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Abstract—Human occupancy measurement has become a topic
of increasing interest in the past few years, due to the impor-
tant role it plays in controlling a number of demand-driven
applications like smart lighting and smart heating, as well as
improving the energy efficiency of these applications in a broader
sense. Office occupancy monitoring in commercial buildings can
yield huge savings and improvements in terms of thermal, visual,
and air quality. However, this is often impeded due to the lack
of fine-grained occupancy information. This paper explores the
use of low-priced environmental (temperature and humidity)
sensor data for measuring occupancy in an office space. The
idea behind this work is to leverage the variation divergence
between humidity and temperature caused by human presence.
We used a Raspberry Pi with a daughterboard called Sense Hat,
which is equipped with the environmental sensors used in this
study. The results are compared with occupancy data obtained
from camera feeds in order to assess the effectiveness and the
accuracy of the combined occupancy measurements, and show
up to 87% accuracy.

Index Terms—Occupancy detection, occupancy measurement,
RaspberryPi, Internet of Things, Edge Computing, IBM Cloud.

I. INTRODUCTION

Internet of Things (IoT) has become a major technological
revolution, which is leading to an explosive growth in the
number of internet-connected devices globally thanks to a
strong reduction in sensors costs. Experts estimate that IoT
will consist of approximately 50 billion devices by 2020 [1].
Consequently, IoT is gradually impacting every business area
and industry field. These IoT devices offer an attractive, lower-
cost alternative to more expensive traditional monitoring sys-
tems like surveillance cameras or traditional weather stations.
In addition, these devices can be more easily integrated with
control systems like Building Management Systems (BMS)
[2], thanks to their integrated communication modules.

The decrease in sensors prices was also accompanied with
a continuous decrease in electronic components prices and
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particularly a reduction in processing power costs. This led to
more and more computational power being integrated into IoT
devices, which paved the way to the advent of a new concept
commonly called Edge Computing (EC) [3]. EC consists of
pushing the intelligence of a system towards the edge of the
network composing it. In other words, offloading some of
the tasks that are usually handled on the cloud, to the some
“cloudlets” [4] closer to the source of the data or to the IoT
devices themselves.

The most notable advantage of such an approach is the
considerable reduction of the response time enabling new,
latency sensitive applications that were not possible using a
traditional cloud architecture. Moreover, how effectively these
IoT devices are able to communicate (particularly over poten-
tially heavily congested networks) can have a major impact on
the quality of the services provided, as well as in their degree
of success (or failure). EC allows for a considerable reduction
in the network load, since a good part of the data processing
is done on the IoT device and thus, less data is transferred
through the network to the cloud.

With the availability of IoT sensor data in commercial
buildings, occupancy information can be monitored in real
time. This information can be used in a variety of applications
controlled by the BMS. For example, energy consumption can
be regulated by controlling the Heating, Ventilating and Air
Conditioning (HVAC) based on the occupancy information
gathered from the sensors. In case of issues with HAVC, tem-
porary adjustments can be made in order to ensure occupants
comfort and safety [5], [6]. In addition to energy management,
the fire system can benefit from such information. Survivors
can be located and rescued in case of emergency situations
[7]. Finally, occupancy information can be used to enhance
the building security and surveillance [8].

In the recent years, many occupancy measurement ap-
proaches have been investigated in the literature to explore
different flavours of IoT devices, sensor types combination,
data processing methods, as well as functions and usecases.



However, these approaches have some pros and cons in terms
of cost, accuracy and privacy. This latter is a big concern
especially in an office spaces where the privacy of occupants
is of high importance. This restricts the use of a number of
intrusive devices that can uncover the identity of the occupant
or track their movements in the context of a commercial
building or occupancy in office spaces. On the other hand,
it is common sense that cost and accuracy are positively
correlated as usually, the higher the accuracy of the sensor and
its readings, the higher its cost is. Nevertheless, we argue that
the accuracy of occupancy measurement could be improved
relying on a combination of a number of different sensor
readings.

This work investigates the use of low-cost, non-intrusive
environmental sensors and the fusion of their readings in
order to estimate office spaces occupancy more accurately
in commercial buildings. We are particularly interested in
detecting human presence in an office space as the number,
location, and activity of the occupants are outside the scope
of this work.

The main premise of this paper is that human presence in
a closed space like an office, affects the temperature and the
humidity in different ways, which creates some interesting di-
vergences in the humidity and temperature behaviour between
occupied and unoccupied periods. This difference in pattern is
exploited to detect human presence.

First, the environmental sensor readings are gathered using
the Sense Hat 1. Next, these readings are combined and
processed locally on the Raspberry Pi 2 to detect changes
in humidity and temperature patterns. Finally, the occupancy
information in the office space is estimated based on the
change in humidity and temperature behaviour. In order to
assess the accuracy of our occupancy estimation method, we
compared the occupancy results we obtained with manually
reviewed video recordings of the office using a Pi Camera
3. The proposed approach leverages the computational power
of edge devices to alleviate the network load compared with
traditional approaches where data is transferred to the cloud
creating a bottleneck in the network.

The remainder of this paper is organized as follows: section
II is a review of the current state of the art and a discussion
of different approaches, their pros and cons. Section III
introduces the method followed in order to infer occupancy
in the office space. Section IV discusses the results and the
limitations of this approach. Finally, section V discusses future
directions and concludes this paper.

II. RELATED WORK

There are a number of occupancy measurement solutions
in the literature. Throughout the past decade, researchers have
explored various detection mechanisms using different types
of sensors. Perhaps, the most obvious solution when trying
to detect human presence is to use a system humans can

1https://www.raspberrypi.org/products/sense-hat/
2https://www.raspberrypi.org/
3https://www.raspberrypi.org/products/camera-module-v2/

interact with to mark their presence, like the work in [9].
The work in [10] used carefully placed Passive Infra-Red
(PIR) sensors to detect if someone cuts the infrared beam.
A criticism of such solutions would be that they require a
direct line of sight between the sensor and the occupant [11].
It also requires continuous movements from the occupants
[12]. Other studies have demonstrated that such systems can
be triggered by heat currents in the room, causing frequent
false positives occurrences [13]. Other works relied on sound
sensors [14] or ultrasonic sensors [15] to detect the noises
caused by humans in a room or an office space. These solutions
also fail to detect human presence if the person is not making
any noises (for example a person sitting and silently reading
an article). CO2 sensors were also explored in [16] to measure
the change in the amount of CO2 exhaled by humans in
a room. However, it is shown in works like [17] that the
accuracy of such measurement with regards to human presence
is much lower compared to other types of sensors. Another
innovative solution aims to detect the Electromagnetic Signals
(EM) produced by devices carried by the user like the work in
[18] who monitors the Wi-Fi activity of a user. These solutions
can be convenient, as they do not require any additional
infrastructure, but they also come with a number of limitations.
First, occupants have to carry a communication device (like
a mobile phone) at all times. In addition, it is well known
that mobile phones are battery powered and thus, can go
offline at any time causing the system to fail at detecting a
presence in the room [18]. Finally, Cameras are also a good
way of obtaining fine-grained information about occupancy in
a room or an office space like the works in [19] and [20].
Yet, there is a growing concern about occupants’ privacy in
office spaces [13]. Also, video feeds from cameras transferred
through the network create a bottleneck in the network, hence
the importance of EC.

These above occupancy measurement methods and others,
can be classified according to a number of parameters. A
good classification divides the literature works into three main
categories [21]:

• Detection method: Occupancy measurement solutions
can be classified according to the method used to detect
the occupants in a building or in an office space. This
can be an active or a passive detection. Active detection
requires the occupant to explicitly perform an action
to interact with the monitoring system and mark its
presence. This usually involves a device or an object
that needs to be carried by the user such as an access
card or an RFID tag like the work in [9]. Although this
method allows for a great level of accuracy in perfect
conditions, it is dependent on the occupants’ compliance.
On the other hand, passive detection does not require any
actions from the user. Most of the solutions mentioned
above (EM, CO2, PIR, ultrasonic and cameras) fall into
this category, as they are very convenient. However, it
is argued in many works [17] that the accuracy of such
solutions relying on a single source of information can
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Fig. 1. IoT testbed used in this study

be improved by using a fusion of a number of different
sensor data.

• Detection Function: Occupancy measurement solutions
can also be classified according to the function or the
purpose of the detection. The function of the detection
can range between presence, count, location, movement
tracking and activity monitoring. Presence detection pro-
vides binary information (true or false) about whether the
room is occupied or not [18]. Count measurement on the
other hand gives information about the number of persons
present in a room, an office space or a building [13].
Location detection allows the HVAC system to adjust
in specific locations according to where persons are in
a building [16]. Movement tracking takes this a step
further and provides the history of a particular occupant’s
movement [22]. Finally, activity monitoring is concerned
with what the occupant is doing like the work in [23],
which relies on CO2 exhaled by human presence to deter-
mine the level of effort of different individuals. However,
there are a lot of privacy concerns about solutions like
the above that track occupants’ location, movements and
activity [13].

• Detection Infrastructure: The last classification divides
the literature works based on whether they require the
installation of explicit infrastructure to operate, or they
just rely on existing infrastructure that performs the
occupancy measurement as a secondary function [24],
[25]. CO2, PIR, and ultrasonic sensors are explicit so-
lutions, as they require new sensors to be installed in
the office space. On the other hand, solutions that rely
on EM measurements or video feeds can be regarded
as implicit solutions as they infer occupancy information
from sources that are not solely installed for the purpose
of this detection.

A common trait of all the works discussed in this section
is that most of the time they rely on a single source of
information. The novelty of this work is the fact that it looks
into different measurements sources from low-cost environ-

mental sensors and combines them in order to improve the
accuracy of the detection. The use of such sensors eliminates
all privacy concerns, as these readings do not allow unveiling
the identity of the occupants. Another important advantage
of our solution is the use of EC to process and aggregate
the sensor readings locally, which considerably reduces the
amount of data injected in the network.

III. PROPOSED SOLUTION

In this section, we will first go through the system design,
explain the testbed and the setup used in this study, then we
will cover the approach followed to estimate the occupancy in
an office and the steps involved.

A. System Design

For the purpose of this work, we have developed an IoT
test bed at University College Dublin (UCD) to detect human
presence in a few approved offices. We relied on the cloud IoT
platform IBM Bluemix 4 to provision the IoT devices with
the packaged code. This platform uses Docker containers 5

to package the code which allows for a seamless provision
and update of the Edge Devices. It also offers a dashboard
that allows a holistic view and an easier interaction with the
devices and the data they report. We refer the reader to [26]
for more information about IBM Bluemix.

The IoT test bed used in this study is illustrated in Figure 1.
The test bed comprises of a number of Raspberry Pi’s System
on Chip (SoC) as Edge Devices. These devices are connected
to a wireless router, which in turn is linked to a gateway
allowing them to have Internet access and connect to IBM
Bluemix.

Fig. 2. Edge device used in this study (Raspberry Pi3 equipped with a Sense
Hat daughterboard and a Pi Camera)

The Edge devices are hooked with a daughterboard called
Sense Hat that contains six sensors in total. These sensors can
be classified in two types: (i) Environmental sensors, which
include Temperature, Humidity and Barometric Pressure sen-
sors; and (ii) Inertial sensors comprising in a Compass, a
Gyroscope and an accelerometer. The inertial sensors were

4https://www.ibm.com/cloud/
5https://www.docker.com/



Fig. 3. Layout of the test office used in this study and location of Edge
Devices

not used for the purpose of this work as the Edge Device
was stationary in our case. We also equipped one Raspberry
Pi with a Pi Camera in order to assess the accuracy of the
detection using the above-mentioned environmental sensors.
This was done by manually checking the video recordings
and obtaining the baseline real occupancy information, then
comparing them against the sensor readings. Figure 2 shows
an Edge Device used in this study.

The edge devices were placed as shown in Figure 3 in a
test office. The office comprises three desks. The Raspberry
Pi equipped with a camera was placed in a way to capture
employees coming in and out of the office. Another Raspberry
Pi equipped with a Sense Hat was placed on one of the desks
to capture environmental (humidity and temperature) data in
the office. In the next subsection, we describe the approach
and the different methods to probe occupancy information in
the office space.

B. Approach
As mentioned in the previous sections, the Sense Hat con-

tains three environmental sensors (Temperature, Humidity and
Barometric Pressure), as well as three other inertial sensors
(Gyroscope, Compass and Accelerometer). After inspecting a
sample dataset of all these sensors’ readings, we came to the
conclusion that three out of the six sensors did not yield useful
enough information for this specific application, as there was
barely any variation in the measured values. These sensors are
the gyroscope, the accelerometer and the magnetometer. This
was expected since these three inertial sensors are designed to
capture movements in the edge device. However, this later was
stationary in our case. In the environmental sensors category,
the Barometric pressure sensor was also dropped as it did yield
some variations, but these were long-term trends rather than
the instantaneous spikes we are interested in. Based on these
elements, we only relied on the humidity and the temperature
sensors in our study.

The main finding of this work is the fact that human
presence in a closed room affects the behaviour of the humidity
and the temperature in different ways. In fact, in a closed,
undisturbed environment, temperature and humidity vary as a

pair. That is, usually an increase in the temperature is always
accompanied with a decrease in humidity, and vice versa
[27]. As a person walks into the room, this equilibrium is
disturbed to a certain extent and we observe a different pattern
where the changes in temperature and humidity have different
amplitudes.

In the following, we will go through the approach and the
steps followed to result in the occupancy detection solution
proposed in this work. This can be described in the following
three steps: (i) data smoothing and de-trending; (ii) pattern
observation and data comparison; and finally (iii) occupancy
estimation. We will discuss each of these steps and justify their
significance and the logic behind them.

(a) Raw temperature and humidity
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(b) EWMA Smoothed temperature and humidity

Fig. 4. difference between raw and smoothed humidity and temperature data.
EWMA with a small enough decay factor allows removing the noise while
maintaining the shape of the data.

(i) Data smoothing and de-trending: In this first step,
we applied an Exponentially Weighted Moving Average
(EWMA) to smooth the data and get rid of the unneces-
sary noise. EWMA is calculated as follows:

at = (1 − λ)

t−1∑
i=0

λi at−1−i (1)

Where at is the exponentially weighted sample at time
t and λ is the decay parameter. The choice of EWMA



against a Simple Moving Average (SMA) is motivated by
the fact that we wanted to smooth the data but preserve
variations and the spikes observed in the data by giving
more weight to more recent data. In other words, an
EWMA allows smoothing the data while maintaining the
integrity or the shape of the data whereas a SMA not only
smooths the data, but it also considerably reduces the
magnitude of the spikes observed in the data (or smooth
the edges). Figure 4 shows a sample temperature and
humidity plot before and after applying the EWMA.
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(a) Differentiated temperature and humidity data
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(b) Standard Deviation of differentiated humidity and temperature data

Fig. 5. De-trending using numerical differentiation (a) then quantification of
the variation (b) in order to infer patterns of occupied and unoccupied periods.

After the EWMA is applied, we performed a rolling
numerical differentiation of the data using the following
formula:

∆(at) = at − at−w (2)

Where at is the term at time t and w is the time window
of the differentiation. The reason behind this step is the
elimination of trends and seasonality. In fact, temper-
ature (and consequently humidity) changes throughout
the day in account of external factors such as outdoor
temperature, as well as the heating cycle in the room.
However, we are only interested in variations caused by
human presence and thus, numerical differentiation is the
perfect candidate to filtering out the long-term variations

while maintaining the integrity of short-term temperature
and humidity changes. Figure 5(a) shows the output of
differentiated temperature and humidity data.
Finally, we calculated the standard deviation of this
differentiated data as follows:

σ(at) =

√√√√ 1

t− 1

t∑
i=1

(ai − ā(w))2 (3)

Where ā(w) is a rolling mean with a window w. By
definition, the standard deviation is the amount of change
from the mean value. In our study, we wanted to quantify
the amount of variation in the differentiated data. In
other words, this allows us to measure the difference in
humidity and temperature variations and draw a clear
picture of whether there is a correlation between these
two values. Figure 5(b) shows the resulted standard
deviation.

(ii) Pattern observation and data comparison: For the sake
of simplicity, we will refer to the Standard Deviation of
the differentiated data as σ. In this step, we divided the
data into two groups: occupied and unoccupied periods.
Real occupancy information was obtained by means of
reviewing recorded videos and photos of the test office,
recording the time and mapping this information to our
humidity and temperature σ values. We plotted samples
of occupied periods as well as unoccupied periods and
the results are shown in Figure 6.
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Fig. 6. Difference in Temperature and Humidity Standard Deviation between
occupied (right) and unoccupied (left) periods.

The graphs show an interesting pattern, that is, humidity
and temperature σ values follow the same behaviour dur-
ing unoccupied periods, but diverge significantly during
occupied periods. Based on this observation, we wanted
to confirm this observation and extract useful occupancy
information from it.
In order to do this, we calculated the absolute difference
between the humidity and temperature σ values to get a
better feel of the convergence and divergence observed
using the following formula:



00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Time of day (H:M)

0.0

0.5

1.0

1.5

2.0
H

u
m

id
it

y
 (

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
)

1e 2

humidity
temperature
Abs. diff.
occupancy

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Time of day (H:M)

0.0

0.5

1.0

1.5

2.0

T
e
m

p
e
ra

tu
re

 (
S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
)

1e 2

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

A
b
s.

 d
if
fe

re
n
ce

 (
H

u
m

-T
e
m

p
)

Unoccupied period Occupied period

Fig. 7. Absolute difference of Humidity and Temperature Sigma versus
occupancy.

ρt =
∣∣σ(Tt) − σ(Ht)

∣∣ (4)

Where σ(Tt) is the Standard Deviation of the differen-
tiated temperature at time t and σ(Ht) is the Standard
Deviation of the differentiated humidity at time t. After
smoothing this ρt by applying an EWMA filter from
Equation 1, we obtained the graph shown in Figure 7.
From this figure, we start to see a clear pattern where ρ
value increases significantly during occupancy periods
and drops rapidly when the person leaves the office. On
the other hand, ρ remains fairly flat when the room is
empty for a long time and is little affected by the sudden
spikes in humidity or temperature caused by external
factors like the heating system or the outside temperature.

(iii) Occupancy estimation: In this final step, we apply
an estimation algorithm based on ρt calculated in the
previous step. The input is simply the differentiation of
this value. This is done to quantify how fast this measure
is varying and is calculated as follows:

∆(ρt) = ρt − ρt−w (5)

Where ρt is the value at time t and w is the time window
of the differentiation. The output on the other hand
is the estimated occupancy information. The algorithm
is intuitive and pretty straightforward and is shown in
Algorithm 1.
Three parameters are used for the purpose of the es-
timation and that is the Ascending Velocity Threshold
Ascth, the Descending Velocity Threshold Descth and
the Decline Threshold Decth. The former two parameters
are self-explanatory as they are thresholds for how fast
the ∆(ρ) (Equation 5) is increasing or decreasing. If
∆(ρ) calculated above is smaller than Descth, this means
that the value is dropping rapidly and the state of the
occupancy in the office should be changed to unoccupied.
On the other hand, if ∆(ρ) is greater than Ascth, this is
interpreted as a rapid increase in this value and thus, the

occupancy state should be changed to occupied. The last
parameter (Decth) on the other hand, which is the decline
threshold, is a threshold to determine how long should
∆(ρ) value continuously drop in a moderate amount in
order to consider that the office has been cleared and the
occupancy status should be changed from occupied to
unoccupied.

Algorithm 1 Occupancy estimation
Input:

ρt: Differentiated Absolute difference
Output:

State: Estimated occupancy
Params:

Ascth: Ascending Velocity Threshold
Descth: Descending Velocity Threshold
Decth: Slow Decline Threshold

1: Decline period initialised to 0
2: State initialised to unoccupied
3: while True: do
4: if ∆(ρt) < Descth: then
5: State is unoccupied
6: Decline period is 0
7: else if ∆(ρt) > Ascth: then
8: State is occupied
9: Decline period is 0

10: else if ∆(ρt) > 0: then
11: Decline period is incremented by 1
12: if Decline period >= Decth: then
13: State is unoccupied
14: end if
15: else
16: State is unchanged
17: end if
18: end while

To sum the steps above up, first the raw humidity and
temperature measurements are smoothed and de-trended using
a series of EWMA, Differentiation, and Standard Deviation.
We referred to this as σ. Next, the absolute difference between
the humidity value σ(H) and the temperature value σ(T ) is
calculated and smoothed using an EWMA filter. We referred
to this as ρ. A numerical differentiation of this parameter was
performed next and referred to as ∆(ρ). Finally, the intuitive
algorithm above is applied to estimate the occupancy in the
room.

This method has the advantage of being extremely light
and only relies on a relatively short window of past data.
This allows such estimation to run on low cost edge devices
in real-time without encountering any performance issued. In
the following section, we will discuss the results we obtained
using this method to estimate occupancy in an office space.

IV. RESULTS

In order to prove the effectiveness of our solution, we
used the setup described in Subsection III-A and gathered ten
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Fig. 8. Estimated occupancy inferred using the method described in Subsection III-B (Decth of 8100 seconds).

days worth of humidity and temperature data. This dataset
comprises of 860K humidity and temperature measurements
taken in 1 second intervals. Table I shows the empirically
selected parameters used in our estimation. The decay factor
λ of the EWMA is the parameter used in the first step in
Subsection III-B above. The window size w is the rolling
window used to calculate the numerical differentiation as well
as the rolling mean of the Standard Deviation in the same
step. Finally, Ascth, Descth, and Decth are the parameters
described in Algorithm 1.

TABLE I
ESTIMATION PARAMETERS

λ EWMA decay factor 0.95

Ascth Ascending Velocity Threshold 98e−8

Descth Descending Velocity Threshold 62e−8

Decth Slow Decline Threshold 8100 sec

w Differentiation and 900 sec
Standard Deviation window

Our occupancy estimation approach was used and com-
pared against real occupancy information gathered from video
recordings. Figure 8 shows the results obtained after perform-
ing our occupancy estimation method over a period of ten
days. This figure comprises of σ(T ) and σ(H) (Standard
Deviation of the differentiated temperature and humidity data
respectively, Equation 3), as well as ρ (absolute difference of
σ(T ) and σ(H)) and the estimated occupancy information.
In order to evaluate these results, we compared the estimated
occupancy information with the real occupancy values and
the resulting graph is shown in Figure 9. We can see from
this figure that there our estimation method performs well
relatively with the size of the data. This shows the potential
of such an approach in detecting human presence in a room.

In order to give more insight into the results, we selected
five evaluation metrics in order to assess the correctness of our
estimation results. These metrics are (i) True Positive Rate;
(ii) True Negative Rate; (iii) False Positive Rate; (iv) False
Negative Rate; and finally (v) the Accuracy of the estimation.
True Positive Rate and True Negative Rate are defined as
TPR = TP / (TP+FN ) and TNR = TN / (TN+FP )
respectively; where TP, TR, FP and FR are the total number of
True Positive, True Negative, False Positive and False Negative

samples respectively. False Positive and False Negative Rates
are calculated respectively as follows: FPR = 1 - TNR and
FNR = 1 - TPR. Finally, the accuracy of the estimation is
obtained by ACC = (TP+TN ) / (TP+FP+TN+FN ). We
also varied the Decth parameter and obtained a set of results
that are broken down in Table II.

TABLE II
ESTIMATION RESULTS

Decth TPR TNR FPR FNR Accuracy
3600 s 59.07% 91.97% 8.03% 40.93% 83.33%
6900 s 80.50% 88.14% 11.86% 19.50% 86.14%
8100 s 86.99% 87.04% 12.96% 13.01% 87.03%
9900 s 93.40% 83.09% 16.91% 6.60% 85.80%
13300 s 95.04% 80.06% 19.94% 4.96% 83.99%

By varying the Decth parameter (which describes how long
should ∆(ρ) monotonically descend before the state of the
room is changed from occupied to unoccupied), we observe
that a higher Decth increases the True Positive Rate while a
lower Decth increases the True Negative Rate. The accuracy
of the estimation is a tradeoff between the True Positive Rate
and the True Negative Rate. We should mention that this
particular dataset has more instances of unoccupied states and
therefore, a small change in the True Negative Rate affects
the overall Accuracy greatly while an important change in
the True Positive Rate does not affect the overall accuracy in
such an important way. We also noted that varying the other
parameters (for example the window size w) does not have as
a great effect on the accuracy as the Decth.

V. CONCLUSION

This paper explores an Edge Computing approach to use
low-cost, non-intrusive environmental sensors for measuring
occupancy in an office space. Humidity and temperature data
was combined and used in order to estimate human presence
in a test office. The main idea was to leverage the divergence
in humidity and temperature variations introduced by human
presence in a closed environment such as an office. The results
show that such fusion of data (humidity and temperature)
can help estimate room occupancy with up to 87% accuracy.
This work is a demonstration that combination of different



Fig. 9. Comparison between the estimated occupancy and the real occupancy with a Decth value of 8100 seconds.

types of sensor readings can yield more accurate occupancy
information, and paves the way for more research in the data
fusion research applied in the context of Smart Cities. Future
work will explore the use of inertial sensor readings and fusion
with environmental sensors to improve the accuracy of the
estimation.
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