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Day-ahead probabilistic forecast of solar
irradiance: a Stochastic Differential Equation
approach

Jordi Badosa, Emmanuel Gobet, Maxime Grangereau and Daeyoung Kim

Abstract In this work, we derive a probabilistic forecast of the solar irradiance dur-
ing a day at a given location, using a stochastic differential equation (SDE for short)
model. We propose a procedure that transforms a deterministic forecast into a proba-
bilistic forecast: the input parameters of the SDE model are the Arome deterministic
forecast computed at day D-1 for the day D. The model also accounts for the maxi-
mal irradiance from the clear sky model. The SDE model is mean-reverting towards
the deterministic forecast and the instantaneous amplitude of the noise depends on
the clear sky index, so that the fluctuations vanish as the index is close to 0 (cloudy)
or 1 (sunny), as observed in practice. Our tests show a good adequacy of the confi-
dence intervals of the model with the measurement.

KEYWORDS: solar power, probabilistic forecast, stochastic differential equation

1 Introduction

Context. As the conventional energy sources such as coal, oil, and gas are consid-
ered to be one the main factors responsible for climate change, solar energy has
been recognized as a viable alternative. Solar powered plants which utilize photo-
voltaic (PV) and Concentrated Solar Power (CSP) have penetrated the electricity
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2 Day-ahead probabilistic forecast of solar irradiance

grid, and they are contributing to meet the electricity balance between production
and consumption. The need for clean energy and energy-generation independence
has driven the solar farms to grow drastically in number. This is backed up by policy
supports including feed-in tariffs.

One of the challenges of the electricity generation through solar panels is that it’s
intermittent and driven by meteorological conditions (mainly related to cloudiness),
which results in high uncertainty in the final amount of production. Such uncertainty
put grid operators at risk since they might have to adjust their production on very
short notice and energy storage capacity is limited. Solar irradiance forecast in this
context is crucial not only to predict the solar power generation amount but also to
save the start and shutdown costs of conventional generators [MBF+16].

Use of day-ahead predictions. Day-ahead predictions are of particular importance
for application in the energy market, where the day-ahead auction of power price
plays a major role in many countries [PLP+13]. For example, in France, one may
take part in the bidding by the noon on the day before the operation1. Besides
the market participation, the day-ahead prediction can also be useful for unit com-
mitment and energy storage dispatch [DFM15, HKNF14]. Simulation studies have
shown that day-ahead forecasts may provide significant cost savings to grid oper-
ators and fast start and lower efficiency power plants [MBF+16]. PV-based micro-
grids also make use of day-ahead predictions for power planning [KLC+11].

Regarding the types of day-ahead solar irradiance forecast, we can distinguish
two categories: deterministic forecasts and probabilistic forecasts. In the state of
the art of irradiance forecasting, most of the literature relies on deterministic fore-
casts, also known as point forecasts, since their outputs are specific values at given
times in the future. On the other hand, most probabilistic forecasts give the full
distributions of the values of interest at the times considered. Each one of these
distributions can be represented by histogram or cumulative density function for
example. The representation of uncertainty information takes into account poten-
tially extreme scenarios. It also allows the operators to gain additional trust in the
forecasts [OAB+15]. Furthermore, having at hand a probabilistic forecast for the
solar irradiance simultaneously at any hour (continuous-time forecast), accounting
for the inter-temporal probabilistic dependency allows to properly solve some prob-
lems where the full distribution of the inputs plays an important role (see for instance
[GG17]). For applications in energy management, see [ACLP14] and for the con-
nection with electricity derivatives, see [Aid15]. The continuous-time forecast may
also be updated whenever new data becomes available.

Actually, methods for deriving predictions depend much on both the considered
time horizon and the amount of data available at the time when the prediction is
made. Moreover, the flows of data and the frequency for updated predictions are
tightly related. For horizons of minutes to hours, satellite images (see Meteosat for
Europe) are much informative on a global area, a new image is available every 15’;
on the other hand, the access is not granted to anyone. For very local geographic

1 see https://www.epexspot.com/en/market-data/dayaheadauction
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data, one can be equipped with sky cameras or simply irradiance sensors, the latter
being the most common way of collecting data.

In this study, we focus on the day-ahead horizon and we consider that determin-
istic Numerical Weather Predictions (NWP) of solar irradiance are available at local
scale as it is the case of the Meteo-France’s AROME NWP data, which has a grid
resolution of 1.3 km. This data is available for any individual prosumer and might
for instance be used to manage batteries in order to reduce variability of the demand
on the grid, as in [GG17].

Deterministic and probabilistic forecasts. In the deterministic forecast of day-
ahead solar irradiance, NWP models are widely used, and the model value goes
through Model Output Statistics (MOS) before the actual usage. MOS is a post-
processing technique used to interpret empirically the outputs of a numerical model
and produce site-specific forecasts [HLG06, DLD12]. Statistical learning methods
are often used to correct errors in the NWP model outputs and to incorporate knowl-
edge from several models, by appropriately weighing them. These methods allow
to correct biases and systematic errors in the forecasts [Kle13]. MOS is known to
improve the performance of the raw forecast of NWP by about 10-15% [TZH+15].

While the deterministic forecast has been developed for more than thirty years,
the probabilistic forecast seems to be in its infancy yet. However, it seems to have
a high potential of usefulness, especially in applications where risk quantification is
a crucial factor, for example energy storage in connection with intermittent energy
sources.

One noticeable method of probabilistic day-ahead solar irradiance forecast is
the analog ensemble approach, which searches the history for similar forecasts and
makes corrections to the forecast according to the error in prior forecasts. In this
approach, the prior analogs become an ensemble that quantifies the uncertainty of
the forecast [ADSC15]. These approach rely on non-parametric techniques and ma-
chine learning tools; on the one hand, this is a data-driven approach and therefore
it is quite flexible; on the other hand, since it is not aimed at identifying a specific
stochastic model, analytical or numerical methods are not applicable, which limits
the resolution of some problems (like stochastic control problems). In [ADSC15]
an example of ensemble approach using machine-learning based regression models
– such as decision tree, K-nearest neighbors, random forests – is presented, show-
ing that each of these models performs better than the Auto-Regressive Integrated
Moving Average (ARIMA for short) model [MA16, SLSN15].

Another method is the stochastic modeling, where the evolution of the system is
described by a Stochastic Differential Equation (SDE). Knowledge coming from
other deterministic forecasts can be incorporated in these models. As explained
in [IMMM14], SDE models have several assets: we can incorporate boundedness
properties, which are essential for correct modeling of the solar irradiance, and the
SDEs are more general than other classical time-series models, like ARIMA pro-
cesses. Besides, the output of the SDE models can be both a point forecast, by
simulation of a single trajectory, or a probabilistic forecast. Indeed, by simulating
multiple independent Markovian evolutions of the process, it is possible to infer
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the full distribution of irradiance at any time (see Section 2.4). A first attempt for
such a SDE modeling is proposed by [SE10] with a simplistic model. The authors
of [IMMM14] have designed extensions and more involved models with different
degrees of complexity. They assume a parametric SDE model for the solar irradi-
ance and suppose that the observations are noisy. A convenient feature of their SDE
model is to account for the maximum irradiance (also known as clear sky model,
[BH81]). For the model estimation, they cope with SDE inference with noisy data:
for this, they use Kalman-type filtering techniques, which restrict their SDE model
to additive Brownian noise. In the current study, we also consider a SDE model but
its form is different from [IMMM14] and we assume perfect observation of the data,
i.e. we assume there is no noise in the observations, see details below.

Our contribution. Our purpose is to turn deterministic forecasts into probabilistic
forecasts. Our framework is to consider that a single deterministic forecast is avail-
able on the day before (i.e. on D-1): in our case, this comes from Météo-France
(AROME NWP data). The precise description of these data is given in Section 2.2.
To model the irradiance on the day D, we use a time-dependent SDE, which models
the evolutions of the Clear Sky Index (CSI for short), which is the ratio between the
observed irradiance and the maximal theoretical irradiance that would be observed
in perfect weather conditions. Therefore, the CSI lies in the range [0,1]. It will be
denoted X in the equations. Some parameters of the SDE for a given day D are
fixed (see forthcoming paragraph on the estimation of the parameters), while others
are estimated using the Arome data at day D-1. Simulating the SDE gives realistic
scenarios of solar irradiance, as demonstrated in Section 3. The SDE is driven by a
Brownian motion W and it has the following form:

dXt =−a(Xt − xforecast

t )dt +σXα
t (1−Xt)

β dWt , t ∈ [t0, t1]⊂ [0,24], (1)

for some parameters a,σ ,α,β ,(xforecast
t )0≤t≤24 and where [t0, t1] is the period (ex-

pressed in hours) of the day D where the sun shines at the location where irradiance
is measured. The Brownian motion W allows to model the uncertainty across time.
All the above parameters are identified using the Arome data at day D−1 and some
historical data. In Section 3, we show that simulations from this model generate
confidence intervals that are fully consistent with the realizations collected over a
period of one year.

We now stress the similarities and differences with [IMMM14]. The form of the
SDE is similar in both cases: the drift is a mean-reversion term and the diffusion
term vanishes at 0 and 1. However, the form of our diffusion term is more general
and allows to take into account more general form of dependence of the fluctuations,
while the drift term in [IMMM14] incorporates more parameters. It would be an in-
teresting lead to try to incorporate more parameters in the drift term of the SDE we
propose as well, but one needs to make sure to have enough data to estimate them
properly. Besides, in our study, the observation is assumed to be direct: by ignoring
the observation noise, we do not need anymore to use filtering techniques and we
can directly make use of appropriate statistical methods for SDEs [KLS12]. This is
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what allows us to consider a more general diffusion coefficient, namely of the form
xα(1− x)β with general exponents (in Section 2.3.2, we find (α,β ) ≈ (0.8,0.7)),
while the authors of [IMMM14] take α = β = 1 so that, via a Lamperti transforma-
tion, they can get back to additive noise model. Last, our SDE directly models the
evolution of the clear sky index, while in [IMMM14], it models the evolution of the
irradiance (altough the maximal irradiance clear sky model is incorporated in the
SDEs from their second model).

The estimation of the parameters of our model turns out to be fairly satisfactory,
using historical data for measurements and one-day in advance predictions (Arome
data). We are able to reproduce accurately enough the forecast uncertainty (see tests
in Section 3); it is quite remarkable, especially because only a small amount of data
is used to build the predictions (mainly AROME data).

2 Uncertainty modeling from data

2.1 Definitions and notations

To be accurate, the solar irradiance (or simply irradiance in the following) that we
consider refers to Global Horizontal Irradiance (GHI), that is the amount of solar
radiation that reaches the surface of the Earth on a horizontal plane (its unit is is
W/m2). The GHI depends on the location; in our study, it is at the latitude and
longitude of 48.713◦N and 2.208◦E, at SIRTA ( atmospheric observatory at Ecole
Polytechnique, on the Paris-Saclay campus, http://sirta.ipsl.fr).

Fig. 1: Measurements of Global Horizontal Irradiance from SIRTA (48.7◦N, 2.2◦E.) for the con-
sidered period.

For different days, we consider the irradiance I(t) (at the above location) as a
function of time t ∈ [0,24] (in hours, for a given day). Theoretically, the irradiance
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evolves between two bounds, 0 and Iclear sky model(t), where the second is the maxi-
mal irradiance obtained under clear sky conditions , that is, a cloudless sky. In our
case, the latter has been calculated with an empirically-derived equation that takes
into account the Sun-Earth geometry and the day of the year:

∀t ∈ [t0, t1], Iclear sky model(t)= [83.69 sin(
2π

365.24
(D+82.07))+1130.44] cos(θz(t))1.2

where D is the day of the year [0,365], and θz(t) is the solar zenith angle. Before
the sunrise (t ≤ t0) and after the sunset (t ≥ t1), Iclear sky model(t) is set to 0 and there
is no question about uncertainty in the irradiance. From now on, we mainly stick to
the case t ∈ [t0, t1] (of course, this interval evolves along the days and seasons). Our
aim is to propose a stochastic model for the Clear-Sky-Index (CSI) given by

Xt =
I(t)

Iclear sky model(t)
. (2)

X close to 1 (resp. 0) corresponds to clear-sky day (resp. dark clouds) while inter-
mediate values relate to a variable sky (or light clouds).

To calibrate the model parameters, we also use the Accumulated CSI of the day
D, defined by

ACSID =
∑t∈T I(t)

∑t∈T Iclear sky model(t)
, (3)

where T := {measurement times in the day D}. This index is an indicator of the
overall clearness on day D.

2.2 Data: AROME forecast and SIRTA measurement

In our study, we consider the forecast GHI values from AROME NWP operated by
Météo-France, for the closest grid point to SIRTA site. In particular, we use the run
from 12:00 UTC on the previous day (D-1) of the target forecast day (D), which has
a time step of 1 hour and covers the whole day D.

The considered period is 2015 October 1st to 2017 July 16th (see Figure 1). Only
days with both measured and forecast GHI available values were considered, which
made a final dataset of 473 days. The measured data was taken at 10-minutes reso-
lution. Forecast values with 10-minutes resolution were generated from the forecast
with 1-hour resolution using linear interpolation.
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2.3 Fitting the SDE model

2.3.1 Heuristic derivation

The stochastic model we propose for the irradiance CSI is aimed at giving a precise
meaning to the approximation

Xt ≈ xforecast

t + error(t) (4)

and of its continuous-time evolution, where xforecast
t is calculated from the AROME

forecast

xforecast

t :=
Iforecast(t)

Iclear sky model(t)
∈ [0,1]. (5)

We assume that xforecast
t is given in continuous time (as mentioned before, we use

linear interpolation to compute values at times where no forecast is available in the
data). The term error(t) stands for the unpredictable part in the prediction and re-
flects the uncertainty of the forecast: observe that, since the CSI lies in the range
[0,1], it is certainly not appropriate to assume that the error has a Gaussian distribu-
tion.

To begin with, the deterministic forecast xforecast
t is considered as a (time-

dependent) mean-reversion level, i.e. when the realized CSI is far from the forecast
CSI, it is expected that (in mean) Xt gets closer to xforecast

t . In other words, a tempo-
rary prediction error is possible but it tends to vanish. We model this feature via a
dissipative linear Ordinary Differential Equation that describes the time-evolution2

t 7→ E [Xt ],
dE [Xt ] =−a(E [Xt ]− xforecast

t )dt (6)

for some mean-reversion speed parameter a > 0 that will be estimated later.
We now model the stochastic fluctuations around the above relation, i.e. we write

dXt =−a(Xt − xforecast

t )dt +noise(dt).

First, the amplitude of the noise over an infinitesimal interval [t, t + dt] has to de-
crease as the CSI gets closer to 0 (cloudy sky) and 1 (clear sky): this is requested to
maintain the model values in the unit interval. For this reason, we set

noise(dt) = Xα
t (1−Xt)

β ñoise(dt) (7)

for two positive parameters α,β . Once the latter will be chosen appropriately, we
expect that the amplitude of the noise noise(dt) is well tuned so that the newly-
renormalized noise ñoise(dt) does not depend anymore on the CSI (see later Figure
3).

Moreover, as explained in the next paragraph, a statistical analysis of ñoise(dt)
shows that it can be modeled by a Gaussian distribution N (0,σ2dt) and from now

2 E [.] is the expectation attached to the forthcoming probabilistic model.
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on, we take it as a Brownian increment σdWt . This is not the only Gaussian model,
but it has the advantage of a very low parametric dimension (which is a nice asset
when one deals with few data).

Gathering all the previous arguments, we finally obtain a SDE of the form

dXt =−a(Xt − xforecast

t )dt +σXα
t (1−Xt)

β dWt , t ∈ [t0, t1], (8)

with a given initial value Xt0 ∈ [0,1]. In the case of xforecast
t constant, and α = β = 1,

we retrieve the well-known Fisher-Wright diffusion used in mathematical genetics.
In the following, we will take (α,β ) ∈ [ 1

2 ,1]× [ 1
2 ,1].

From a mathematical point of view, we can justify that this SDE model is well-
posed, despite that the coefficients are not globally Lipschitz and that it takes values
in the unit interval [0,1] as requested. These properties are rigorously proved in
Appendix.

2.3.2 Statistical inference of the parameters

As it is well-know in the statistics for SDEs [Gob02, KLS12], the estimation of
the parameters entering in the drift and diffusion coefficients can be made indepen-
dently, asymptotically as the frequency gets larger and larger.

Estimation of a. The Ito formula gives that, for any t ≥ s,

eatXt = easXs +
∫ t

s
eauxforecast

u du+
∫ t

s
eau

σXα
u (1−Xu)

β dWu.

Since the first time integral is deterministic, it readily follows that

Cov
(∫ t

s
eauxforecast

u du,Xs

)
= 0.

Moreover the stochastic integral is computed on [s, t] and the SDE solution is
adapted to the Brownian filtration, therefore

Cov
(∫ t

s
eau

σXα
u (1−Xu)

β dWu,Xs

)
= 0.

To summarize, we get Cov(eatXt ,Xs) = easVar(Xs), that is

Cov(Xt ,Xs) = e−a(t−s)Var(Xs), t ≥ s. (9)

In (9) we retrieve a nice relation available for any SDE which drift is linear, see
[BSS05]. Therefore, it is enough to compute the correlogram of the process X from
the data and to extract the parameter a using an exponential fit. In our case, see
Figure 2, we obtain a≈ 0.75h−1.
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Fig. 2: Correlogram

Estimation of σ ,α,β . For high-frequency data (that is when the monitoring fre-
quency is considered high), the increments of Xt −Xs, t ≥ s can be approximated
by

Xt −Xs ≈
t−s small

σXα
s (1−Xs)

β (Wt −Ws). (10)

Indeed, as t − s is small, the drift term in (8) is of magnitude t − s, which can be
neglected compared to the order

√
t− s arising from Wt−Ws. This is the usual Euler

approximation of SDE in small time [KP10]. Of course, one needs to make sure that
the time step used in the simulations is small enough to guarantee that X remains in
its domain [0,1].

In our model, we seek a SDE parametrization that, each day, adapts automati-
cally to the Arome D-1 forecast. Our strategy is

• first to identify a pair of exponents (α,β ) that will be available in average for all
the days (these parameters are somehow day-invariant),

• then to estimate σ that may be day-dependent and that will be estimated from
Arome D-1 forecast. In the sequel, the parameter σ for the day D will be written
σD > 0.

Because of the relation (10), for measurements collected at a 10’-period (ti+1− ti =
10′ = δ ) in the same day D, we expect to have

Xti+1 −Xti

Xα
ti (1−Xti)

β

d≈N (0,σ2
Dδ ), (11)

where
d≈ means approximation in distribution, with an independence property be-

tween different times ti (thanks to the properties of the Brownian increments).
Therefore, it is enough to estimate empirically the variance (day by day) of the
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quantities (11) to get an estimator of σ2
Dδ for that day D, and therefore of σD. Actu-

ally, instead of considering increments of the irradiance CSI, we take the increments
of the forecast errors, i.e.

REI =
[Xti+1 − Iclear sky model

ti+1
]− [Xti − Iclear sky model

ti ]

Xα
ti (1−Xti)

β
(12)

which asymptotic behavior with respect to δ → 0 is similar to (11) (indeed, the
curve of forecast Iclear sky model is of finite variation). REI stands for Renormalized
Error Increment.

We could identify the parameters (α,β ,σD1 , . . . ,σD473) using a Maximum Like-
lihood Estimation technique (via the Gaussian approximation (11)), requiring an
optimization procedure in dimension 475! We proceed in a simpler way, by choos-
ing α and β so that the σD’s computed as mentioned (day by day) have a stationary
behavior throughout different days. This is a way to have a single pair (α,β ) inde-
pendently of the day of the year. For α = 0.8 and β = 0.7, Figure 3 shows that σD
are quite decorrelated from ACSID (Accumulated Clear Sky Index) defined in (3).
Because the ACSI is computed on the measurement (see (3)), it makes its use not

Fig. 3: For each day D in the data set, the standard deviation σD
√

δ of the Renormalized Error
Increment as a function of Accumulated Clear Sky Index ACSID, when α = 0.8 and β = 0.7.

applicable as it is in the perspective of probabilistic forecast. Therefore, we seek to
model σD in terms of the Arome forecast on day D−1. Since σD reflects the ampli-
tude of local variability of the irradiance, we use the Average Time Increment CSI
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computed on the Arome forecast as a surrogate:

ATICSID = ∑
ti∈T forecast

∣∣∣∣ Iforecast(ti+1)

Iclear sky model(ti+1)
− Iforecast(ti)

Iclear sky model(ti)

∣∣∣∣ , (13)

where T forecast := {Arome forecast times}. Figure 4 depicts the relation between
σD and ATICSID.

Fig. 4: For each day D in the data set, the standard deviation σD
√

δ as a function of the Average
Time Increment CSI defined in (13).

We exhibit a linear relation of the form

σD
√

δ = 0.622×ATICSID +0.0004+ error. (14)

In the next experiments, we set the residual error in (14) to 0. Actually, the distribu-
tion of this error (see Figure 5) is closed to a Gaussian one, which could be included
in our model of σD to possibly improve the probabilistic forecast. We haven’t gone
further in that direction since with the simplified version (error = 0), our tests reveal
a good accuracy of the probabilistic forecast.
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Fig. 5: Histogram of the residual error in (14), with the Gaussian density centered at 0 and with
standard deviation 0.097.

2.4 Probabilistic forecast computation

We present how we compute numerically the distribution of irradiance in our model
on the day D, given the Arome forecast of day D-1.

Using the values of the parameters derived in the calibration step described ear-
lier, from (8) we are now able to simulate independent trajectories of the clear sky
index (and therefore of the solar irradiance accounting for the clear sky model in
(2)). In our tests, usually we sample M = 1000 or M = 10000 paths, in order to
produce accurate enough statistics and confidence intervals.

Regarding the simulation scheme itself, once the initial value Xt0 is chosen, we
just need to simulate independent Markovian evolutions. More precisely, we use the
Euler scheme (see [KP10] for an account on the subject of simulating SDEs). In our
tests, the time step of the Euler scheme is ∆t = 1′ and when the value of the Euler
scheme is outside [0,1], the value is pushed back to [0,1] (as the exact solution). Set
tk = t0 + k∆t ; the i-th sampled path writes finally as (1≤ i≤M){

X (i)
tk+1

= X (i)
tk −a(X (i)

tk − xforecast
tk )∆t +σ (X (i)

tk )α(1−X (i)
tk )β (W (i)

tk+1
−W (i)

tk ), k ≥ 0,

X (i)
t=t0 = X (i)

t0 ,

(15)

where (W (i)) are M i.i.d. trajectories of the Brownian motion, and (X (i)) are M i.i.d.
trajectories of the CSI.

Initialization. A particular treatment of the independent initial value X (i)
t0 for

each trajectory of the CSI needs to be implemented. Indeed, one could initialize



J. Badosa, E. Gobet, M. Grangereau and D. Kim 13

all the processes to the same initial value of the deterministic forecast. However,
this would not allow us to encompass uncertainty in the initial value of the CSI.
We propose another approach, close to Markov Chain Monte-Carlo methods. The
initial value X (i)

t0 is sampled according to the stationary distribution of the Euler
scheme associated to the SDE

dX̃t =−a(X̃t − xforecast

t0 )dt +σ X̃α
t (1− X̃t)

β dWt . (16)

Note the term xforecast
t0 in the above equation. Doing so, we pick a initial point X (i)

t0
which reflects in a quite intrinsic way the uncertainty in the forecast at t = t0.

In practice, we simulate the Euler scheme of (16) over a time interval of length
T , where T is chosen long enough so that the distribution of the Euler scheme after
time T is closed to the target stationary distribution (and quite independent from the
initial point of the SDE (16)); see [Tal90] about approximation scheme for ergodic
SDEs.

In practice, due to the form of the drift as a mean-reversion term and in view of
the fast decorrelation (like in (9)), we set T as three times the characteristic time of
the system, that is T = 3/a≈ 4 hours. This procedure is repeated independently to
sample each X (i)

t0 .

3 Numerical experiments

3.1 Description of the tests

In the following graphs, we represent some features of the results we obtain for sev-
eral types of days: a day with good weather, when the Clear Sky Index remains close
to 1, a day with bad weather, when it remains close to 0 and a day with mitigated
weather, when it takes intermediate values. For all those examples, we take days
where the deterministic forecast used to establish the probabilistic forecast is fairly
good, i.e. close to the real irradiance profile over the day. This is usually the case
with Arome forecast.

For each day with fairly good deterministic forecasts (Figures 7-9-11), we plot
3 graphs. The first in the top left corner features the clear sky irradiance as well as
several simulated trajectories of the irradiance (at the time-scale of 1’ as mentioned
before). The clear sky irradiance is the irradiance we would observe if the sky were
perfectly clear (this is the clear sky model as explained at the beginning of Section
2.1). The simulated trajectories of the irradiance are obtained by multiplying the
simulated trajectories of the Clear Sky Index, obtained by Euler scheme of a SDE
(see previous paragraph), by the clear sky irradiance (see the relation (2)).

The second graph in the top right corner features the clear sky irradiance, the
deterministic Arome forecast irradiance, the irradiance measured on that day, a sim-
ulated trajectory of the irradiance obtained using our model, as well as confidence
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Results for the probabilistic forecast

Validation and accuracy of the model for the distribution of the irradiance over
the day

Fig. 7: Results for a day with good weather (May 2nd , 2016)

intervals for the irradiance forecast. This confidence region is obtained by Monte-
Carlo methods: by simulating M = 100000 i.i.d. trajectories of the irradiance (using
our SDE model), we can estimate accurately the 5% and 95% quantiles. If our model
is accurate, we expect that the measured irradiance remains inside the confidence
intervals most of the time. However, having a measurement outside this confidence
area does not necessarily mean poor performance of the probabilistic forecast, be-
cause of the definition of quantiles. Of course, the deterministic forecast staying
inside this confidence area is an intrinsic property of the model we have designed:
we take an SDE with a drift which is a mean-reversion term, the mean being this
deterministic forecast.

In the bottom graph, we represent several vertical box-plots, as well as other
information. Let us explain in more details. For each day studied, we can derive
the number of points of a discrete trajectory (observation, forecast or simulation)
for which the irradiance value lies in each of the 10 intervals of length 10% of the
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Results for the probabilistic forecast

Validation and accuracy of the model for the distribution of the irradiance over
the day

Fig. 9: Results for a day with mitigated weather (October 24th, 2015)

maximal value of the clear sky irradiance (given by the clear sky model). Using this
procedure for the measured irradiance, we obtain by renormalization an estimation
of the proportion of time spent by the irradiance in a given interval over the day.
A possible application is to derive an estimation of the PV energy than can be pro-
duced on that specific day. For example, a red triangular point with 0−10% on the
x-axis and 0.4 on the y-axis means that the measured irradiance was smaller than
10% of the maximal theoretical irradiance about 40% of the time of sun exposure
over this day. We can do the same thing for the forecast irradiance and for each of
the simulations. The simulations allow to estimate the distribution of these propor-
tions of time spent in each subinterval. Indeed, using the values obtained for each
simulation, we can draw box-plots which show how the irradiance was distributed
over the whole day. These statistical outputs can for instance give a clear indication
about the probability distribution of the energy that can be produced using PV pan-
els. The red line represents the median, while the box extends from the first quartile
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Results for the probabilistic forecast

Validation and accuracy of the model for the distribution of the irradiance over
the day

Fig. 11: Results for a day with bad weather (January 22nd , 2016)

to the third quartile, and the whiskers extend from the 5% to the 95% quantiles. For
example, for the interval 0−10%, which regroups all data with a value correspond-
ing to less than 10% of the theoretical maximal irradiance observable on this day,
a red line with y-coordinate equal to 0.33 means that for half of the simulations,
less than one third of the points of the corresponding trajectory have a value in this
interval, while for the other half of the simulations, more than one third of the points
of the trajectory have a value in this interval.

A good probabilistic forecast would therefore have several characteristics:

• The trajectory of the measured irradiance would lie in the confidence area ob-
tained by Monte-Carlo simulations.

• In the box-plots, the points for irradiance measured would lie in high density
regions (between the whiskers and often inside the boxes, see figure 12).
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Fig. 12: Elements of a box-plot: explanation

These last points are not a guarantee that the probabilistic forecast was good. In-
deed, one could imagine the following situation: if on one day, one forecasts a clear
sky in the morning and a cloudy sky in the afternoon, but in practice, these events
occur in the other order, the box-plots might be consistent (i.e. the measurements
should lie inside the confidence area represented by the box and the whiskers),
whereas the forecast and measured irradiance paths would be radically different.
Even the forecast and measurements having close trajectories does not necessarily
mean that all statistical properties of the irradiance are captured by our model.

3.2 Analysis of the results

From these 3 figures (that are quite representative of what we have observed
throughout our tests on the full history), we have general observations. First, as
expected, the forecast lies in the confidence area: this is mathematically consistent
with the model and in accordance with the intuition. Second, generally speaking, the
points drawn using the measured irradiance data lie in the confidence areas obtained
with our Monte-Carlo procedure; this can be observed in two ways.

• From the second graph, one checks that the measured irradiance (at any given
time) remains most of the time in the confidence area. It helps to answer posi-
tively the question whether the profile of the irradiance observed over the day is
in accordance with the forecast distribution that is induced by our SDE model.

• From the third graph, we analyse whether the repartition of irradiance over the
day is correctly predicted by our model, regardless of when phenomenon oc-
curred. The answer is yes. This criterion is of course less severe than the previous
one, but it has the merit to accept events in the days which were predicted but
occurred at another time thant what the forecast predicted. For example, if the
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forecast predicts a sunny morning and a cloudy afternoon, the time frame when
the transition happens may not be accurately predicted by Arome models.

These results constitute empirical evidence of the good performance of our model:
in a way, we are able to correctly reproduce the distribution of the irradiance over
the day (either by time interval – second graph – or by repartition of irradiance –
third graph). Further measures of performance will be investigated in future works.

3.3 Limits

We show in the next figure 14 that if the deterministic forecast is completely erro-
neous, i.e. if the irradiance profile observed is completely different from the pre-
dicted one, then the probabilistic forecast performs poorly as well. It is not surpris-
ing at all, since the probabilistic forecast is built upon the deterministic one.

In the graph at the top right corner, we see that due to a poor forecast, the mea-
sured irradiance fails to be inside the confidence area over the whole day. In the
box-plots at the bottom, it is also clear that the distribution of the proportions of
time spent in each subinterval of irradiance is not estimated correctly.

4 Conclusion

We have designed a stochastic differential equation that models the solar irradiance
for a given day D. This gives rise to a probabilistic forecast. The parameters of the
model change from day to day and can be tuned automatically: they depend only
the irradiance from clear sky model on the day D and the deterministic Arome fore-
cast computed on day D-1 for the day D. By simulating the SDE in a Monte-Carlo
framework, we obtain the distribution of the forecast and related statistics. Despite
its apparent simplicity, the model is able to produce quite accurate confidence inter-
vals for the irradiance at a given time, and for the repartition of irradiance during
the day.
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Results for the probabilistic forecast

Validation and accuracy of the model for the distribution of the irradiance over
the day

Fig. 14: Results for a day with bad forecast (October, 19th, 2015)

Appendix: Proof of well-posedness of the SDE model (8), when
1
2 ≤ α ≤ 1 and 1

2 ≤ β ≤ 1.

Because of the exponents α and β possibly smaller than 1 in the definition of (8),
the signs of Xt and 1−Xt may be an issue. Therefore, we start with a modification
of the SDE model (8) avoiding the sign problems:

dXt =−a(Xt − xforecast

t )dt +σ |Xt |α |1−Xt |β dWt , (17)

where X0 ∈ [0,1] is a given deterministic initial value.
Existence/uniqueness. A direct application of [RY99, Chapter IX, Theorem 3.5-

ii) pp.390 and Theorem 1.7 pp.368] shows that the model (17) is well-posed, in
the sense that there is an unique strong solution on the probability space (Ω ,F ,P)
where the filtration is the natural filtration of the Brownian motion completed as
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usually with the P-null sets. In [RY99, Chapter IX, Theorem 3.5-ii) pp.390] we
have used 1

2 ≤ α ≤ 1 and 1
2 ≤ β ≤ 1.

The solution (17) takes values in [0,1]. We invoke a comparison theorem for
SDEs. Denote bX (t,x)=−a(x−xforecast

t ) the drift coefficient of X and now, consider
the solution to

dYt =−aYtdt +σ |Yt |α |1−Yt |β dWt , Y0 = 0. (18)

Its initial condition fulfills X0 ≥ Y0, its drift bY (t,y) = −ay is globally Lipschitz in
space (and bX too) and last, we have bY (t,x)− bX (t,x) = −axforecast

t ≤ 0. There-
fore, [KS91, Chapter V, Proposition 2.18 pp.293] shows that Xt ≥ Yt for any t with
probability 1. But since THE solution to (18) is 0, the above proves that X remains
positive.

Similarly, set

dYt =−a(Yt −1)dt +σ |Yt |α |1−Yt |β dWt , Y0 = 1. (19)

Clearly, Y0 ≥ X0, bX (t,x)−bY (t,x) =−a(1− xforecast
t )≤ 0, Yt = 1 and we conclude

that Xt ≤ 1. This justifies why we can remove the absolute values in (17) to get (8) .
ut

References
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