, 15], because we changed the constant Kα5,

8



T1 T2 T3 T4 W

Medium A 0 -2 0 2 1

Medium B 0 -2 0 2 10

Table 5: Initial conditions for MoMaS benchmark.

T1 T2 T3 T4 W

Injection t ∈ [0, 5000] 0.3 0.3 0.3 0 0

Leaching t ∈ [5000, 6000] 0 -2 0 2 0

Table 6: In�ow conditions for MoMaS benchmark.

but they are very close. More results can be found in [18].

3. Numerical method135

Equations (3),(4),(5) form a PDAE system composed of algebraic and PDE

equations. We assume that it is well-posed.

Following a method of lines, we �rst discretize in space, using a �nite dif-

ference scheme implemented in the software MT3D. We de�ne a regular mesh

of the domain with a rectangle of Nx × Ny cells. We get a DAE semi-discrete140

system, where the algebraic chemistry equations are written at each point of

the mesh [6, 8].

Because the system is sti�, we use an implicit scheme, involving a global

nonlinear system at each time step, coupling transport and chemistry equations.

We use a BDF scheme implemented in the software SUNDIALS [12]. At each145

time step, the nonlinear system is solved with a Newton's method. We provide

the function of the DAE equation and its derivative, whereas the module IDA

of SUNDIALS provides the implicit scheme.

Time discretization comes with an adaptive time step, which controls both

the accuracy of the approximation and the convergence of Newton's iterations.150

It allows choosing large time steps when possible and saves CPU time.
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We solve the linearized equations with a sparse direct solver, implemented

in the software library UMFPACK [5], which we have interfaced with SUN-

DIALS. We thus factorize the Jacobian matrix and use the triangular factors

to solve the linearized equations. The software keeps the Jacobian of linearized155

Newton's iterations frozen while convergence is fast enough, saving updates and

factorizations thus CPU time.

We implemented three versions of our method in the software suite GRT3D

[19, 10, 18]. Mass action laws can be linearized by introducing logarithmic va-

riables, if they are strictly positive. We introduce ĉ = log(c), ŝ = log(s), so that

equation (3) becomes (written with matrices and vectors) : α(ĉ) = exp (logKα + S ĉ) ,

β(ĉ, ŝ) = exp (logKβ +A ĉ+B ŝ) ,

and c, s are replaced by exp(ĉ), exp(ŝ) in equation (4).

In a �rst version, called GRT3D, we used as primary variables the total

T , the total mobile C and the components concentrations ĉ, ŝ, so that we had160

(3Nc + Ns) variables at each cell. In a second version, called GRT3DRL, we

reduced the size of linearized systems by using a substitution approach in the

linear systems to be solved. We eliminated the variables T and C and kept only

the variables ĉ, ŝ, thus (Nc+Ns) variables at each cell. This technique saves CPU

time by factorizing a smaller matrix. In a third version, called GRT3DRSL, we165

used the same algorithms, but with the non logarithmic variables c, s. We also

eliminated the variables T and C in the linearized equations. In this case, we

have to ensure the positivity of concentrations. This is done in Newton's method,

where approximate concentrations are forced to be positive at each iteration.

4. Performance analysis170

In this section, we analyze the accuracy and the computational time of our

simulations, using the three versions of our software. Initial and boundary condi-

tions are changed from 0 to 10−10 when necessary for logarithmic variables
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(GRT3D and GRT3DRL). All experiments are done in sequential, on a Intel

Xeon computer, with 24 MB of RAM and with 12 MB of cache memory.175

The rectangle is meshed by a regular grid of Nm = Nx × Ny cells. Simula-

tions are done with three meshes : a coarse mesh with Nm = 20 × 42 cells, an

intermediate mesh with Nm = 40×84 cells, and a �ne mesh with Nm = 80×168

cells.

Here we show a selection of the results which can be found in [18].180

4.1. Accuracy

Mesh with the �rst component without the �rst component

GRT3D GRT3DRL GRT3D GRT3DRL

20x42 6.402528E-08 3.112242E-09 3.227338E-08 2.568312E-09

40x84 6.432335E-08 6.467349E-09 3.040179E-08 3.034366E-09

80x168 5.802496E-08 5.286914E-09 6.091884E-08 5.727954E-09

Table 7: Comparison of accuracy for the component c2. The di�erence with GRT3DRSL is

computed from (6).

For each component, we compare the concentrations obtained with the three

versions of the software, keeping or removing the inert component. The algo-

rithms are mathematically equivalent but not numerically, therefore we compare185

their accuracy. We take as reference the result obtained with GRT3DRSL, that

is the version with substitution and without logarithms. For each component ci

or si, we compute the di�erence between this reference and the results obtained

with other versions, in the following way :

Eci =

√
1

NmNt

∑
n,j

(c̃i(mj , tn)− ci(mj , tn))2, (6)

where mj is the cell number and tn is the timestep number, with Nm cells and190

Nt timesteps, c̃i is the reference concentration and ci is the other concentration.
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Table 7 shows the deviations for the component c2, those for the other com-

ponents can be found in [18]. Since these di�erences are quite small for the three

meshes and for all versions, we conclude that we do not introduce numerical ar-

tefacts by using substitution or by using logarithms.195

4.2. System size and total CPU time

Mesh with the �rst component without the �rst component

GRT3D GRT3DRL GRT3D GRT3DRL

20x42 10920 4200 8400 3360

40x84 43680 16800 33600 13440

80x168 174720 67200 134400 53760

Table 8: System size using GRT3D and GRT3DRL with and without the �rst inert com-

ponent.

The reduction of the system size is given in Table 8. If we keep the inert

component and apply substitution, the system size is reduced from (3Nc +

Ns) × Nm = 13Nm in GRT3D to (Nc + Ns) × Nm = 5Nm in GRT3DRL and

GRT3DRSL. If we remove the inert component, we get (Nc − 1) aqueous com-200

ponents, and obtain a reduction thanks to substitution from 10Nm to 4Nm.

Mesh GRT3D GRT3DRL GRT3DRSL

20x42 52 m 52 s 27 m 16 s 19 m 6 s

40x84 9 h 52 m 24 s 4 h 44 m 40 s 3 h 9 m 8 s

80x168 5 j 15 h 12 m 15 s 3 j 11 h 24 m 23 s 2 j 2 h 12 m 5 s

Table 9: CPU time of the three versions with the �rst inert component.

Clearly, reducing the system size has a direct impact on the CPU time. The

total CPU time for the three versions is given in Table 9 for computations with

the �rst inert component and in Table 10 without it.205
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Mesh GRT3D GRT3DRL GRT3DRSL

20x42 40 m 20 s 19 m 1 s 13 m 49 s

40x84 7 h 20 m 22 s 4 h 4 m 1 s 2 h 12 m 45 s

80x168 2 j 18 h 22 m 46 s 2 j 6 h 56 m 42 s 1 j 8 h 20 m 46 s

Table 10: CPU time of the three versions without the �rst inert component.

CPU time decreases also when variables are not logarithmic. In order to

analyze these e�ects, we use the measures taken at each external timestep of

the software SUNDIALS. In Figure 6, we plot the CPU time versus the simulated

time, for the six simulations (three versions of software, with and without the

�rst component), and for the �ne mesh. During all the simulated time interval,210

the substitution approach, as well as the elimination of the �rst component,

reduce the CPU time. Also, the use of non logarithmic variables is much more

e�cient.

For all the simulations, the CPU time increases rapidly until about t = 1000T

then it levels o� until time t = 5000T and increases again rapidly when the215

in�ow boundary conditions change. We analyse the outputs of the software IDA

in order to explain this behavior.

4.3. E�ect of adaptive time step

The IDA solver in the software SUNDIALS adjusts automatically the time

step, in order to control both the accuracy of time discretization and the conver-220

gence of Newton's iterations. In Figure 7, we plot the number of time steps taken

during the whole simulation. Here, we show only results without the �rst com-

ponent and for the �ne mesh, since other results are very similar.

As expected, the CPU time is strongly correlated with the number of time

steps. The initial and boundary conditions are di�cult to handle and require225

small time steps during a period of time until larger time steps can be taken.

These results demonstrate the e�ciency of adaptive time step.
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4.4. E�ect of modi�ed Newton's iterations

The number of time steps has a direct impact on the number of Newton's

iterations which can be measured by the number of linear system solvings. It is230

also correlated to the number of updates of the Jacobian matrix, which can be

measured by the number of matrix factorizations. Indeed, in our simulations,

we use a direct sparse linear solver implemented in the software UMFPACK.

Thus each time the Jacobian is updated, it has to be factorized in order to solve

the linear systems associated to this new Jacobian.235

In Figure 8, we plot the number of linear solvings and matrix factorizations,

for the three versions and for the �ne mesh. Theses numbers are in logarithmic

scale. Here, the �rst component is not considered, similar results are obtained

when including it.

Again, we observe a sharp increase of these numbers at the beginning of240

the simulation and a small jump after leaching. At time t = 0, the number

of solvings as well as the number of factorizations are slightly smaller when

reducing the system size, from GRT3D to GRT3DRL. They are clearly smaller

when using non logarithmic variables. This result is probably due to a better

condition number of the Jacobian matrix at time t = 0.245

For the three versions, the number of matrix factorizations is much smaller

than the number of linear system solvings. This result demonstrates the e�-

ciency of adaptive modi�ed Newton's iterations. Indeed, the Jacobian is kept

frozen during several time steps and during nonlinear iterations, so that facto-

rization does not occur as often as solving.250

4.5. Algorithmic complexity of Newton's iterations

It is well-known that the algorithmic complexity of sparse matrix factoriza-

tion is much higher than the complexity of sparse system solving, which involves

sparse triangular matrices. Thus, in order to fully measure the e�ciency of the

adaptive update of the Jacobian matrix, we have to analyze the CPU time of255

the Newton's iterations.
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In Figure 9, we plot the CPU time (in logarithmic scale) of the linear solvings

and matrix factorizations, for the three versions and the �ne mesh. We see again

the e�ect of the numerical di�culties at time t = 0 and the di�erences between

the three versions.260

Whereas the number of factorizations is smaller than the number of solvings,

the CPU time does not behave in the same way. For the small and intermediate

meshes, factorization time is smaller than solving time but it becomes larger

than solving time for the �ne mesh. Because the algorithmic complexity of the

factorization is higher, the CPU time increases much faster when the mesh is265

re�ned.

This is also illustrated by Figure 10, where we plot the percentage of time

spent in linear steps in function of the mesh size, measured by the number

of cells. These percentages are computed versus the total CPU time, at the

end of the simulations. Computations are done here with the version without270

logarithms (GRT3DRSL) and without the �rst component c1.

Factorization time becomes relatively more important as the mesh size in-

creases and eventually the lines intersect roughly at the size of the �ne mesh. It

can also be noted that the addition of both percentages increases with the mesh

size. For the �ne mesh, more than 90% of CPU time is spent in the Newton's275

iterations. Therefore, it is really important to reduce the number of iterations

and their computational cost.

5. Concluding remarks

In this paper, we have proposed a global approach for simulating reactive

transport equations, where transport is coupled with geochemistry. The global280

method is based on a DAE formulation of the semi-discrete system obtained

after space discretization. An implicit time scheme ensures stability and provides

an adaptive time step with an adaptive update of the Jacobian matrix. This

feature is very e�cient as illustrated in our numerical results with the MoMaS

benchmark. In order to use this adaptive time scheme, we keep the di�erential285
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variables, but we eliminate them at the linear level, thus reducing the system

size. This is also very e�cient as demonstrated in our results. We could also

apply the substitution at the nonlinear level [10, 18]. In the MoMaS benchmark,

some concentrations are set to 0 at the intial time and at in�ow boundaries.

When using logarithmic variables and very small initial concentrations instead290

of 0, this leads to ill-conditioned systems. It appears that it is more e�cient to

use nonlogarithmic variables for the test case studied here.

We use a sparse direct solver which �rst factorizes the Jacobian matrix, then

solves two triangular systems. This second step has a much smaller complexity

than the �rst one. Thanks to the adaptive update of the Jacobian, the compu-295

tational cost of the factorization remains low for the meshes considered here.

However, it is clear that this cost will eventually dominate for larger systems.

Therefore, we investigate parallel iterative solvers in order to tackle 3D problems

[17].

The test case considered here de�nes chemistry at equilibrium, without pre-300

cipitation or dissolution. These reactions are very challenging because minerals

can appear and disappear. We study some mathematical issues of this problem

[16]. We also plan to include kinetic reactions.
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(a) Time t = 1T

(b) Time t = 4000T

(c) Time t = 5010T

(d) Time t = 5800T

Figure 4: Concentrations of the inert solute c1 at di�erent times (with di�erent scales).

Simulations are done with a mesh of size 80× 168.
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(a) Time t = 1T

(b) Time t = 4000T

(c) Time t = 5010T

(d) Time t = 5800T

Figure 5: Concentrations of the solute c4 at di�erent times (with di�erent scales). Simulations

are done with a mesh of size 80× 168.
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Figure 6: CPU time during the simulation for the six variants.

Figure 7: Number of time steps during the simulation.
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Figure 8: Number of linear solvings and matrix factorizations during the simulation (loga-

rithmic scale).

Figure 9: CPU time during the simulation of the linear system solvings and the matrix

factorizations (logarithmic scale).

23



Figure 10: Percentage of CPU time in linear solvings and factorizations versus the mesh size

using GRT3DRSL.
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