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Abstract—As blind audio source separation has remained
very challenging in real-world scenarios, some existing works,
including ours, have investigated the use of a weakly-informed
approach where generic source spectral models (GSSM) can
be learned a priori based on nonnegative matrix factorization
(NMF). Such approach was derived for single-channel audio
mixtures and shown to be efficient in different settings. This
paper proposes a multichannel source separation approach where
the GSSM is combined with the source spatial covariance model
within a unified Gaussian modeling framework. We present the
generalized expectation-minimization (EM) algorithm for the
parameter estimation. Especially, for guiding the estimation of
the intermediate source variances in each EM iteration, we
investigate the use of two criteria: (1) the estimated variances
of each source are constrained by NMF, and (2) the total
variances of all sources are constrained by NMF altogether.
While the former can be seen as a source variance denoising
step, the latter is viewed as an additional separation step applied
to the source variance. We demonstrate the speech separation
performance, together with its convergence and stability with
respect to parameter setting, of the proposed approach using a
benchmark dataset provided within the 2016 Signal Separation
Evaluation Campaign.
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I. INTRODUCTION

Real-world recordings are often mixtures of several audio
sources, which usually deteriorate the target one. Thus many
practical applications such as speech enhancement, sound
post-production, and robotics use audio source separation
technique [1], [2] to extract individual sound sources from
their mixture. However, despite numerous effort in the past
decades, blind source separation performance in reverberant
recording conditions is still far from perfect [3], [4]. To
improve the separation performance, informed approaches
have been proposed and emerged recently in the literature
[5], [6]. Such approaches exploit side information about either
the sources themselves or the mixing condition in order to
guide the separation process. Examples of the investigated
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side information include deformed or hummed references of
one (or more) source(s) in a given mixture [7], [8], text
associated with spoken speeches [9], temporal annotation of
the source activity along the mixtures [10], core associated
with musical sources [11], [12], and motion associated with
audio-visual objects in a video [13]. Following this trend,
some recent works including ours have proposed to use a
very abstract semantic information just about the types of
audio sources existing in the mixture to guide the source
separation. If one source in the mixture is known as ”speech”,
then several speaker-independent speech examples can be used
to create a universal speech model as presented in [14]; if
several types of sound sources in the mixture are known (e.g.,
birdsong, piano, waterfall), their audio examples found by
internet search can be used to learn the corresponding universal
sound class models as presented in [15]. Such universal models
were shown to be effective in guiding the source separation
algorithm and resulted in promising performance. Inspired
by this idea, we have further investigated the use of generic
speech and noise model for single-channel speech separation
in [16] and shown its promising result in (a) the supervised
case, where both speech GSSM and noise GSSM are learned
during training phase, and (b) the semi-supervised case, where
only the speech GSSM is pre-learned. Furthermore, we have
proposed to combine the block sparsity constraint investigated
in [14] with the component sparsity constraint presented in
[17] in a common formulation in order to take into account
the advantage of both of them [18].

It should be noted that the works cited above [9], [12], [16],
[18] considered only a single channel case, where the mixtures
are mono, and exploited non-negative matrix factorization
(NMF) [19], [20] to model the spectral characteristics of
audio sources. Some recent works have investigated the use
of the deep neural networks (DNN) to model the source
spectra, where basically the types of sources in the mixture
also need to be known as a side information in order to
collect training data. Such DNN-based approaches were shown
to offer very promising results in single-channel speech and
music separation [21]–[23], multichannel speech separation
[24], [25]. However, they require a large amount of labeled
data for training, which may not always be available and the
training is usually computationally expensive.

When more recording channels are available thanks to the
use of multiple microphones, a multichannel source separa-
tion algorithm should be considered as it allows to exploit
important information about the spatial locations of audio
sources. Such spatial information is reflected in the mixing
process (usually with reverberation), and can be modeled by
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e.g., the interchannel time difference (ITD) and interchannel
intensity difference (IID) [26]–[29], the rank-1 time-invariant
mixing vector in the frequency domain when following the
narrowband assumption [30]–[33], or the full-rank spatial
covariance matrix in local Gaussian model (LGM) where the
narrowband assumption is relaxed [34]–[36].

In this paper, we present an extension of the previous works
[15], [16], [18] to the multichannel case where the NMF-based
GSSM is combined with the full-rank spatial covariance model
in a Gaussian modeling paradigm. Around this LGM, existing
works have investigated several source spectral models such as
Gaussian mixture model (GMM) [37], NMF as a linear model
with nonnegativity constraints [36], [38], continuity model
[39], kernel additive model [40], heavy-tailed distributions-
based model [41], [42], and recently DNN [24]. Focusing on
NMF in this study, our work is most closely related to [38] and
[36] as both of them use NMF within the LGM to constrain
the source spectra in each EM iteration. However, our work
is different from [38] in the sense that we use the pre-trained
GSSM, so that potentially the algorithm is less sensitive to the
parameter initialization, and it does not suffer from the well-
known permutation problem. Our work is also different from
[36] as we exploit the mixed group sparsity constraint to guide
the optimization, which allows the algorithm to automatically
select the most representative spectral components in the
GSSM. In addition, instead of constraining the variances of
each source by NMF as done in [36], [38], we propose to
constrain the total variances of all sources altogether by NMF
and show that this novel optimization criterion offers better
source separation performance. While part of the work was
presented in [43], this paper provides more details regarding
the algorithm derivation and the parameter settings. Further-
more, the source separation performance analysis and the
comparison with existing approaches are extended.

The rest of the paper is organized as follows. We discuss
the problem formulation and the background in Section II.
We present the proposed GSSM-based multichannel source
separation approach in Section III. In this section, we first
present two ways of constructing the GSSM based on NMF.
Then, to constrain the intermediate source variance estimates,
two optimization criteria are introduced, which can be seen as
either performing source variance denoising or source variance
separation. The generalized EM algorithm is derived for the
parameter estimation. We finally validate the effectiveness of
the proposed approach in speech enhancement scenario using a
benchmark dataset from the 2016 Signal Separation Evaluation
Campaign (SiSEC 2016) in Section IV. For this purpose, we
first analyze the convergence of the derived algorithm and
investigate its sensitivity to the parameter settings in terms
of source separation performance. We then show that the
proposed algorithm outperforms most state-of-the-art methods
in terms of the energy-based criteria.

II. PROBLEM FORMULATION AND MODELING

In this section, we review the formulation and the Gaussian
modeling framework for multichannel audio source separation.
Let us formulate the problem in a general setting, where

J sources are observed by an array of I microphones. The
contribution of each source, indexed by j, to the microphone
array is denoted by a vector cj(t) ∈ RI×1 and the I-channel
mixture signal is the sum of all source images as

x(t) =

J∑
j=1

cj(t). (1)

The objective of source separation is to estimate the source
images cj(t) given x(t). As the considered algorithm operates
in the frequency domain, we denote by cj(n, f) and x(n, f)
the complex-valued short-term Fourier transforms (STFT) of
cj(t) and x(t), respectively, where n = 1, 2, .., N is time
frame index and f = 1, 2, ..., F the frequency bin index.
Equation (1) can be written in the frequency domain as

x(n, f) =

J∑
j=1

cj(n, f). (2)

A. Local Gaussian model

We consider the existing nonstationary LGM as it has
been known to be robust in modeling reverberant mixing
conditions and flexible in handling prior information [34],
[37]. In this framework, cj(n, f) is modeled as a zero-
mean complex Gaussian random vector with covariance matrix
Σj(n, f) = E(cj(n, f)cHj (n, f)):

cj(n, f) ∼ Nc(0,Σj(n, f)), (3)

where 0 is an I × 1 vector of zeros and H indicates the
conjugate transposition. Furthermore, the covariance matrix is
factorized as

Σj(n, f) = vj(n, f) Rj(f), (4)

where vj(n, f) are scalar time-dependent variances encoding
the spectro-temporal power of the sources and Rj(f) are
time-independent I × I spatial covariance matrices encoding
their spatial characteristics when sources and microphones
are assumed to be static. Under the assumption that the
source images are statistically independent, the mixture vector
x(n, f) also follows a zero-mean multivariate complex Gaus-
sian distribution with the covariance matrix computed as

Σx(n, f) =

J∑
j=1

vj(n, f) Rj(f). (5)

Assuming that the mixture STFT coefficients at all time-
frequency (T-F) bins are independent, the likelihood of the
set of observed mixture vectors x = {x(n, f)}n,f given
the set of variance and spatial covariance parameters θ =
{vj(n, f),Rj(f)}j,n,f is given by

P (x|θ) =
∏
n,f

1

det (πΣx(n, f))
e−tr(Σ−1

x (n,f)Ψ̂x(n,f)), (6)

where det represents determinant of a matrix, tr() stands for
matrix trace, and Ψ̂x(n, f) = E(x(n, f)xH(n, f)) is the
empirical covariance matrix. It can be numerically computed
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by local averaging over neighborhood of each T-F bin (n′, f ′)
as [36], [44]:

Ψ̂x(n, f) =
∑
n′,f ′

w2
nf (n′, f ′)x(n′, f ′)xH(n′, f ′), (7)

where wnf is a bi-dimensional window specifying the shape
of the neighborhood such that

∑
n′,f ′ w

2
nf (n′, f ′) = 1. We

use Hanning window in our implementation. The quadratic
T-F presentation as Ψ̂x(n, f) aims to improve the robustness
of the parameter estimation as it exploits the observed data
in several T-F points instead of a single one. The negative
log-likelihood derived from (6) is

L(θ) =
∑
n,f

tr
(
Σ−1x (n, f)Ψ̂x(n, f)

)
+ log det

(
πΣx(n, f)

)
,

(8)
Under this model, once the parameters θ are estimated, the
STFT coefficients of the source images are obtained in the
minimum mean square error (MMSE) sense by multichannel
Wiener filtering as

ĉj(n, f) = vj(n, f) Rj(f)Σ−1x (n, f)x(n, f). (9)

Finally, the expected time-domain source images ĉj(t) are
obtained by the inverse STFT of ĉj(n, f).

B. NMF-based source variance model

NMF has been a well-known technique for latent matrix
factorization [19] and shown to be powerful in modeling audio
spectra [6], [20]. It has been widely applied to single channel
audio source separation where the mixture spectrogram is
usually factorized into two latent matrices characterizing the
spectral basis and the time activation [20]. When adapting
NMF to the considered LGM summarized in Section II-A, the
nonnegative source variances vj(n, f) can be approximated as

vj(n, f) =

Kj∑
k=1

wjfkhjkn, (10)

where wjfk is an entry of the spectral basis matrix Wj ∈
RF×Kj

+ , hjkn is an entry of the activation matrix Hj ∈
RKj×N

+ , and Kj the number of latent components in the NMF
model.

To our best knowledge, this NMF formulation for the source
variances within the LGM was first presented in [38], and
then further discussed in [36], [37]. However, in those works,
the basis matrix Wj is not a GSSM as proposed in this
article (presented in Section III-A), and thus the parameters
{Wj ,Hj} were estimated differently.

C. Estimation of the model parameters

The set of parameters θ is estimated by minimizing the
criterion (8) using a generalized EM algorithm (GEM) [45].
This algorithm consists in alternating between E step and M
step. In the E step, given the observed empirical covariance
matrix Ψ̂x(n, f) and the current estimate of θ, the conditional
expectation of the natural statistics is computed as [31]

Σ̂j(n, f) = Gj(n, f)Ψ̂x(n, f)GH
j (n, f) +

(I−Gj(n, f))Σj(n, f), (11)

where Gj(n, f) = Σj(n, f)Σ−1x (n, f) is the Wiener gain, I

is an I×I identity matrix. Then in the M step, given Σ̂j(n, f)
the parameters θj = {vj(n, f),Rj(f)}n,f associated to each
j-th source are updated in the maximum likelihood sense by
optimizing the following criterion [34]:

L(θj) =
∑
n,f

tr
(
Σ−1j (n, f)Σ̂j(n, f)

)
+ log det

(
πΣj(n, f)

)
.

(12)
By computing the derivatives of L(θj) with respect to vj(n, f)
and each entry of Rj(f) and equating them to zero, the
iterative updates for these parameters are found as

Rj(f) =
1

N

N∑
n=1

1

vj(n, f)
Σ̂j(n, f) (13)

vj(n, f) =
1

I
tr(R−1j (f)Σ̂j(n, f)) (14)

At each EM iteration, once vj(n, f) is updated in the M step
by (14), it will be further constrained by NMF as (10). For
this purpose, given the matrix of the current source variance
estimate Vj ∈ RF×N+ whose entries are vj(n, f), the cor-
responding NMF parameters are estimated by minimizing the
Itakura-Saito divergence, which offers scale-invariant property,
as

min
Hj≥0,Wj≥0

D(Vj‖WjHj), (15)

where D(Vj‖WjHj) =
∑N
n=1

∑F
f=1 dIS

(
vj(n, f)‖wjfkhjkn

)
,

and

dIS(x‖y) =
x

y
− log

(
x

y

)
− 1. (16)

The parameters {Wj ,Hj} are usually initialized with random
non-negative values and are iteratively updated via the well-
known multiplicative update (MU) rules [19], [20].

III. PROPOSED GSSM-BASED MULTICHANNEL
APPROACH

The global workflow of the proposed approach is depicted
in Fig. 1. In the following, we will first review a training phase
for the GSSM construction based on NMF in Section III-A.
We then propose the NMF-based source variance model fitting
with sparsity constraint in Section III-B. Finally, we derive
the generalized EM algorithm for the parameter estimation in
Section III-C. Note that we focus on NMF as the spectral
model in this paper, however, the whole idea of the proposed
approach can potentially be used for other spectral models
than NMF such as GMM or DNN.
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Fig. 1. General workflow of the proposed source separation approach. The top green dashed box describes the training phase for the GSSM construction.
Bottom blue boxes indicate processing steps for source separation. Green dashed boxes indicate the novelty compared to the existing works [36]–[38].

A. GSSM construction
In this section, we review the GSSM construction, which

was introduced in [14], [17]. We assume that the types of
sources in the mixture are known and some recorded examples
of such sounds are available. This is actually feasible in
practice. For instance, in the speech enhancement, one target
source is speech and another is noise and one can easily find
speech and noise recordings. We need several examples for
each type of source as one recording is usually not fully
representative of the others and a source like “noise” is poorly
defined. Let us denote by slj(t) a l-th single-channel learning
example of j-th source and its corresponding spectrogram ob-
tained by STFT Slj . First, Slj is used to learn the corresponding
NMF spectral dictionary, denoted by Wl

j , by optimizing the
similar criterion as (15):

min
Hl

j≥0,Wl
j≥0

D(Slj‖Wl
jH

l
j) (17)

where Hl
j is the time activation matrix. Given Wl

j for all
examples l = 1, ..., Lj of the j-th source, the GSSM for the
j-t source is constructed as

Uj = [W1
j , . . . ,W

Lj

j ], (18)

then the GSSM for all the sources is computed by

U = [U1, . . . ,UJ ]. (19)

As an example for speech and noise separation, in the prac-
tical implementation, we may need several speech examples
for different male voices and female voices (e.g., 5 examples
in total), and examples of different types of noise such as
those from outdoor environment, cafeteria, waterfall, street,
etc.,. (e.g., 6 examples in total).

Note that as another variant investigated in this work, the
GSSM Uj can be constructed differently by first concatenating
all examples for each source (Sj = [S1

j , . . . ,S
Lj

j ]), and then
performing NMF on the concatenated spectrogram only once
by optimizing the criterion

min
Hj≥0,Uj≥0

D(Sj‖UjHj). (20)

We will show in the experiment that this way of construct-
ing the GSSM does not provide as good source separation
performance as the one presented before by (18).

B. Proposed source variance fitting with GSSM and mixed
group sparsity constraint

As the GSSM is constructed to guide the NMF-based
source variance constraint, we propose two fitting strategies
as follows:

1) Source variance denoising: Motivated by the source
variance model (10), when exploiting the GSSM model we
propose a variant as

vj(n, f) =

Pj∑
k=1

ujfkh̃jkn, (21)

where ujfk is an entry of Uj , h̃jkn is an entry of the
corresponding activation matrix H̃j ∈ RPj×N

+ . This leads to
a straightforward extension of the conventional optimization
criterion described by (15) where H̃j is now estimated by
optimizing the criterion:

min
H̃j≥0

D(Vj‖UjH̃j) + λΩ(H̃j), (22)
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where Uj is constructed by (18) or (20) and fixed, Ω(H̃j)

presents a penalty function imposing sparsity on H̃j , and λ is a
trade-off parameter determining the contribution of the penalty.
Note that as the GSSM Uj constructed in (18) becomes
a large matrix when the number of examples Lj for each
source increases, and it is actually a redundant dictionary since
different examples may share similar spectral patterns. Thus
to fit the source variances with the GSSM, sparsity constraint
is naturally needed in order to activate only a subset of Uj

which represents the spectral characteristics of the sources in
the mixture [46]–[48].

2) Source variance separation: We propose another source
variance model as

v(n, f) =

K∑
k=1

ufkh̃kn, (23)

where v(n, f) =
∑J
j=1 vj(n, f), ufk is an entry of the GSSM

model U constructed as (19) and fixed, K =
∑J
j=1 Pj . Under

this model, let Ṽ =
∑J
j=1 Vj be the matrix of the total

source variance estimate, it is then decomposed by solving
the following optimization problem

min
H̃≥0

D(Ṽ‖UH̃) + λΩ(H̃) (24)

where Ω(H̃) presents a penalty function imposing sparsity
on the activation matrix H̃ = [H̃>1 , ..., H̃

>
J ]> ∈ RK×N+ the

total number of rows in H̃. This criterion can be seen as an
additional NMF-based separation step applied on the source
variances, while criterion (22) and other existing works [36]–
[38] do not perform any additional separation of the variances,
but more like denoising of the already separated variances. For
the sake of simplicity, in the following, we only present the
algorithm derivation for the criterion (24), but a strong synergy
can be found for the criterion (22).

Recent works in audio source separation have considered
two penalty functions, namely block sparsity-inducing penalty
[14] and component sparsity-inducing penalty [17]. The for-
mer one enforces the activation of relevant examples only
while omitting irrelevant ones since their corresponding activa-
tion block in H̃ will likely converge to zero. The latter one, on
the other hand, enforces the activation of relevant components
in U only. It is motivated by the fact that only a part of
the spectral model learned from an example may fit well
with the targeted source in the mixture, while the remaining
components in the model do not. Thus instead of activating the
whole block, the component sparsity-inducing penalty allows
selecting only the more likely relevant spectral components
from U. Inspired by the advantage of these penalty functions,
in our recent work we proposed to combine them in a more
general form as [18]

Ω(H̃) = γ

P∑
p=1

log(ε+ ‖Hp‖1) + (1− γ)

K∑
k=1

log(ε+ ‖hk‖1),

(25)
where the first term on the right hand side of the equation
presents the block sparsity-inducing penalty, the second term
presents the component sparsity-inducing penalty, and γ ∈

[0, 1] weights the contribution of each term. In (25), hk ∈
R1×N

+ is a row (or component) of H̃, Hp is a subset of H̃
representing the activation coefficients for p-th block, P is
the total number of blocks, ε is a non-zero constant, and ‖.‖1
denotes `1-norm operator. In the considered setting, a block
represents one training example for a source and P is the total
number of used examples (i.e., P =

∑J
j=1 Lj).

By putting (25) into (24), we now have a complete criterion
for estimating the activation matrix H̃ given Ṽ and the pre-
trained spectral model U. The derivation of MU rule for
updating H̃ is presented in the Appendix.

C. Proposed multichannel algorithm

Within the LGM, a generalized EM algorithm used to
estimate the parameters {vj(n, f),Rj(f)}j,n,f by considering
the set of hidden STFT coeffients of all the source images
{cj(n, f)}n,f as the complete data. The overview for the GEM
derivation are presented in Section II-C, and more details can
be found in [34], [37].

For the proposed approach as far as the GSSM concerned,
the E-step of the algorithm remains the same as in [34]. In
the M-step, we additionally perform the optimization defined
either by (22) (for source variance denoising) or by (24) (for
source variance separation). This is done by the MU rules so
that the estimated intermediate source variances vj(n, f) are
further updated with the supervision of the GSSM. The detail
of overall proposed algorithm with source variance separation
is summarized in Algorithm 1.

Note that this generalized EM algorithm requires the same
order of computation compared to the existing method [37],
[38] as sparsity constraint and bigger GSSM size does not
significantly affect the overall computational time. As an
example, for separating a 10-second long mixture presented
in our experiment, both [38] and our proposed method (when
non-optimally implemented in Matlab) take about 400 seconds
when running in a laptop with Intel Core i5 Processor, 2.2
GHz, and 8 GB RAM.

IV. EXPERIMENTS

A. Dataset and parameter settings

We validated the performance of the proposed approach in
an important speech enhancement use case where we know
already two types of sources in the mixture: speech and
noise. For a better comparison with the state of the art, we
used the benchmark development dataset of the “Two-channel
mixtures of speech and real-world background noise” (BGN)
task1 within the SiSEC 2016 [4]. This devset contains stereo
mixtures of 10-second duration and 16 kHz sampling rate.
They were the mixture of male/female speeches and real-world
noises recorded from different public environments: cafeteria
(Ca), square (Sq), and subway (Su). Overall there were nine
mixtures: three with Ca noise, four with Sq noise, and two
with Su noise. The signal-to-noise ratio was drawn randomly
between -17 and +12 dB by the dataset creators.

1https://sisec.inria.fr/sisec-2016/bgn-2016/
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Fig. 2. Average separation performance obtained by the proposed method over stereo mixtures of speech and noise as functions of EM and MU iterations.
(a): speech SDR, (b): speech SIR, (c): speech SAR, (d): speech ISR, (e): noise SDR, (f): noise SIR, (g): noise SAR, (h): noise ISR

Our works in single-channel case [16], [18] and preliminary
tests on multichannel case show that only a few examples for
each source could be enough to train an efficient GSSM. Thus,
for training the generic speech spectral model, we took only
one male voice and two female voices from the SiSEC 20152.
These three speech examples are also 10-second length. We
performed the listening check to confirm that these examples
used for the speech and noise model training are different
from those in the devset, which were used for testing. For
training the generic noise spectral model, we extracted five
noise examples from the Diverse Environments Multichannel
Acoustic Noise Database (DEMAND)3. Again they were 10-
second length and contained three types of environmental
noise: cafeteria, square, metro. The STFT window length
was 1024 for all train and test files. The number of NMF
components in Wl

j for each speech example was set to 32,
while that for noise example was 16. These values were found
to be reasonable in [15] and our work on single-channel case
[18]. Each Wl

j were obtained by optimizing (17) with 20 MU
iterations.

Initialization of the spatial covariance matrices: As
suggested in [34], we firstly tried to initialize the spatial
covariance matrix Rj(f) by performing hierarchical clustering
on the mixture STFT coefficients x(n, f). But this strategy
did not give us a good separation performance as the noise
source in the considered mixtures is diffuse (i.e., it does not

2https://sisec.inria.fr/sisec-2015/2015-underdetermined-speech-and-music-
mixtures/.

3http://parole.loria.fr/DEMAND/.

come from a single direction). Thus we initialized the noise
spatial covariance matrix based on the diffuse model where
noise is assumed to come uniformly from all spatial directions.
With this assumption, the diagonal entries of the noise spatial
covariance matrix are one and the off-diagonal entries are real-
valued computed as in [49]

r1,2(f) = r2,1(f) =
sin(2πfd/v)

2πfd/v
, (26)

where d is the distance between two microphones and v =
334 m/s the sound velocity. The spatial covariance matrix
for the speech source was initialized by the full-rank di-
rect+diffuse model detailed in [34] where the speech’s di-
rection of arrival (DoA) was set to 90 degrees. This DoA
initialization was chosen for balancing the fact that the speech
direction can vary between 0 degree and 180 degrees in each
mixture and we did not have access to the ground truth
information while performing the test.

The source separation performance for all approaches was
evaluated by two sets of criteria. The four power-based criteria:
the signal to distortion ratio (SDR), the signal to interference
ratio (SIR), the signal to artifacts ratio (SAR), and the source
image to spatial distortion ratio (ISR), measured in dB where
the higher the better [50]. The four perceptually-motivated
criteria: the overall perceptual score (OPS), the target-related
perceptual score (TPS), the artifact-related perceptual score
(APS), and the interference-related perceptual score (IPS)
[51], where a higher score is better. As power-based criteria
are more widely used in source separation community, the
hyper-parameters for each algorithm were chosen in order to
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Fig. 3. Average separation performance obtained by the proposed method over stereo mixtures of speech and noise as functions of λ and γ. (a): speech SDR,
(b): speech SIR, (c): speech SAR, (d): speech ISR, (e): noise SDR, (f): noise SIR, (g): noise SAR, (h): noise ISR

maximize the SDR - the most important metric as it reflects
the overall signal distortion.

B. Algorithm analysis

1) Algorithm convergence: separation results as functions
of EM and MU iterations: We first investigate the convergence
in term of separation performance of the derived Algorithm
1 by varying the number of EM and MU iterations and
computing the separation results obtained on the benchmark
BGN dataset. In this experiment, we set λ = 10 and γ = 0.2
as we will show in next section that these values offer both
the stability and the good separation performance. The speech
and noise separation results, measured by the SDR, SIR, SAR,
and ISR, averaged over all mixtures in the dataset, illustrated
as functions of the EM and MU iterations, are shown in Fig.
2.

As it can be seen, generally the SDR increases when the
number of EM and MU iterations increases. With 10 or 25 MU
iterations, the algorithm converges nicely and saturates after
about 10 EM iterations. The best separation performance was
obtained with 10 MU iterations and 15 EM iterations. It is also
interesting to see that with a small number of MU iterations
like 1, 2, or 3, the separation results are quite poor and the
algorithm is less stable as it varies significantly even with a
large number of EM iterations. This reveals the effectiveness
of the proposed NMF constraint (24).

2) Separation results with different choices of λ and γ: We
further investigate the sensitivity of the proposed algorithm to
two parameters λ and γ, which determine the contribution
of sparsity penalty to the NMF constraint in (24). For this
purpose, we varied the values of these parameters, λ =
{1, 10, 25, 50, 100, 200, 500}, γ = {0, 0.2, 0.4, 0.6, 0.8, 1},

and applied the corresponding source separation algorithm
presented in the Algorithm 1 on the benchmark BGN dataset.
The number of EM and MU iterations are set to 15 and
10, respectively, as these values guarantee the algorithm’s
convergence shown in Fig. 2. The speech and noise separation
results, measured by the SDR, SIR, SAR, and ISR, averaged
over all mixtures in the dataset, represented as functions of λ
and γ, are shown in Fig. 3.

It can be seen that the proposed algorithm is less sensitive
to the choice of γ, while more sensitive to the choice of λ,
and the separation performance greatly decreases with λ > 10.
The best choice for these parameters in term of the SDR are
λ = 10, γ = 0.2. With the small value of λ (e.g., λ = 1),
varying γ does not really affect the separation performance
as the evaluation criteria are quite stable. We noted that with
γ = 0.2, the algorithm offers 0.2 dB and 1.0 dB SDR, which
are higher than when γ = 0 and γ = 1, respectively. This
confirms the effectiveness of the mixed sparsity penalty (25)
in the multichannel setting.

C. Comparison with the state of the art

We compare the speech separation performance obtained
on the BGN dataset of the proposed approach with its close
prior art (i.e. Arberet’s algorithm [38]) and other state-of-the-
art methods presented at the SiSEC campaign over different
years since 2013. The results of these methods were submitted
by the authors and evaluated by the SiSEC organizers [4], [52],
[53]. All comparing methods are summarized as follows:
• Martinez-Munoz’s method (SiSEC 2013) [52]: this algo-

rithm exploits source-filter model for the speech source
and the noise source is modeled as a combination of
pseudo-stationary broadband noise, impulsive noise, and
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Algorithm 1 Proposed GSSM + SV separation algorithm
Require:

Mixture signal x(t)
List of examples of each source in the mixture
{slj(t)}j=1:J,l=1:Lj

Hyper-parameters λ, γ, MU-iteration
Ensure: Source images ĉj(t) separated from x(t)

- Compute the mixture STFT coefficients x(n, f) ∈ CF×N
and then Ψ̂x(n, f) ∈ CI×I by (7)
- Construct the GSSM model Uj by (18), then U ∈ RF×K+

by (19)
- Initialize the spatial covariance matrices Rj(f),∀j, f (see
Section IV-A)
- Initialize the non-negative time activation matrix for each
source H̃j randomly, then H̃ = [H̃>1 , . . . , H̃

>
J ]v ∈ RK×N+

- Initialize the source variance vj(n, f) = [UjH̃j ]n,f

// Generalized EM algorithm for the parameter estimation:
repeat

// E step (perform calculation for all j, n, f ):
Σj(n, f) = vj(n, f)Rj(f) // eq. (4)
Σx(n, f) =

∑J
j=1 vj(n, f) Rj(f) // eq. (5)

Gj(n, f) = Σj(n, f)Σ−1x (n, f) // Wiener gain
Σ̂j(n, f) = Gj(n, f)Ψ̂x(n, f)GH

j (n, f) + (I −
Gj(n, f))Σj(n, f) // eq. (11)

// M step: updating spatial covariance matrix and uncon-
strained source spectra
Rj(f) = 1

N

∑N
n=1

1
vj(n,f)

Σ̂j(n, f) // eq. (13)

vj(n, f) = 1
I tr(R−1j (f)Σ̂j(n, f)) // eq. (14)

Vj = {vj(n, f)}n,f
Ṽ =

∑J
j=1 Vj

// MU rules for NMF inside M step to further constrain
source spectra by the GSSM
for iter = 1, ...,MU-iteration do

for p = 1, ..., P do
Yp ← 1

ε+‖Hp‖1
end for
Y = [Y>1 , . . . ,Y

>
P ]>

for k = 1, ...,K do
zk ← 1

ε+‖hk‖1
end for
Z = [z>1 , . . . , z

>
K ]>

// Updating activation matrix
V̂ = UH̃

H̃← H̃�
(

U>(Ṽ�V̂.−2)

U>(V̂.−1)+λ(γY+(1−γ)Z)

). 12
// eq. (31)

end for
vj(n, f) = [UjH̃j ]n,f // updating constrained spectra

until convergence

- Source separation by multichannel Wiener filtering (9)
- Time domain source images ĉj(t) are obtained by the
inverse STFT of ĉj(n, f).

pitched interferences. The parameter estimation is based
on the MU rules employed in non-negative matrix fac-
torization.

• Wang’s method [54] (SiSEC 2013): this algorithm per-
forms well-known frequency domain independent compo-
nent analysis (ICA). The associated permutation problem
is solved by a novel region-growing permutation align-
ment technique.

• Le Magoarou’s method [9] (SiSEC 2013): this approach
uses text transcript of the speech source in the mixture as
prior information to guide the source separation process.
The algorithm is based on the nonnegative matrix partial
co-factorization.

• Bryan’s method [55] (SiSEC 2013): this interactive ap-
proach exploits human annotation on the mixture spec-
trogram to guide and refine the source separation process.
The modeling is based on the probabilistic latent compo-
nent analysis (PLCA), which is equivalent to NMF.

• Rafii’s method [56] (SiSEC 2013): this technique uses
a similarity matrix to separate the repeating background
from the non-repeating foreground in a mixture. The un-
derlying assumption is that the background is dense and
low-ranked, while the foreground is sparse and varied.

• Ito’s method [57] (SiSEC 2015): this is a permutation-
free frequency-domain blind source separation algorithm
via full-band clustering of the time-frequency (T-F) com-
ponents. The clustering is performed via MAP estimation
of the parameters with EM algorithm.

• Liu’s method [4] (SiSEC 2016): the algorithm performs
Time Difference of Arrival (TDOA) clustering based on
GCC-PHAT.

• Wood’s method [58] (SiSEC 2016): this recently pro-
posed algorithm first applies NMF to the magnitude
spectrograms of the mixtures with channels concatenated
in time. Each dictionary atom is clustered to either the
speech or the noise according to its spatial origin.

• Arberet’s method [38]: using the similar local Gaussian
model, the algorithm further constrains the intermediate
source variances by unsupervised NMF with criterion
(15). Such algorithm is implemented by Ozerov et. al. in
[37]. This method is actually the most relevant prior art
to compare with as it falls in the same LGM framework.

The proposed approach with different variants are summa-
rized as:

• GSSM + SV denoising: The proposed GSSM + full-rank
spatial covariance approach where the estimated variances
of each sources Vj are further constrained by criterion
(22). We submitted results obtained by this method to the
SiSEC 2016 BGN task and obtained the best performance
over the actual test set in term of SDR [4].

• GSSM + SV separation: The proposed approach with
source variance separation by optimizing criterion (24). In
order to investigate the benefit of the sparsity constraint,
we further report the results obtained by this method
when λ = 0. Finally, to confirm the effectiveness of
the GSSM construction by (18), we report the results
obtained when the GSSM of the same size is learned
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jointly by concatenating all example’s spectrograms Slj as
(20). In this case, only the component sparsity is applied
(i.e., γ = 0) as block does not exist. This setting is named
“GSSM’+component sparsity” in Table 1.

Fig. 4. Boxplot for the speech separation performance obtained by the
proposed “GSSM + SV denoising” (P1) and “GSSM + SV separation” (P2)
methods.

The separation results obtained by different methods for
each noisy environment (Ca, Sq, Su), and the average overall
mixtures are summarized in Table 1. The boxplot to illustrate
the variance of the results obtained by the two proposed
approaches is shown in Fig. 4. It is interesting to see that the
results obtained by the proposed approach without sparsity
constraint were lower than that of Arberet’s method for all
noisy environments, even the former used the pre-trained
GSSM while the latter is completely unsupervised. It reveals
that the GSSM itself is redundant and contains some irrelevant
spectral patterns with the actual sources in the mixture. Thus
constraining the source variances by the GSSM without a rel-
evant spectral pattern selection guided by the sparsity penalty
is even worse than the unsupervised NMF case where the
spectral patterns are randomly initialized and then updated by
MU rules. The importance of such sparsity penalty is explicitly
confirmed by the fact that the results obtained by the proposed
approach with sparsity constraint are far better than the setting
without the sparsity constraint. Also, it is not surprising to
see that the “GSSM + SV denoising” clearly outperforms
Arberet’s method (except for the ISR and the TPS) in all noisy
environments as the former exploits additional information
about the types of sources in the mixtures in order to learn
the GSSM in advance. The “GSSM + SV separation” offers
better separation performance in terms of SDR, SIR, OPS,
IPS, on square and subway environments as well as on average
compared to the “GSSM + SV denoising” and the “GSSM’ +
component sparsity”. This confirms the effectiveness of the
proposed source variance separation criterion (24) and the
GSSM construction (18).

When compared to the top-performing state-of-the-art meth-
ods in the SiSEC campaigns, the proposed approach performs
generally better in terms of the energy-based criteria but
worse for the perceptually-motivated ones. Especially in Ca
environment the OPS obtained by the proposed approach is
far below those offered by other methods. This may be due

to the fact that the hyper-parameters were optimized for the
SDR, but not the OPS. The “GSSM + SV separation” with
sparsity constraint outperforms all other methods, but Wang’s
approach, in terms of the SDR, the most important energy-
based criterion, at all noisy environment. This confirms the
effectiveness of the proposed approach where the GSSM is
successfully exploited in the LGM framework. It should be
noted that Wang’s method [54] is based on the frequency-
domain ICA so it is not applicable for under-determined
mixtures where the number of sources is larger than the
number of channels. Also, in this method, an additional post-
filtering technique was applied to the separated speech source
so as to maximize the denoising capability.

V. CONCLUSION

In this paper, we have presented a novel multichannel
audio source separation algorithm weakly guided by some
source examples. The considered approach exploits the use
of generic source spectral model learned by NMF within the
well-established local Gaussian model. In particular, we have
proposed a new source variance separation criterion in order
to better constrain the intermediate source variances estimated
in each EM iteration. Experiments with the benchmark dataset
from the SiSEC campaigns have confirmed the effectiveness
of the proposed approach compared to the state of the art.
Motivated by the effectiveness of the GSSM, future work
can be devoted to extending the current approach in order
to exploit in addition the use of a generic spatial covariance
model, which remains to be defined. In addition, the theoretical
grounding of the source variance separation criterion needs to
be further investigated. Another promising investigation could
be extending the idea of source variance separation to DNN-
based models inspired by the work of Nugraha et al. [24].
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APPENDIX
DERIVATION OF MU RULE FOR UPDATING THE ACTIVATION

MATRIX IN ALGORITHM1

Let L(H̃) denote the minimization criterion (24) with the
mixed sparsity constrained Ω(H̃) defined as in (25) and D(·‖·)
being IS divergence. The partial derivative of L(H̃) with
respect to an entry hkn is

∇hkn
L(H̃) =

F∑
f=1

ufk

(
1

[UH̃]n,f
− v(n, f)

[UH̃]2n,f

)
+

λ.γ

ε+ ‖Hp‖1
+
λ.(1− γ)

ε+ ‖hk‖1
(27)
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Methods
Ca1 Sq1 Su1 Average

SDR SIR SAR ISR SDR SIR SAR ISR SDR SIR SAR ISR SDR SIR SAR ISR
OPS IPS APS TPS OPS IPS APS TPS OPS IPS APS TPS OPS IPS APS TPS

Martinez-Munoz* 5.4 15.4 6.1 - 9.6 17.3 10.7 - 1.5 5.8 5.8 - 6.4 14.1 7.9 -
- - - - - - - - - - - - - - - -

Wang* [54] 10.4 21.6 12.8 13.5 10.3 19.1 12.3 15.0 8.1 19.3 10.0 10.7 9.8 20.0 12.0 13.5
41.9 60.4 52.9 58.8 37.4 51.8 53.3 55.7 33.1 52.4 42.3 43.7 37.9 54.8 50.7 54.1

Le Magoarou* [9] 9.2 11.6 13.4 19.8 4.0 6.2 8.3 20.4 -5.2 -4.5 2.7 9.7 3.7 5.6 8.8 17.8
31.3 29.3 52.8 77.9 38.9 45.2 39.9 75.6 22.9 24.6 34.8 28.3 32.8 35.3 43.1 65.9

Bryan* [55] 5.6 18.4 5.9 - 10.2 15.6 12.1 - 4.2 13.6 4.9 - 7.3 16.1 7.6 -
- - - - - - - - - - - - - - - -

Rafii* [56] 8.8 13.0 12.1 13.3 6.2 9.6 8.9 10.7 -2.7 -2.7 4.4 11.0 5.1 8.0 9.0 11.6
29.2 27.3 58.0 56.2 34.6 38.7 55.8 60.7 23.9 21.6 51.3 50.4 30.4 31.1 55.5 56.9

Ito* [57] 7.2 25.9 7.2 - 8.9 23.7 9.1 - 4.9 15.3 5.6 - 7.4 22.6 7.7 -
- - - - - - - - - - - - - - - -

Liu* -1.0 4.9 19.7 4.1 -8.5 -2.9 15.1 1.9 -12.8 -8.0 7.6 3.8 -7.0 -1.4 15.0 3.1
9.5 16.8 77.1 42.3 14.2 18.9 70.2 38.8 21.2 15.7 60.0 49.5 14.2 17.5 70.3 42.3

Wood* [58] 3.0 9.4 5.0 3.7 1.9 2.4 4.0 7.5 0.2 -2.6 1.3 2.5 1.9 3.6 3.7 5.1
33.7 60.7 39.0 40.5 38.6 60.5 43.3 57.6 25.9 47.6 31.7 24.4 34.1 57.7 39.3 44.5

Arberet [37], [38] 9.1 10.0 16.1 19.5 3.3 3.3 10.4 15.3 -0.2 -1.2 9.5 11.7 4.4 4.6 12.1 15.9
13.3 10.9 70.4 50.5 8.3 10.5 82.3 47.5 10.2 3.7 56.6 23.4 10.4 9.1 72.6 43.2

GSSM + SV denoising
(λ = 10, γ = 0.2)

10.5 11.8 27.7 16.2 7.0 8.5 22.0 9.8 5.1 5.6 20.7 8.1 7.7 9.0 23.6 11.6
8.4 12.7 83.0 49.9 8.5 14.7 77.6 39.0 11.3 7.8 61.8 27.6 18.1 12.5 75.9 40.1

GSSM + SV separation
(No sparsity constraint)

7.9 10.2 20.2 11.2 -1.1 -2.6 17.6 8.0 -1.6 -3.2 20.4 7.6 1.8 1.5 19.1 8.9
25.0 19.3 64.1 55.8 32.4 29.4 55.0 60.2 18.7 11.4 56.0 35.7 18.8 22.0 58.2 53.3

GSSM + SV separation
(GSSM’ + component sparsity)

7.3 10.0 19.4 9.7 4.4 6.1 16.0 6.9 2.4 1.8 18.3 8.8 4.9 6.5 17.7 8.3
20.7 18.2 66.2 48.1 30.3 28.3 57.9 52.8 21.6 16.5 56.0 43.0 21.3 22.3 60.3 49.1

GSSM + SV separation
(λ = 10, γ = 0.2)

10.6 13.5 25.6 19.6 7.8 11.1 19.3 12.3 5.0 7.1 18.7 9.5 8.1 11.0 21.3 14.1
11.4 13.0 81.6 61.0 31.6 31.4 62.0 57.4 23.7 27.8 47.3 37.6 23.1 24.5 65.2 54.2

TABLE I
SPEECH SEPARATION PERFORMANCE OBTAINED ON THE DEVSET OF THE BGN TASK OF THE SISEC CAMPAIGN. ∗ INDICATES SUBMISSIONS BY THE

AUTHORS AND “-” INDICATES MISSING INFORMATION.

This ∇hkn
L(H̃) can be written as a sum of two nonnegative

parts, denoted by ∇+
hkn
L(H̃) ≥ 0 and ∇−hkn

L(H̃) ≥ 0,
respectively, as

∇hkn
L(H̃) = ∇+

hkn
L(H̃)−∇−hkn

L(H̃) (28)

with

∇+
hkn
L(H̃) ,

F∑
f=1

ufk
1

[UH̃]n,f
+

λ.γ

ε+ ‖Hp‖1
+
λ.(1− γ)

ε+ ‖hk‖1
,

∇−hkn
L(H̃) ,

F∑
f=1

ufk
v(n, f)

[UH̃]2n,f
. (29)

Following a standard approach for MU rule derivation [19],
[20]), hkn is updated as

hkn ← hkn

(
∇−hkn

L(H̃)

∇+
hkn
L(H̃)

).η
, (30)

where η = 0.5 following the derivation in [47], [59], which
was shown to produce an accelerated descent algorithm.
Putting (29) into (30) and rewriting it in a matrix form, we
obtain the updates of H̃ as

H̃← H̃�

(
U>(Ṽ � V̂.−2)

U>(V̂.−1) + λ(γY + (1− γ)Z)

). 12
, (31)

where V̂ = UH̃, Y = [Y>1 , . . . ,Y
>
P ]> with Yp, p = 1, . . . P

an uniform matrix of the same size as Hp whose entries
are 1

ε+‖Hp‖1 , and Z = [z>1 , . . . , z
>
K ]> with zk, k = 1, . . .K

a uniform vector of the same size as hk whose entries are
1

ε+‖hk‖1 .
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