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Abstract—The importance of measuring biophysical properties 

of forest for ecosystem health monitoring and forest management 

encourages researchers to find precise, yet low-cost methods 

especially in mountainous and large area. In the present study 

Geoscience Laser Altimeter System (GLAS) on board ICESat 

was used to estimate three biophysical characteristics of forests 

located in north of Iran: 1) maximum canopy height (Hmax), 2) 

Lorey’s height (HLorey), and 3) Forest volume (V). A large 

number of Multiple Linear Regressions (MLR) and also Random 

Forest (RF) regressions were developed using different set of 

variables: waveform metrics, Principal Components (PCs) 

produced from Principal Component Analysis (PCA) and 

Wavelet Coefficients (WCs) generated from wavelet 

transformation. To validate and compare different models, 

statistical criteria were calculated based on a five-fold cross 

validation. Best model concerning the maximum height was an 

MLR with an RMSE of 5.0m which combined two metrics 

extracted from waveforms (waveform extent "Wext" and height 

at 50% of waveform energy "H50"), and one from the Digital 

Elevation Model (Terrain Index: TI). The mean absolute error 

(MAPE) of maximum height estimates is about 16.4%. For 

Lorey’s height, a simple MLR model including two metrics (Wext 

and TI) represents the highest performance (RMSE=5.1m, 

MAPE=24.0%). Totally, MLR models showed better 

performance rather than RF models, and accuracy of height 

estimations using waveform metrics was greater than those based 

on PCs or WCs. Concerning forest volume, employing regression 

models to estimate volume directly from GLAS data led to a 

better result (RMSE=128.8 m3/ha) rather than volume-HLorey 

relationship (RMSE=167.8m3/ha).  
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I. INTRODUCTION 

Forest volume, measured in cubic meters per hectare is of 

primary importance for forest quantification and management. 

Stand volume at a nominated age is related to the site quality. 

Volume measures can also be used to estimate biomass (dry 

weight of forest) and levels of carbon sequestered in the forest. 

In other word, the data for forest biomass depend importantly 

on the ability to measure forest volumes and conversion 

factors. Scientific researchers use biomass to study its 

relationship to biodiversity ([1], [2]). Forest carbon estimates 

are of scientific importance to understand the quantitative role 

of forest carbon sequestration in earth’s climate system ([3], 

[4]). Changes in forest volume can be a good proxy for 

changes in forest carbon ([5]). Hence, volume may ultimately 

provide the most reliable estimates of deforestation and forest 

carbon changes ([6]). 

The most accurate method of measuring standing forest 

volume is to measure the diameter at breast height (1.3 meters) 

(DBH) and the height of each tree ([6], [7]). For a large stand 

of forest, sampling methods are used along with complex 

equations derived from regression models to estimate forest 

volumes ([7], [8]). However, for very large heterogeneous 

forests, this method can be prohibitively expensive and time 

consuming. Digital, large-scale remote sensing data could 

provide a less expensive option for estimation of forest 

biophysical parameters over large area, while potentially also 

providing accurate and unbiased estimates. In recent years, 

promising remote sensing techniques have been developed to 

capture three‐dimensional data. Although 3D information can 

be derived from photogrammetry ([9], [10]) and Synthetic 

Aperture Radar (SAR) interferometry ([11], [12]), 

improvement in altimetry technology, especially Lidar (light 

detection and ranging), led to most direct measurements of 

forest structure, including height of canopy and forest 

biomass. 

Airborne Lidar data acquisition is costly, and the capacity to 

collect annual data over whole countries does not exist 

currently. In January 2003, the Ice, Cloud and land Elevation 

Satellite (ICESat) was launched by NASA to measure mainly, 

ice sheet elevations and its changes through the time, and also 
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to provide measurements of cloud and aerosol height profiles, 

land elevation and vegetation cover ([13]). Geoscience Laser 

Altimeter System (GLAS) on board ICESat has been used to 

retrieve forest canopy height and biomass since 2005 over 

planted (e.g. [14], [15]) or natural forests including coniferous 

([16], [17], [18],  [19], [20]), deciduous ([17], [21]) and mixed 

coniferous-deciduous forests ([22], [23]). The most 

concerning point about GLAS data is waveform extent 

broadening over sloped area (mainly because of the large 

footprint size, about 70 m), and difficulties of canopy top and 

ground peak identification due to mixed vegetation and 

ground returns ([16], [17], [18]). Chen [18] has illustrated 

possibilities of terrain slope effects and plant size and 

distribution on canopy height estimation. Two attempts 

performed to reduce slope effect over steeped area were using: 

1) terrain information obtained from Digital Elevation Model 

(DEM) ([16], [18], [23]); 2) indices (lead-edge and trail-edge 

extent) extracted from waveform itself ([17], [24]) as 

independent variables mostly in linear regression models. 

Most of researchers attempted to first reduce the waveform 

information in synthetic variables related to forest parameters. 

This is done using deterministic heuristics (user defined 

metrics) and statistical one that aim to reduce dimensionality 

of information: Principal Component Analysis (PCA), 

Wavelet Transformation (WT), etc. Fayad et al. [25] for 

instance applied both Principal Components (PCs) produced 

by PCA on waveforms, and waveform metrics in Random 

Forest (RF) analysis to estimate canopy height over relatively 

flat area in French Guiana. They observed slightly better 

performance of RF regressions based on waveform metrics 

rather than PCs. 

As tree height is a fundamental quantity in forest volume and 

biomass calculation, researchers used volume-height and 

biomass-height relationships to estimate them in small scale 

areas (e.g. [16], [20], [21], [26], [15], [27]). It was also 

considered to retrieve forest volume/biomass directly from 

waveform metrics. Boudreau et al. [28], Duncanson [29] and 

ZhiFeng et al. [30] estimated above ground biomass (AGB) 

using Multiple Linear Regression (MLR) between AGB and 

metrics extracted from GLAS waveforms. This approach has 

been used by Fu et al. [31] and Nelson et al. [32] using a 

nonparametric technique of neural network. Several 

researchers combined GLAS/ICESat data with other remote 

sensing data like optical images or radar data to estimate forest 

volume or biomass (e.g. [21], [30], [33]). 

Concerning complex structure of forests in north of Iran, even 

and uneven aged stands, existence of various slope classes (0-

80%) and diverse broadleaf species brought into question the 

capability of GLAS data to estimate forest canopy height and 

volume in such complexity. So in this study, different 

combination of metrics derived from GLAS waveform, PCA 

and Wavelet Transformation (WT) were used in MLR models 

and also RF regression to estimate forest canopy height of 

natural mountainous forests in north of Iran. Afterward, forest 

volume was estimated using: 1) volume-height relationship; 

and 2) directly from waveform metrics or variables produced 

by PCA and WT. 

Section 2 describes the study area, geographically and 

ecologically, the properties of GLAS products and Digital 

Elevation Models (DEM) as ancillary data employed in this 

research. Field measurements and required analysis to 

calculate forest volume in location of GLAS footprints are 

also described in section 2. Section 3 includes GLAS data 

preprocessing and extraction of metrics from waveforms, and 

also the methodology of estimating forest height and volume. 

The obtained results were presented in section 4, and section 5 

summarizes the conclusion of this study. 

II. STUDY SITE AND DATA DESCRIPTION 

A. Study Area 

This research was performed in Nowshahr forests, a 

subset of hyrcanian forests in north of Iran (Fig. 1), 

located between 36.15 to 36.40 degrees N latitudes and 

51.18 to 51.56 degrees E longitudes. It contains 

temperate deciduous broadleaved forests extended from 

100 to 2200 meters altitude above sea level with slopes 

ranging from flat to greater than 80%. Covering even 

and uneven aged stands with various species led to a 

diverse structure across the study site. The dominant 

species are oriental beech (Fagus orientalis), 

European hornbeam (Carpinus betulus), chestnut-

leaved oak (Quercus castanifolia), Persian ironwood 

(Parotia persica), oriental hornbeam (Carpinus 

orientalis) and Persian oak (Quercus macranthera) 

depending on the site. Annual mean precipitation is 1200 

mm, and average maximum and minimum temperature 

are 6˚C and 25˚C, respectively. 

B. Data description 

1) GLAS/ICESat  

GLAS (the Geoscience Laser Altimeter System), the first 

laser-ranging instrument was aboard ICESat for continuous 

global observations of earth. GLAS consists of three lasers 

that operate exclusively to measure distance, a Global 

Positioning System (GPS) receiver, and a star-tracker attitude 

determination system. The laser will transmit short pulses (4 

ns) of infrared light (1064 nm) and visible green light (532 

nm). This instrument was designed to measure ice-sheet 

topography and its temporal changes, cloud and atmospheric 

properties, and give us information on the height and thickness 

of cloud layers which is needed for accurate short term climate 

and weather prediction. In addition, operation of GLAS over 

land and water will provide along-track topography. Laser 

pulses at 40 times per second illuminate 70 meter diameter 

footprints, spaced at 170-meter intervals along earth's surface. 

Within each footprint, laser reflected energy by all 

intercepting objects and surfaces results a waveform that 

represents a vertical profile of laser-illuminated surfaces 

([34]). NSIDC distributes 15 Level-1 and Level-2 data 

products from the GLAS instrument. The present study used 

product GLA01 (Global Altimetry data), and product GLA14 

(Global Land Surface Altimetry data) from L3I and L3k 

https://www.rhs.org.uk/Plants/14245/Chestnut-leaved-oak/Details
https://www.rhs.org.uk/Plants/14245/Chestnut-leaved-oak/Details
http://glas.gsfc.nasa.gov/


missions acquired on October 2007 and October 2008, 

respectively. 

2) Digital Elevation Model  

Digital elevation model was provided from two sources of 

data: 1) Shuttle Radar Topography Mission (SRTM) data 

sampled at 3 arc-second (about 90 meters). Elevations are in 

meters referenced to the WGS84/EGM96 geoid. As all data 

used in a research project should have the same coordinate 

system, including both horizontal and vertical aspects, Geoidal 

heights were transferred to ellipsoidal heights by adding the 

geoid undulations to geoidal heights (DEM90). 2) 1:25000 

topographic maps with counter interval of 10 meters were 

used to produce DEM with 10 meter resolution (DEM10). 

3) Field Measurements  

Field data collection was performed during leaf-on seasons 

as Lidar data acquisition times. Totally, 60 GLAS footprints 

were located on the ground using GPS, 33 plots in Sep. 2013 

and 27 plots in May 2014. DBH (diameter at breast height) of 

all trees (DBH > 7.5 cm) within a 70 m diameter circle were 

measured. As laser energy decreases towards the margins of 

the footprint and, consequently, the returned waveform is most 

representative of the features closest to the footprint center 

([14], [35]), this was taken into account through field 

measurements. So totally 10 dominant heights, 5 within a 35 

m diameter circle and 5 in a co-center 70 m diameter circle 

(outer margin of smaller circle), were measured using a 

clinometer. 

To calculate the height of all trees in each plot, a variety of 

non-linear models relating DBH to height recommended in 

different studies ([36], [37], [38], [39], [40]) were selected and 

tested. These relationships were considered for four species as 

1) Fagus orientalis, 2) Carpinus betulus, 3) Quercus 

castanifolia, 4) Alnus subcordata, and two groups of species 

(similar in shape and height) as Group1 includes Tilia 

begonifolia, Acer velutinum, Acer cappadocicum, Sorbus 

torminalis and Fraxinus excelsior, and Group2 includes 

Quercus macranthera, Carpinus orientalis, Parotia persica 

and Diospyros lotus. These six categories have been chosen 

based on six forest volume tables produced by Forests, Range 

& Watershed Management Organization (FRWO) for northern 

forests of Iran. To select the best regression model among a 

number of models, several most commonly used criteria such 

as adjusted coefficient of determination (R
2

a), Root Mean 

Square Error (RMSE) and Akaike Information Criterion (AIC) 

were evaluated ([41]). Besides statistical criteria, biological 

behavior of models was considered to select the best model. 

Six best non-linear height-DBH models for above six groups 

of species and their statistical performance are presented in 

Table. 1. 

Next, the Lorey’s height was calculated using (Refer to (1)). 

Lorey’s height as a mean height of a stand weights the 

contribution of trees to the stand height by their basal area. 

Therefore it is more stable than arithmetic height especially in 

uneven-aged stands. 

 

𝐻𝐿𝑜𝑟𝑒𝑦 =
∑ 𝐵𝐴𝑖×𝐻𝑖

𝑛
𝑖=1

∑ 𝐵𝐴𝑖
𝑛
𝑖=1

=
∑ 𝐷𝐵𝐻𝑖

2×𝐻𝑖
𝑛
𝑖=1

∑ 𝐷𝐵𝐻𝑖
2𝑛

𝑖=1

 (1) 

 

Where H𝐿𝑜𝑟𝑒𝑦 , 𝐵𝐴𝑖, 𝐷𝐵𝐻𝑖  and Hi are Lorey’s height (m), 

basal area (cm
2
), diameter at breast height (cm) and height (m) 

of tree i, respectively, and n is total number of trees in each 

plot. 

Volume is usually expressed quantitatively as a function of 

DBH and height ([6], [7]). So the selected height-DBH 

relationships were next used to estimate height for all trees. 

Local species level volume equations based on DBH and 

height developed by FRWO were used to calculate per tree 

stem volume. 

III. METHODOLOGY 

The flowchart of estimation forest canopy height and 

volume is displayed in Fig. 2. In the flowchart, gray boxes 

show origin input data, simple white boxes presents data 

preparation processes and dot boxes indicate the study outputs. 

Solid lines and arrows indicate intermediate phases of data 

processing, dot arrows represent forest biophysical parameters 

(Hmax, HLorey and Volume) and predictor variables entered in 

the regressions and finally dashed arrows address regression 

outputs. 

A. GLAS Data Processing 

Converted GLA01 and GLA14 data from binary to the 

ASCII format were used to derive required information and 

metrics. Latitude, longitude, elevation, centroid elevation, and 

fitted Gaussian peaks were extracted from GLA14 data, and 

raw waveforms were extracted from GLA01 data. Some 

preprocesses were applied to remove inappropriate and useless 

waveforms. Flag i_FRir_qaFlag in GLA14 data indicates the 

estimated atmospheric conditions over each GLAS footprint 

using a cloud detection algorithm. To eliminate the data that 

were affected by clouds, only waveforms with 

i_FRir_qaFlag=15 were kept ([18], [19]). i_satNdx in GLA14 

presents the count of the number of gates in a waveform which 

have an amplitude greater than or equal to saturation threshold 

(i_satNdxTh). So only waveforms with i_satNdx=0 were used 

for analysis in this study ([18], [42]). Noisy waveforms with a 

signal to noise ratio (SNR) lower than 15 were removed 

([15]). To calculate SNR, maximum energy of samples from 

GLA01 data was divided to standard deviation of the 

background noise saved as flag i_sDevNsOb1 in GLA14 data. 

All waveforms, in which difference between centroid 

elevation (extracted from GLA14) and corresponding SRTM 

DEM is greater than 100 meters, were eliminated ([15]). 

A collection of metrics were extracted or calculated from 

waveforms which were used as dependent variables later in 

estimating forest height and volume. Signal start and end are 

defined as first and last bins in the waveform where the 

waveform intensity exceeds background noise threshold, 

nσ+μ, where σ and μ recorded in GLA01 product are standard 

deviation and mean background noise respectively, and 

n=0.5,1,…,5. Different thresholds including 3σ+μ (Sun et al., 

2008), 4σ+μ ([16]), 4.5σ+μ ([15], [17], [43]) were applied in 

previous studies. In [18] different thresholds were used for 

signal start and end for each three sites from 2.5σ+μ to 5σ+μ. 

https://www.facebook.com/pages/Forests-Range-Watershed-Management-Organization-IRAN/153627678069134?ref=stream&fref=nf
https://www.facebook.com/pages/Forests-Range-Watershed-Management-Organization-IRAN/153627678069134?ref=stream&fref=nf


Hilbert & Schmullius [42] stated that the optimal thresholds 

might differ according to the waveform types, laser periods or 

footprint structure. In this research the threshold was set as 

4.5σ+μ as optimum threshold in most studies. 

The vertical distance between signal start and signal end of 

a waveform was computed as waveform extent (Wext) which 

could be affected by terrain slope, canopy height and canopy 

density ([44]). Since over complex terrain, last Gaussian peak 

cannot represent terrain elevation, the stronger one among two 

lowest Gaussian peaks was chosen as ground peak ([14], [15], 

[18], [25]). The first Gaussian peak was selected as canopy 

top. The distance between ground peak and signal start has 

been defined as maximum canopy height in flat area. The 

vertical distance from ground peak to signal end and from 

canopy top to signal start are defined as trail edge and lead 

edge extents, respectively ([15], [42]). H25, H50, H75 and H100 

as quartile heights have been extracted from waveforms by 

calculating the vertical distance between ground peak and 

position of waveform at which respectively 25%, 50%, 75% 

and 100% of the returned energy between signal start and end 

occurs ([22], [32]). So the total waveform energy was 

calculated by summing all the return energies from signal start 

to end. Starting from the signal end, the position of the 25%, 

50%, and 75% of energy were located by comparing the 

accumulated energy with total energy. H100 is the maximum 

canopy height as defined above. Fig. 3 illustrates a GLAS 

waveform from study area with Gaussian peaks and some 

extracted metrics. The metrics extracted from GLAS 

waveforms and their derivatives which were used in this 

research, are listed in Table. 2. 

B. Height Estimation 

It was aimed to find if GLAS/ICESat data are able to 

estimate maximum canopy height or Lorey’s height more 

accurate. To reach this goal, Lorey’s and maximum heights 

were calculated from field inventory data. Over flat area, 

estimation of maximum canopy height (Hmax) is based on 

vertical difference between the waveform signal start (Ss) and 

the ground peak (Gp) ([18]): 

 

𝐻𝑚𝑎𝑥(𝑖𝑛 𝑚) =  (𝐺𝑝 −  𝑆𝑠) × 0.15  (2) 

 

Vertical resolution of waveforms is 15 cm (Harding & 

Carabajal, 2005).Over sloped terrain, peaks from ground and 

surface objects can be broadened and mixed, making 

identification of ground peak difficult ([16], [18], [24]). Hence 

it is necessary to find a way to decrease slope impact on 

waveform. Lefsky et al. [16] and Chen [18] used DEM to 

include topography effects on height estimations. Lefsky et al. 

[17] and Pang et al. [24] applied Hlead and Htrail extracted from 

waveforms to remove the broadening effects caused by the 

sloped terrain. In present research, Terrain Index (TI) was 

calculated using: 1) a fine resolution DEM (10 meters) 

produced based on 1:25000 topographic maps (called TI10); 2) 

SRTM DEM with 90 meter resolution (called TI90). The 

elevation range within a 7×7 neighborhood of 10m-DEM 

([14], [18]) and 3×3 neighborhood of SRTM DEM ([15]) at 

location of each GLAS footprint was considered as TI. The 

effect of using higher resolution DEM on model performance 

was investigated. 

A large number of MLR and Random Forest (RF) models 

were developed employing different combination of metrics 

extracted from waveforms to predict maximum and Lorey’s 

height (e.g. [15], [17], [18], [24], [25]). It should be noted that 

RF consists of a large number of trees, created based on a 

random subset of observations and metrics. The overall 

prediction of the trees is calculated by averaging the 

predictions from the individual trees ([45], [46]). 

As mentioned, the idea of using terrain index and edge 

extents came to remove the broadening effects of sloped 

terrain. It was questioned if other waveform metrics could 

improve the result. To answer this question, all metrics listed 

in Table. 2 were used as inputs to stepwise regression. It 

combines backward elimination and forward selection to reach 

best combination of metrics based on AIC criteria. This 

combination of metrics was used in both MLR and RF. 

Principal Component Regressions (PCR) defined as a three 

step multivariate method including performing Principal 

Component Analysis (PCA); selection of relevant Principal 

Components (PCs); and MLR between selected PCs and 

response variable (canopy height or forest volume), was 

tested. PCA finds a set of synthetic variables (the principal 

components) that summarizes the original set. It rotates the 

axis of variation to give a new set of ordered orthogonal axis 

that summarizes describing proportions of the variations. In 

fact, the principal components (PCs) are uncorrelated and 

ordered such that the k
th

 PC has the k
th

 largest variance among 

all PCs ([47]). The traditional approach is to use the first few 

PCs in data analysis since they have most of the variation in 

the original data set. In this study, LiDAR signal intensities 

were used for the PCA analysis. In order to apply PCA, it is 

necessary to have equal number of samples in all waveforms. 

So, the length of largest waveform extent was considered as 

basis (400 samples) and other waveforms were apart from 

signal start toward signal end till the number of samples reach 

the base Wext’s samples. Since the number of observations 

(60) is less than the number of samples in the useful part of 

waveforms (400 samples), it was aimed to reduce the number 

of samples by selecting one among each ten samples. So PCA 

was performed using 41 samples as variables to find the main 

factors (waveform signals) determining most effects on forest 

canopy height ([25]). As it is seen in Table. 3, three first 

components have the most information, and explain 77.5% of 

variance in the data. MLR and RF regressions were developed 

using either all PCs or PCs from stepwise regression or three 

first PCs. 

Wavelet-based Regressions (WR) were performed to 

estimate maximum and Lorey’s height. In wavelet transform, 

a signal with finite length (2
n
 samples) is decomposed into two 

series: the first including the “father” wavelet coefficients 

describing overall variation and trend (smooth or low 

frequency part), and the second consisting of “mother” 

wavelet coefficients representing details (high frequency part) 

of the signal ([48], [49], [50]). Wavelet analysis was 



performed to decompose waveforms using discrete wavelet 

transformation with the Haar wavelet function pair ([51]). 

The necessity of having equal lengths of waveform extents 

made data preparation fundamental before wavelet analysis. 

So the same approach as PCA data preparation was performed 

to have 400 samples (the length of largest waveform extent) 

for each waveform. Since having limited number of 

observations (59), the policy of reducing waveform samples 

(400 samples) were employed three times by selecting one 

among 3, 6 or 11 samples. So, 134, 67 and 37 samples were 

kept, respectively. As the requisite sample size for wavelet 

transformation is a power of 2 (2
n
; n corresponds to the 

wavelet decomposition levels), 128 (2
7
), 64 (2

6
) and 32 (2

5
) 

samples out of 134, 67 and 37 were used in analysis, 

respectively. Wavelet transformation on 128 samples (as 

example) produced 64, 32, 16, 8, 4, 2 and 1 coefficients from 

level 1 to level 7, respectively. Fig. 4 illustrates wavelet fit in 

7 (128=2
7 

samples), 6 (64=2
6 

samples) and 5 levels (32=2
5 

samples) for one waveform as instance. MLR and RF 

regressions were developed using either all Wavelet 

Coefficients (WCs) extracted from each level of 

decomposition or WCs after stepwise regression to estimate 

maximum and Lorey’s height. The number of coefficients of 

that level which is used in the regressions could not exceed the 

number of our observations (60). 

C. Volume Estimation 

Two methods were applied to estimate forest volume. The 

first method consists of three steps: 1) developing volume-

Hmax and volume-HLorey relationships. The stronger one was 

chosen to estimate volume next. To find volume-height 

relationship, the common form used in different literatures 

([15], [16], [20], [21], [26]), power relationship between V 

and canopy height (Refer to (3)), was used and calibrated 

based on our in situ data; 2) estimating height from GLAS 

data using best model resulted from subsection 3.2. It should 

be mentioned that if we choose volume-HLorey relationship at 

first step, Lorey’s height would be estimated form Lidar data; 

and 3) estimating forest volume (V) using chosen volume-

height relationship. This method has been used in different 

studies like [15], [16], [21] and [26]. 

 

𝑉 = 𝑎 𝐻𝑏   (3) 

 

Where H is Hmax or HLorey. 

The second method estimates forest volume directly from 

GLAS waveforms ([29], [30], [32]). In fact a large number of 

MLR and RF regressions were developed based on waveform 

metrics or PCs or WCs to predict forest. 

D. Model Validation 

Twenty percent of observations were iteratively left out 

through a five-fold cross validation to validate developed 

models. A number of statistics was calculated between 

predicted parameter from GLAS data (maximum height, 

Lorey’s height or volume) and correspondent in situ 

measurements. Adjusted coefficient of determination (R
2
a.cv) 

as an indicator of the fit quality ([52]), Root Mean Square 

Error (RMSE.cv) as a measure of accuracy ([43]), Mean 

Absolute Difference (MD.cv) as a measure of dispersion 

([54]), Mean Absolute Percentage Error (MAPE) as an 

expression of accuracy in percentage ([55], [56]), and Akaike 

Information Criterion (AIC.cv) as a means for model selection 

by trading-off between the goodness of fit of the model and 

the complexity of the model ([41]) were used to evaluate the 

result of predictions. 

IV. RESULTS AND DISCUSSION 

A. Maximum Canopy Height Estimation 

An objective of this study is predicting maximum canopy 

height in complex mountainous forests with significant slope. 

Since impossibility of extracting maximum height over steep 

area by calculating the difference between signal start and 

ground peak, lots of regression models were built. Table. 4 

represents five models developed based on main metrics 

extracted from waveforms (Table. 1) and TI10. It contains a 

most accurate model (among all MLR and RF) along with 

some models having the most common metrics. As it seen an 

MLR model combined Wext
2.5

, Wext
1.5

, ln(H50) and TI10
1.5

 

(model 1) produced the lowest AIC.cv (296.3) and highest 

accuracy (5.0m). Based on the MAPE.cv, 16.4% of 

predictions of this model are off (Fig. 5a). The t-statistics of 

regression coefficients shows the relative importance of each 

metric in the model ([50]). Based on this statistics, TI10
1.5

 and 

Wext
1.5

 contribute most to the model for this set of independent 

variables. 

Worth to notice, the accuracy of simplest model in Table. 4 

(6.3m) is more than one meter lower than first model (5.0m), 

as the best one. So the first model is preferable even if it needs 

more metrics to be extracted. 

As it is seen in Fig. 5a, maximum canopy height has been 

over-estimated where there are short trees (height < 10m). 

Overestimation is expected especially where short trees are 

located over a sloped terrain. In these conditions, the elevation 

of the highest object within a footprint is not necessarily at the 

top of the tallest tree, and could be a shorter tree located in 

higher elevation or even terrain instead of any vegetation 

([18]) which could be expected for sparse canopy over steep 

terrain. Deep investigation in our field data confirms footprints 

possessing short trees are located over a sloped terrain (the 

range of terrain slope for these footprints except one (20%) is 

between 40-55%) with low basal area as a proxy of forest 

density. However the problem of slope has been solved greatly 

using a regression model combining terrain information with 

GLAS’s waveform metrics, the overestimation in short-tree 

stands remains unresolved. This was also reported by Nelson 

[57]. He showed lack of efficiency of GLAS data to accurately 

measure forest structure in short-tree sparse forests. 

Replacement the TI90 with TI10 in the model 1 led to an 

R
2
a.cv and RMSE.cv equal 0.81 and 5.6m, respectively (Fig. 

5b). As it is seen the model with TI10 produced slightly better 

result. This is contrary to our expectations for producing much 

more accurate result using local DEM generated from 

topographic map rather than SRTM DEM. A reason could be 

http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Goodness_of_fit


that conventional DEMs produced from photogrammetric 

techniques might not adequately characterize topography over 

forest areas ([58]). Conclusively, the SRTM DEM could be an 

acceptable source of information about terrain variability 

especially in large extent areas with presence of forest cover. 

Recent availability to the SRTM DEM30 for whole world 

(with more details rather than SRTM DEM90) strengthens this 

deduction. 

Since obtaining similar outputs concerning DEM10 and 

SRTM DEM throughout our study, only results of models 

containing TI10 are discussed from here to the end. 

Among RF regressions, the best result was obtained using 

metrics Wext
2.5

, Wext
1.5

, H50 and TI10
1.5

 with an R
2

a.cv, 

RMSE.cv, MD.cv and MAPE.cv of 0.72, 6.9m, 5.4m and 

28.0%, respectively (Fig. 6). 

Among all types of regression models, models containing 

TI represented better result with smaller RMSE.cv. It could be 

deduced that TI as a representative of terrain slope had an 

important effect on estimating maximum canopy height over 

steep area. 

MLR and RF regressions using all PCs or PCs from 

stepwise regression did not produce better result rather than 

those based on waveform metrics. Three first PCs, explaining 

77.5% of data variance, showed most performance in our 

models. The smallest AIC.cv (301.1) among MLR models 

belongs to model combining three first PCs, Wext and TIt. It 

produced an R
2
a.cv and RMSE.cv of 0.77 and 6.0m, 

respectively, the MD.cv between predicted and observed 

height is about 4.7m, and the prediction error is about 22.1% 

(Refer to (4), Fig. 7a). The best result concerning RF 

regressions was generated using the same metrics (three first 

PCs, Wext and TI10) with an R
2

a.cv and RMSE.cv of 0.66 and 

8.0m, respectively, MD.cv of 6.2m and the prediction error of 

about 36.0% (Refer to (5), Fig. 7b). 

 

𝐻𝑚𝑎𝑥 = 3.8289𝑃𝐶1 + 2.157𝑃𝐶2 − 6.0618𝑃𝐶3 +
 1.2449𝑊𝑒𝑥𝑡 − 0.4494𝑇𝐼10 − 6.5857  (4) 

 

𝐻𝑚𝑎𝑥 = 𝑅𝐹(𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶3, 𝑊𝑒𝑥𝑡 , 𝑇𝐼10  )  (5) 

 

In RF regressions, according to random sampling of 

observations, about one third of the observations are not used 

for any individual tree which is called Out of Bag (OOB) for 

that tree ([45], [46]). The variable importance is determined by 

how much worse the OOB predictions of random forest can be 

if the data for that variable are randomly permuted. In fact, it 

would be possible to find out what would happen with or 

without the help of that variable. Variable importance 

measures produced by random forest can also sometimes be 

useful to build simpler model ([59], [60]). In RF regression of 

Eq. 5, Wext has the highest importance, and subsequently has 

the main roll in strength of the model and TI10 is in the third 

level of importance after Wext and PC3. PC3 and PC2 have in 

turn more importance rather than PC1. Although PC1 has the 

most variance among all PCs, it is less correlated to dependent 

variable (height) rather than second and third PCs. This 

confirms that the informative part of waveform is not always 

in the first PC.  

The same approach of PCR was performed in WR. In other 

word, WCs at different level of decompositions along with 

two important metrics, Wext and TI10 were entered in MLR and 

RF models to predict maximum height. The best result was 

obtained by WCs extracted from first level of waveform 

decomposition including 32 samples. An MLR model (Refer 

to (6), Fig. 8a) combining Wext, TI10 and five WCs determined 

by stepwise regression of first level coefficients (16 WCs), 

produced lowest AIC.cv (317.2) and greatest accuracy (R
2

a.cv 

= 0.73, RMSE.cv = 6.5m, MD.cv = 5.5m, MAPE.cv = 22.6%). 

Among RF regressions, highest accuracy was resulted from 

the same combination of metrics in Eq.6, with an R
2
a.cv of 

0.71, RMSE.cv of 7.8m, MD.cv of 6.2m and MAPE.cv of 

34.5% (Refer to (7), Fig. 8b). 

 

𝐻𝑚𝑎𝑥 = 20.1791𝑊𝐶2 + 10.7454𝑊𝐶3 + 0.9372𝑊𝐶5 −
 42.1402𝑊𝐶13 + 5.7257𝑊𝐶16 + 1.08544𝑊𝑒𝑥𝑡 −
0.4343𝑇𝐼10 − 2.2611  (6) 

 

𝐻𝑚𝑎𝑥 = 𝑅𝐹(𝑊𝐶2, 𝑊𝐶3, 𝑊𝐶5, 𝑊𝐶13, 𝑊𝐶16, 𝑊𝑒𝑥𝑡 , 𝑇𝐼10) (7) 

 

As a conclusion, it is possible to estimate maximum height 

from GLAS data with an accuracy of about 5 m over 

significant sloped area with a simple MLR model based on a 

combination of H50 and derivatives of Wext and TI10. Chen [18] 

estimated maximum height in three study sites Mendocino, 

Santa Clara and Lewis with an accuracy of 6.18m, 4.88m and 

9.31m, respectively, using a linear model of Wext and TI10. 

While these sites are similar in slope (average slope of 20 

degrees), they are different in case of forest type. It worth to 

notice that there is lower canopy cover and smaller trees in 

Santa Clara rather than two other sites. It could be deduced 

that while slope is a very important factor affecting height 

estimation, other properties of forest (forest type, forest 

vertical and horizontal structure) should be considered too. So 

it could be interesting if we classify our data into different 

kinds of classes and analyze them separately. Since limited 

number of field observations in our study, it was not possible 

to have such analysis. 

B. Lorey’s Height Estimation 

It was aimed to see how accurate would be Lorey’s height 

predicted from GLAS data and how much the predictions are 

better rather than maximum height estimated from GLAS data. 

Totally, MLR models produced better accuracy rather than 

RF regressions in all combination of metrics including 

waveform metrics, PCs and WCs. This has been observed also 

for maximum height estimations in section 4.1. So only the 

result of MLR models is presented in this section. Table. 5 

represents a most accurate model (model 1) and four other 

models based on most common metrics. The MLR model 

including ln(Wext) and TI10 produced lowest AIC.cv (288.3) 

with a prediction error of about 24.0% and RMSE.cv of 5.1m 

(Fig. 9). 

Equations (8) and (9) represent the best models using PCR 

and WR, respectively. For PCR, lowest AIC.cv (304.9) was 



observed in an MLR model including three first PCs, Wext and 

TI10 (R
2
a.cv= 0.66, RMSE.cv= 5.4m, MD.cv= 4.0m, MAPE= 

24.1%). For WR, an MLR based on WCs extracted from first 

level of waveform decomposition (including 32 samples), 

produced lowest AIC.cv (310.9). This model is combined of 

Wext, TI10 and six out of sixteen WCs determined by stepwise 

regression of first level coefficients (R
2

a.cv= 0.55, RMSE.cv= 

6.1m, MD.cv= 4.6m, MAPE= 28.0%). Fig. 10a and 10b 

represent Lorey’s height estimated from PCR and WR. 

 

𝐻𝐿𝑜𝑟𝑒𝑦 = −4.5647𝑃𝐶1 − 0.2831𝑃𝐶2 + 1.5421𝑃𝐶3 +

 0.9006𝑊𝑒𝑥𝑡 − 0.30802𝑇𝐼10 − 4.4943  (8) 

 

𝐻𝐿𝑜𝑟𝑒𝑦 = 26.95035𝑊𝐶2 − 7.173𝑊𝐶3 + 7.260𝑊𝐶5 −

 9.140𝑊𝐶8 − 57.6514𝑊𝐶13 − 12.6797𝑊𝐶16 +
0.7078𝑊𝑒𝑥𝑡 − 0.10713𝑇𝐼10 + 1.28  (9) 

 

As it is observed, the accuracy of Lorey’s height estimation 

using MLR based on waveform metrics is approximately 

equal to that for maximum height (around 5m). But worth 

considering point is using a simpler model to predict Lorey’s 

height rather than maximum height. Regards to PCR and WR, 

the accuracy of Lorey’s height prediction is lower than models 

based on waveform metrics but it is higher in comparison with 

those calculated for maximum height predictions. 

C. Forest Volume Estimation 

1) Volume Estimation using Volume-Lorey’s Height Relationship 

The objective was to estimate volume using height 

predicted from GLAS data. To reach this, volume-height 

relationships were developed based on in situ measurements. 

Since volume showed stronger relationship to Lorey’s height 

rather than maximum height, the developed volume-HLorey 

model was chosen to predict forest volume (Refer to (10)). 

Fig. 11 represents the relationship between in situ volume and 

both maximum and Lorey’s height. 

 

𝑉 = 2.6507 𝐻𝐿𝑜𝑟𝑒𝑦
1.5434  (10) 

 

Lorey’s height estimated using model 1 of Table. 5, as the 

best model among all types of regressions (MLR and RF using 

waveform metrics, PCs and WCs), was entered in volume-

height relationship as independent variable. Comparison of 

estimated and measured volume produced an R
2
a and RMSE 

of 0.51 and 167.8 m
3
/ha, respectively. 

There are several sources of error that resulted propagation 

of error and low accuracy of volume estimation. Two main 

sources could be: 1) height-DBH relationships used to 

estimate height of all trees in each plot to compute Lorey’s 

height; 2) it is known that forest volume is a function of height 

and diameter as two essential quantitative factors. Since with 

lidar data, only third dimension of objects could be retrieved, 

volume-height relationship was developed with an RMSE and 

R
2
a of 106.6 m

3
/ha and 0.80, respectively (Fig. 7). Even using 

accurate ground measured height; the accuracy of volume 

estimated based on above relationship is greater than 100 

m
3
/ha. So this relationship could not be reliable enough to 

estimate volume based on Lorey’s height extracted from 

GLAS data. Deep investigation in field inventory data shows 

the possibility of having same Lorey’s height for completely 

different forest structure which leads to different forest 

volume. To better understanding, three couple of plots have 

been compared in Table. 6 concerning Lorey’s height (m), 

number of trees (n/ha) and volume (m
3
/ha). As it is seen, plots 

with approximately the same Lorey’s height have different 

volume. It approves that estimating forest volume only relying 

on an average height could cause a high discrepancy with 

reality especially in uneven aged forests. 

 

2) Volume estimation directly from GLAS data 

It was under question whether the result of volume 

estimation would improve if we extract that directly from 

GLAS data instead of using volume-Lorey’s height 

relationship. So a large number of MLR and RF models were 

developed to estimate forest volume from waveform metrics, 

PCs or WCs to overcome the extra errors resulted from height-

DBH and volume-height relationships mentioned in section 

4.3.1. The best result was observed using MLR models based 

on waveform metrics. As it is seen in Table. 7, lowest AIC.cv 

(595.1) was produced using model 2 with an accuracy of 

137.0 m. Since the difference between AIC of the first model 

(597.0) and the minimum AIC (595.1) is less than 2, the 

model 1 could have a substantial support ([41], [18]). This 

model (model 1 in Table. 7, Fig. 12) produced better accuracy 

(128.8 m), but it is still not satisfying. It could be because of 

other factors besides height affecting volume like DBH and 

number of trees per hectare while all metrics in model 1 

(Table. 7) are related to height. By the way the heterogeneity 

of forest may decrease the ability of LiDAR data to estimate 

forest volume. As it is seen in Fig. 13c, there are plots with 

very low volume (plots 22-27) and also with very high volume 

(plot 13). It is expected to have higher accuracies in 

homogenous forests. On the other hand, comparison of 

different plots in Fig. 13 demonstrates dependency of volume 

to diverse factors. In other word, it happens to have high 

number of trees per hectare but low volume and reverse, equal 

number of trees per hectare or equal mean height but different 

volume. So it is expected to improve the result of LiDAR 

estimation by finding waveform metrics representative of 

other factors like DBH and forest density, in addition to forest 

height, affecting forest volume. Nelson et al. [32] predicted 

timber volume with an R
2
a of 0.75 and RMSE of 87 m

3
/ha 

using a neural network model employing six different metrics 

extracted from waveform metrics (h̄med: a median height which 

below that  cumulative canopy height profile (CHP) is 50% at 

maximum; h2-sun: a corrected maximum height; hg1-sun: height 

of waveform peak with the maximum amplitude above ground 

peak, f: the slope of the line formed by connecting the signal 

start point with the peak of the uppermost Gaussian return, rg3: 

the waveform area under the 3rd Gaussian peak, and ng: the 

number of Gaussian peaks in the waveform). This raises the 

question whether using the same methodology and metrics of 

Nelson et al. [32] could enhance the result in our study area. 

Although forest properties including forest type, horizontal 



and vertical structure and topographical properties could affect 

the results. 

MLR and RF regressions using PCs and WCs did not show 

better performance in comparison with those using waveform 

metrics. The best PCR model was an MLR combining three 

first PCs, Wext and TI10 (R
2

a= 0.67, RMSE= 131.5 m
3
/ha). The 

highest accuracy concerning WR was obtained using WCs 

extracted from second level (32 WCs) of waveform 

decomposition including 128 samples. In fact an MLR model 

combining Wext, TI10 and five out of thirty two WCs 

(determined by stepwise regression) produced an accuracy of 

140.3 m
3
/ha. 

As the results show, estimating forest volume directly from 

GLAS data reduces the errors, and leads to higher accuracy. 

But it is still under consideration to approach a method 

enhancing the result. 

V. CONCLUSION 

This research contains three main parts and aims to 

investigate the capability of GLAS data in estimating 

maximum canopy height (Hmax), Lorey’s height (HLorey) and 

forest volume (V). Numerous MLR and RF regressions were 

developed using different set of metrics including waveform 

metrics, PCs and WCs to estimate each parameter. Concerning 

Hmax, an MLR model based on waveform metrics produced the 

greatest accuracy (5.0 m). PCs and WCs based models were 

not able to predict the Hmax with accuracy better than 6 m. 

Also totally, MLR models represented better performance 

rather than RF regressions in this study. These results are in 

contrast with Fayad et al. [25] that observed approximately the 

same accuracies in predicting canopy height using MLR or RF 

models, also waveform metrics or PCs based models. This 

confirms the local applicability of fitted regressions. The 

important point regards study of Fayad et al. [25] is terrain 

topography which is mostly flat and sometimes with low slope 

(slope < 15˚). 

Concerning HLorey, a simpler MLR model including Wext 

and TI resulted in an accuracy of 5.1m which is slightly better 

than PCs based model (5.4m), but with accuracy about 1 meter 

greater than WCs based model. Furthermore better 

performance was observed using MLR in comparison with RF 

regressions. 

In total, two metrics, Wext and TI, showed great importance 

in height and volume predictions. These metrics also enhanced 

the performance of PCR and WR, greatly. Since two sources 

of DEM were available to extract TI10 and TI90, the analysis 

was performed based on both. However the result of models 

using TI10 is better than those using TI90, but it does not 

discourage the importance of SRTM DEM especially with 

current availability to the SRTM DEM30 for whole world. It 

is expected to reach higher accuracy using DEM derived from 

airborne lidar data which has been confirmed in [18]. 

Regards to volume predictions, two approaches were 

considered. The first, estimates volume using volume-height 

relationship and the second do predictions using regressions 

developed between in situ volume and lidar based metrics. 

Based on our result, an MLR model including waveform 

metrics would predict forest volume with an accuracy of about 

128m. Although the result is a little better in comparison with 

volume estimated from volume-height relationship (as a 

reason of absence of some sources of error mentioned in 

section 4.3.1), the result is still not satisfying. It raised the 

question whether using other methods of analysis like Support 

Vector Machine (SVM) and Artificial Neural Network 

(ANN), or using combination of radar, lidar, optical images 

and complementary data like meteorological, geological and 

forest type map will enhance the accuracy of forest volume 

estimation. These questions will be considered and discussed 

in a future study. 

There are general sources of uncertainty in predicting forest 

biophysical parameters: 1) Time interval between Lidar data 

acquisition and field measurements; 2) measurement 

uncertainty especially about height quantity which is 

dependent on measuring tool, the measurement procedure, the 

skill of the operator, the environment, and other effects; 3) in 

situ volume which is not a true value measured for each tree 

but an estimated value from volume-height-diameter 

relationships; 4) probability of error in ground peak 

identification from lidar waveforms especially in sloped area. 

Identification of ground peak is essential for extracting some 

waveform metrics like trail edge extent and height at quarters 

of returned signal energy; 5) uncertainty in locating GLAS 

footprints on the ground correctly. It should be noted that 

small number of observations, i.e. 60 ground plots covering 

whole study area with a diverse structure, is a limitation of this 

study. It would be desirable to first classify the forest into 

different classes (forest type and forest density), then perform 

analysis in each class which requires more observations 

covering the entire study site. 
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Fig. 1. (a): Location of study area in Iran (red point) and its magnified view on a Landsat image (red border);( b): GLAS/ICESat-orbits, L3K and L3I, over a 

hillshade image (right) for the area indicated by a blue box on the left image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Overview of forest canopy height and volume estimation 
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Fig. 3. A GLAS waveform and some metrics over a terrain of 25% slope in the study area. 1ns corresponds to 15 cm sampling distance in waveform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Wavelet fit in (a): 7 (128=27 samples), (b): 6 (64=26 samples) and (3): 5 levels (32=25 samples) for one waveform  
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Fig. 5. Maximum height estimated (m) from GLAS data based on waveform metrics and TI versus in situ maximum height (m). TI extracted from DEM10 (a) or 

DEM90 (b). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Maximum height estimated (m) from GLAS data based on waveform metrics and TI10 versus in situ maximum height (m) using RF regression. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7. Maximum height estimated (m) based on PCs, Wext and TI10 using MLR: Eq. 4 (a) and RF regression: Eq. 5 (b) versus in situ maximum height (m). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Maximum height estimated (m) based on WCs, Wext and TI10 using MLR: Eq. 6 (a) and RF regression: Eq. 7 (b) versus in situ maximum height (m). 
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Fig. 9. Lorey’s height estimated (m) waveform metrics and TI10 using model 1 (Table 5) versus in situ Lorey’s height (m). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Lorey’s height estimated (m) based on PCs (a) and WCs (b) versus in situ Lorey’s height (m). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. In situ volume versus maximum height (a) and Lorey’s height (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Estimated forest volume (m3/ha) based on waveform metrics (model 1, Table 7) versus in situ volume (m3/ha). 

 

 

 

 

 

0

10

20

30

40

0 10 20 30 40

E
st

im
at

ed
 H

L
o

re
y
(m

) 

in situ HLorey(m) 

1:1 
R

2
= 0.72 

RMSE= 5.1m 

0

10

20

30

40

0 10 20 30 40
E

st
im

at
ed

 H
L

o
re

y
(m

) 

in situ HLorey(m) 

1:1 R
2
= 0.61 

RMSE= 6.1m 

(b) 

0

10

20

30

40

0 10 20 30 40

E
st

im
at

ed
 H

L
o

re
y
(m

) 

in situ HLorey(m) 

1:1 

(a) 

R
2
= 0.69 

RMSE= 5.4m 

y = 2.594x1.427 

R² = 0.75 

RMSE= 118.58 m3/ha 

0

200

400

600

800

1000

0 10 20 30 40 50 60

V
o

lu
m

e 
(m

3
/h

a)
 

Hmax (m) (a) 

y = 2.6507x1.5434 

R² = 0.80 

RMSE=106.55 m3/ha 

0

200

400

600

800

1000

0 10 20 30 40

V
o

lu
m

e 
(m

3
/h

a)
 

HLorey (m) (b) 

0

200

400

600

800

1000

0 200 400 600 800 1000

E
st

im
at

ed
 v

o
lu

m
e 

(m
3
/h

a)
 

in situ volume (m3/ha) 

1:1 R
2
= 0.71 

RMSE= 128.8m
3
/ha 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13. (a): Distribution of number of trees (n/ha), (b): Mean height (m) and (c): forest volume (m3/ha) in 58 plots 
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TABLE. 1- Six selected non-linear height-DBH models and their statistical performance. Hmax and DBH stand for maximum height and 

diameter at breast height, respectively. 

Species Model 
Parameters RMSE 

(m) 
R2

a Reference 
a b 

Fagus orientalis 𝐻𝑚𝑎𝑥 = 1.3 + 𝑎(1 − 𝑒−𝑏 .𝐷𝐵𝐻 ) 41.794 0.025 5.38 0.65 [36] 

Carpinus betulus 𝐻𝑚𝑎𝑥 = 1.3 + 𝑎. 𝐷𝐵𝐻 𝑏 + 𝐷𝐵𝐻�  33.039 14.772 3.90 0.48 [38], [40] 

Quercus castanifolia 𝐻𝑚𝑎𝑥 = 1.3 + 𝑎(1 − 𝑒−𝑏 .𝐷𝐵𝐻 ) 39.574 0.035 5.74 0.30 [36] 

Alnus subcordata 𝐻𝑚𝑎𝑥 = 1.3 + 𝑎(1 − 𝑒−𝑏 .𝐷𝐵𝐻 ) 39.698 0.038 3.05 0.47 [36] 

Group1 𝐻𝑚𝑎𝑥 = 1.3 + 𝐷𝐵𝐻2 (𝑎 + 𝑏. 𝐷𝐵𝐻)2�  2.053 0.143 5.24 0.63 [36], [39] 

Group2 𝐻𝑚𝑎𝑥 = 1.3 + 𝑎(1 − 𝑒−𝑏 .𝐷𝐵𝐻 ) 13.263 0.025 2.79 0.44 [36] 

  
TABLE. 2- Definitions of metrics extracted from GLAS/ICESat data used in analysis  

Metrics Definition 

Wextn , ln(Wext) 

Hleadn, ln(Hlead) 

Htrailn, ln(Htrail) 

H25n, ln(H25) 

H50n, ln(H50) 

H75n, ln(H75) 

H100n, ln(H100) 

Waveform extent 

Height of lead edge extent 

Height of trail edge extent 

Height at which 25% of the returned energy occurs 

Height at which 50% of the returned energy occurs 

Height at which 75% of the returned energy occurs 

Height at which 100% of the returned energy occurs 

ln: natural logarithm (the logarithm to the base e=2.718), power n=0, 0.5, …, 3 

  
TABLE. 3. Eigenvalues, percentage of variance, and cumulative percentage of variance for the ten first PCs   

PCs Eigenvalue 
Cumulative percentage of 

variance 

PC1 0.3062518 49.2 

PC2 0.1076825 66.5 

PC3 0.06818263 77.5 

PC4 0.03412237 83.0 

PC5 0.02866068 87.6 

PC6 0.01448188 89.9 

PC7 0.01164132 91.8 

PC8 0.01067347 93.5 

PC9 0.007131111 94.6 

PC10 0.004708482 95.4 

  
 

TABLE. 4. Statistics for five regression models to estimate maximum height based on waveform metrics 

# Model Coefficients RMSE.cv 
(m) 

R2
a.cv MD.cv MAPE.cv 

(%) 
AIC.cv 

1 
Hmax = a.Wext

2.5 + b.Wext
1.5 + 

c.ln(H50) + d.TI10
1.5 + e 

a=-0.0042 
b=0.386 
c=3.549 
d=-0.052 
e=21.22 

5.0 0.85 4.04 16.4 296.3 

2 Hmax = a.Wext + b.TI10 
a=1.1041 
b=-0.4910 

6.3 0.76 5.20 23.0 314.2 

3 Hmax = a.Wext + b.H50 + c.TI10  
a=0.93538 
b=0.36011 
c=-0.42024 

5.8 0.79 4.70 20.3 307.6 

4 
Hmax = a.Wext + b.TI10 + c.H50 + 

d.H75 + e.H100 + f 

a=1.0845 
b=-0.3822 
c=0.6642 
d=-0.1114 
e=-0.2605 
f=-0.992 

6.1 0.77 8.28 35.27 312.3 

5 
Hmax = a.Wext + b.TI10 + c.Hlead + 

d.Htrail 

a=1.1092 
b=-0.4948 
c=0.1067 
d=-0.1319 

6.4 0.75 5.32 22.67 316.91 

  
 

 

 



TABLE. 5. Statistics for five regression models to estimate Lorey’s height based on waveform metrics 

# Model Coefficients 
RMSE.cv 

(m) 
R2

a.cv MD.cv 
MAPE.cv 

(%) 
AIC.cv 

1 HLorey = a.ln(Wext) + b.TI10 + c 
a=27.6671 
b=-0.3454 
c=-67.8802 

5.1 0.71 3.9 24.0 288.3 

2 HLorey = a.Wext + b.TI10 + c 
a=0.7346 
b=-0.3469 
c=3.8332 

5..3 0.69 4.1 24.7 294.0 

3 HLorey = a.Wext + b.H50 + c.TI10  
a=0.7671 
b=0.0876 
c=-0.305 

5.4 0.67 4.3 23.5 294.4 

4 
HLorey = a.Wext + b.TI10 + c.H50 + 

d.H75 + e.H100 + f 

a=0.822 
b=-0.3024 
c=0.3105 
d=-0.0639 
e=-0.2276 
f=3.2454 

5.6 0.64 4.4 25.6 297.8 

5 
HLorey = a.Wext + b.TI10 + c.Hlead + 

d.Htrail + f 

a=0.7475 
b=-0.3408 
c=-0.0503 
d=0.0369 
f=3.3432 

5.6 0.63 4.5 25.9 297.7 

  
 

 

 

TABLE. 7. Statistics for five regression models to estimate forest volume based on waveform metrics 

# Model Coefficients RMSE.cv 
(m) 

R2
a.cv MD.cv AIC.cv 

1 
V = a.Wext + b.TI10 + c.Hlead + 

d.Htrail + e.H50 + f 

a=7.723 
b=- 4.406 
c=1.475 
d=18.920 
e=19.482 
f=- 286.360 

128.8 0.68 102.5 597.0 

2 
V = a.Wext + b.TI10 + c.H50 + 

d.H75 + e.H100 + f 

a=30.912 
b=-3.513 
c=32.641 
d=-5.586 
e=-27.276 
f=-268.356 

137.0 0.64 109.7 595.1 

3 V = a.Wext + b.TI10 + c 
a=20.088 
b=-6.480 
c=-256.558 

149.4 0.60 112.3 611.4 

4 V = a.Wext + b.H50 + c.TI10 + d  

a=16.830 
b=6.150 
c=-5.693 
d=-230.042 

145.6 0.61 112.2 609.8 

5 
V = a.Wext

2.5 + b.Wext
1.5 +  

c.ln(H50) + d.TI10
1.5 + e 

a=-0.0846 
b=7.7267 
c=50.7715 
d=-0.6575 
e=-695.1294 

144.8 0.61 112.1 603.2 

  

TABLE. 6. Comparison of Lorey's height, Number of trees (N/ha), Volume (m3/ha) in three couple of plots 

Plot 
Lorey’s height 

(m) 

Number of trees 

(n/ha) 

Volume 

(m3/ha) 

1 16.7 39 5.2 

3 17.7 697 160.5 

13 32.9 484 996.6 

17 32.8 322 499.2 

23 6.5 8 0.7 

25 7.5 237 20.7 

 


