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Abstract

Fuzzy inference systems (FIS) are widely used for process simulation or control. They can be designed either from expert

knowledge or from data. For complex systems, FIS based on expert knowledge only may suffer from a loss of accuracy. This

is the main incentive for using fuzzy rules inferred from data.

Designing a FIS from data can be decomposed into two main phases: automatic rule generation and system optimiza-

tion. Rule generation leads to a basic system with a given space partitioning and the corresponding set of rules. System

optimization can be done at various levels. Variable selection can be an overall selection or it can be managed rule by rule.

Rule base optimization aims to select the most useful rules and to optimize rule conclusions. Space partitioning can be

improved by adding or removing fuzzy sets and by tuning membership function parameters. Structure optimization is of a

major importance: selecting variables, reducing the rule base and optimizing the number of fuzzy sets.

Over the years, many methods have become available for designing FIS from data. Their efficiency is usually charac-

terized by a numerical performance index. However, for human-computer cooperation another criterion is needed: the rule

interpretability. An implicit assumption states that fuzzy rules are by nature easy to be interpreted. This could be wrong

when dealing with complex multivariable systems or when the generated partitioning is meaningless for experts.

This paper analyses the main methods for automatic rule generation and structure optimization. They are grouped into

several families and compared according to the rule interpretability criterion. For this purpose, three conditions for a set of

rules to be interpretable are defined.

Keywords

Fuzzy inference systems, interpretability, rule induction, fuzzy partitioning, system optimization.

I. Introduction

Fuzzy Inference Systems (FIS) are one of the most famous applications of fuzzy logic and fuzzy sets

theory [1]. They can be helpful to achieve classification tasks, off line process simulation and diagnosis,

on line decision support tools and process control.

The strength of Fuzzy Inference Systems (FIS) relies on their twofold identity: on one hand they are

able to handle linguistic concepts; on the other hand they are universal approximators able to perform

non linear mappings between inputs and outputs. These two characteristics have been used to design two

kinds of FIS.

The first kind of FIS to appear focused on the ability of fuzzy logic to model natural language [2]. These

FIS contain fuzzy rules built from expert knowledge, and they are called fuzzy expert systems or fuzzy

controllers, depending on their final use. Prior to FIS, expert knowledge was already used to build expert

systems for simulation purposes. These expert systems were based on classical boolean logic, and were

not well suited to managing the progressiveness in the underlying process phenomena. Fuzzy logic allows

gradual rules to be introduced into expert knowledge based simulators. It also points out the limitations of

human knowledge, particularly the difficulties in formalizing interactions in complex processes. This kind

of FIS offers a high semantic level and a good generalization capability. Unfortunately, the complexity of

large systems may lead to an insufficient accuracy in the simulation results. Expert knowledge only based

FIS may show poor performances.
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Another class of simulation tools is based on automatic learning from data. This study is restricted

to supervised learning: observed outputs are part of the training data. Thus a numerical performance

index can be defined which is usually based on the mean square error. Neural networks have become

very popular. Their main advantage is the numerical accuracy while a major drawback is their black box

behavior. Indeed they provide a numerical model, whose coefficients have no meaning for experts. Sugeno

[3] was one of the first to propose self learning FIS and to open the way to a second kind of FIS, those

designed from data. Even if the fuzzy rules, which are automatically generated from data, are expressed

in the same form as expert rules, there is generally a loss of semantic. Since Sugeno’s early work, a lot of

researchers have been involved in designing fuzzy systems from databases. This paper aims to introduce

the main methods for designing fuzzy inference systems from data. All these methods can be considered

as rule generation techniques. Rule generation can be decomposed into two main steps: rule induction

and rule base optimization. Originally automatic induction methods were applied to simple systems with

a few variables. In these conditions there is no need for optimizing the rule base. The situation is different

for large systems. The number of induced rules becomes enormous, and the rule description is complex

because of the number of variables. Obviously, the rules will be easier to interpret if they are defined

by the most influential variables, and the system behavior will be easier to understand as the number of

rules is getting smaller. Variable selection and rule reduction are thus two important steps of the rule

generation process. They are ususally referred as structure optimization.

Apart from structure optimization, a FIS has many parameters which can also be optimized: member-

ship functions parameters, rule conclusion adjustment. This is called parameter optimization. A thorough

study has been done by various authors [4], [5], their respective advantages and drawbacks are well known.

In this review, rule induction and rule base optimization methods will be compared and analyzed

according to the most important criterion for human-computer cooperation: their interpretability. Many

authors seem to consider that interpretability is automatically given by the fuzzy formalism, but when

dealing with large systems, it is not true. The rule base legibility is an important condition to take full

advantage of fuzzy inference systems, that means providing a good framework for cooperation between

two kinds of information: expert knowledge and hidden knowledge in data.

Section II gives the notation used in the paper. The paper consists of two main parts dealing with rule

induction and structure optimization. Rule induction techniques are gathered in three main families, each

of them analysed in one separate section. Section III introduces the shared partitioning induction methods.

Section IV is devoted to clustering. Hybrid methods are presented in section V. In section VI, the different

approaches are compared and summarized. The optimization part is divided into two sections: section

VII deals with variable selection, then section VIII discusses rule base optimization methods. Finally the

paper is concluded in section IX, which recalls the main features from an interpretability point of view.
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II. Notation

Let us give some basic definitions:

The training set contains n data pairs. Each pair is made of a p − dimensional input vector x and a

q − dimensional output vector y. The number of rules in the FIS rule base is r.

Mamdani’s rule i within this system is written as follows:

IF x1 is Ai
1 AND x2 is Ai

2 . . . AND xp is Ai
p THEN y1 is Ci

1 . . . AND yq is Ci
q

where Ai
j and Ci

j are fuzzy sets which define an input and output space partitioning.

In Sugeno’s model the conclusion of the rule i for output j is computed as a linear function of the

inputs: yij = bijo + bij1x1 + bij2x2 + · · ·+ bijpxp, also written as: yij = f i
j(x).

A fuzzy rule is called an incomplete rule if its premise is defined by a subset of the available variables

only. Let’s consider a two input one output system. The rule, IF x2 is A1
2 THEN y is C2, is an

incomplete one because it does not use the x1 input variable. Expert rules are mainly incomplete rules,

they contain only the most influential variables. Formally, an incomplete rule uses implicit AND and OR

logical connectors. If the x1 input variable space is partitioned into 3 fuzzy sets, the incomplete rule given

above can be written as:

IF
(
x1 is A1

1 OR x1 is A2
1 OR x1 is A3

1

)
AND x2 is A1

2 THEN y is C2.

For a given rule i, its firestrength, also called weight, and written wi, is computed as a conjunction

operation between the premise elements: wi = µAi
1
(x1) ∧ µAi

2
(x2) ∧ . . . ∧ µAi

p
(xp), where µAi

j
(xj) is the

membership degree of xj to the fuzzy set Ai
j , and ∧ is the AND operator. Minimum and product are the

most common AND operators.

The Xj input variable partitioning is called a strong partitioning, if ∀x ∈ Xj ,
∑

i

µAi
j
(x) = 1.

The mean square error (MSE) is computed as: MSE =
1

n

n∑

i=1

‖ŷi − yi‖
2
, ŷi being the inferred output

for example i.

Part I

Rule induction

There are two kinds of rule induction methods. The first kind uses a grid partitioning of the multidi-

mensional space. The partitioning can be generated from data, or given by experts. It defines a number

of fuzzy sets, for each variable, which are interpreted as linguistic labels and shared by all the rules.

A training procedure optimizes the grid structure, as well as the rule consequences, according to data

samples. These methods are introduced in section III.
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The second kind is the clustering, introduced in section IV. The training pairs are gathered into

homogeneous groups, a rule is associated to each group. The fuzzy sets are not shared by the rules, but

each of them is tailored for one particular rule.

The section V presents another family, called hybrid methods. They are based on soft computing

techniques. Their group is more heterogenous than the others, the results are highly dependent on

implementation and encoding.

III. The fuzzy sets shared by all the rules

A common way to generate a grid partitioning consists in dividing each input variable domain into a

given number of intervals whose limits do not necessarily have any physical meaning and do not take into

account a data density repartition function. We will introduce several approaches.

The first approach, and the most intuitive one, implements all possible combinations of the given fuzzy

sets as rules. This way of doing shows some drawbacks, which are handled by additional methods. Due

to an insufficient work space coverage, some rules may never be fired: a diffusion procedure can be used

to initialize the unfired rules.

The choice of the number of fuzzy sets in each dimension carries significant consequences: it can be

dynamically chosen within the second approach.

When the number of combinations increases, it is necessary to limit the number of rules: the third

approach initializes one rule per data pair.

At last, the decision trees are introduced at the end of this section. They generate incomplete rules but

require a pre-determined fuzzy partitioning.

A. All the rules implemented

Ishibuchi et al. [6] consider a multiple input single output system. They assume the input and output

spaces to be [0, 1]p and [0, 1]. For the ith input variable xi, its domain interval is evenly divided into Ki

fuzzy sets labeled as A1
i , A

2
i , . . . , A

Ki

i as shown in figure 1 for the x1 variable with K1 = 5. Any kind of

membership function can be used, the most common being the triangle-shaped one:

µij(x) = max{1−
|x− aKi

j |

bKi
, 0} with aKi

j =
j − 1

Ki − 1
j = 1, . . . , Ki and bKi =

1

Ki − 1

All the rules corresponding to the possible combinations of the inputs are implemented. The total

number of rules for a p input system is: K1 ×K2 × . . .×Kp.

Nozaki et al. [7] propose a simple heuristic to calculate the rule conclusions, which are real numbers.

For rule i, the conclusion is written bi and computed as:
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Fig. 1. Automatic partitioning with 5 triangular membership functions

bi =

n∑
j=1

wi(j) ∗ y(j)

n∑
j=1

wi(j)

y(j) being the j pair observed output and wi(j) the i rule firestrength for the j pair.

The j pair inferred output is then :

ŷ(j) =

r∑
i=1

wi(j) ∗ bi

r∑
i=1

wi(j)
(1)

Depending on both the choice of the Ki values and the input space covering, some rules may never

be fired by training examples. Glorennec [5] proposes a diffusion procedure in order to initialize the

corresponding conclusions.

Let S be the set of rules whose conclusions have already been initialized ; let us define the NSi
neigh-

borhood, Ni being the neighborhood of rule i:

NSi
=




{i} if i ∈ S

Ni otherwise

Ni is basically defined by the sets of rules whose premises differ from rule i by only one fuzzy set.

According to this definition, each rule has at most two neighbors in each input space dimension, and thus

|Ni| ≤ 2p. The diffusion is done according to the following series g(n):

g(0)(i) = bi if i ∈ S

g(0)(i) = 0 otherwise

g(n+1)(i) =
1

2
sup

j∈NSi

g(n)(j) +
1

2
inf

j∈NSi

g(n)(j)

The series converges when n goes towards infinity, the diffusion procedure is stable.
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B. Number of fuzzy sets dynamically chosen

The former method requires the Ki to be set. For a given input variable the choice of Ki carries

significant consequences. If Ki is too small, the system won’t be able to model a non linear behavior, it

won’t be accurate enough. Conversely it is difficult to increase Ki too much for the two following reasons.

First, if Ki is too large, the corresponding fuzzy sets tend to be too specific resulting in a loss of generality.

Secondly, the number of rules is the product of all the Ki coefficients.

To avoid fixing the Ki values, some authors propose to derive them from the data.

B.1 Partition refinement

Bortolet [8] uses a partition refinement. At each step of the algorithm a fuzzy set is added on the input

which is responsible for the greatest part of the error.

Initially, each input is divided into two triangle-shaped fuzzy sets. They are centered on the minimum

and the maximum values of the considered input domain.

At each step, all the rules corresponding to the possible combinations are implemented. The ith rule

conclusion is first estimated using the least square regression. Let us note nri the number of linearly

independent pairs whose weight for rule i is greater than a given threshold, typically set to 0.5.

ytrain(j) = a0 +

p∑

i=1

ai ∗ xi(j) (2)

The ai coefficients are those which minimize the difference between ytrain and the observed output for

the nri pairsa. The rule conclusion is obtained by replacing the xi values in equation 2 by the centers of

the corresponding fuzzy sets.

The system, for the corresponding fuzzy partitioning, is thus completely defined. It is now possible to

process all of the n pairs. A new fuzzy set is added to prepare the next step of the algorithm. This is

done by identifying the region of the input space, then the input variable and finally the center of the new

fuzzy set. A region of the input space is bounded by the vertices of two consecutive membership functions

on each input variable.

An error index is associated to each region. It is computed as the product of the mean error for the

pairs belonging to the region (ni for region i) by the ratio of the input domain covered by the considered

region. An error index associated to each input variable within the considered region is computed in the

same way. As an example, figure 2 shows the region defined by four fuzzy sets (A2
1, A

3
1, A

2
2, A

3
2) in a two

input system and the formulae corresponding to the error indices.

The selected region and input are the ones for which the indices are the greatest. The new center

coordinate on the selected input, j, is computed as :

aIf nri < p+ 1, the regression cannot be achieved and less precise methods are proposed.
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Error of input j within region i:

Ei =

ni∑
k=1

|yk − ŷk|

ni

∗
l1
L1

∗
l2
L2

Ej =

ni∑
k=1

|yk − ŷk|

ni

∗
lj
Lj

Fig. 2. Partition refinement

Anew
j =

ni∑
k=1

xkj |yk − ŷk|

ni∑
k=1

|yk − ŷk|

The limits of the new triangular membership function are the centers of the fuzzy sets between which

the new fuzzy set has been inserted. So, the input partitioning is still a strong partitioning.

Finally, the rule conclusions corresponding to the modified part of the input space are updated. The

system is ready for the next iteration.

The algorithm stops when the error reaches a minimum or when it becomes smaller than a given

threshold. The method does not contain any protection against introducing into the model the noise

included in data: the only criterion to add a new fuzzy set is the error, it does not take into account the

current system.

In [9], the refinement is based upon a controversy index. This index, defined at the rule level, indicates

the difference between the rule conclusion and the observed output for the datapoints which activate the

corresponding rule. It is computed as follows for rule i:

CI(i) =

n∑

k=1

(
[(yk −Ri) wi(k)]

2
)1/2

Ri being the ith rule conclusion, yk the kth example observed output and wi(k) the i
th rule firestrength

for the kth data point.
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This definition can be extended to a membership function, the index is then called the sum of contro-

versies associated with a given membership function and written as:

SCMF (Xj
v) =

∑

r∈R

CI(r)

R is the set of rules whose antecedent in the Xv variable refers to the jth membership function.

To make the index values comparable it is normalised by the product of the number of fuzzy sets for

the remaining variables:

ĈI(Xj
v) =

CI(Xj
v)

p∏

m = 1

m 6= v

nm

nm is the number of membership functions of the mth variable.

A new membership function is added for variables whose controversy index variance is high. The authors

use a strong triangular partitioning, so that only the centers have to be stored. The new center location

is computed as:

c∗v =

nv∑
j=1

cjv SCMF (Xj
v)

nv∑
j=1

SCMF (Xj
v)

Contrary to Bortolet’s method, the criterion is not evaluated in an input space region, but at the rule

level.

B.2 Using a genetic algorithm

Ishibuchi et al. [10] deal with classification problems. They want to generate fuzzy rules that divide

the input space into C disjoint decision areas, C being the number of classes to discriminate.

Different fuzzy partitions are automatically generated with different values of Ki, the number of fuzzy

sets for the ith variable. The coarser partitioning corresponds to small values of Ki. The genetic algorithm

is used to select the best suited level for each of the input space regions according to the data. All rules

corresponding to a given partitioning are considered as possible, and the objective function of the genetic

algorithm takes into account both the performance of the system and the rule base size. Through the

evolution process the selected systems are those which maximize :

f(S) = WcCS −WrRS

CS being the number of pairs well classified by system S, RS the number of rules in the system, Wc and

Wr the corresponding weights.
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C. Only one rule per data pair

In the method introduced by Wang and Mendel [11], the number of rules is limited by the number of

training pairs. It does not depend on the fuzzy partition resolution level, i.e. the number of fuzzy sets for

each input variable. They propose a five step procedure :

1. Each variable of the input space is automatically divided into a user defined number of triangular

membership fuzzy sets.

2. One fuzzy rule is generated for each data pair, the ith pair one is written :

IFx1 is Ai
1 AND x2 is Ai

2 . . . ANDxp is Ai
p THEN y is Ci.

The fuzzy sets Ai
j are those for which the degree of match of xi

j is maximum for each input variable j from

pair i. The fuzzy set Ci is the one for which the degree of match of the observed output, yi, is maximum.

3. A degree is assigned to each rule. For a given rule it is equal to the rule firestrength for the considered

pair. If some a priori information is available, the confidence level of each pair will be used too, the degree

being the product of the firestrength by the confidence level. In case of identical premises for two rules,

only the one with the higher degree is kept.

4. Experts rules are allowed. The AND rules induced from data may be combined with OR rules given by

experts. The membership degree for the missing variables is set to 1, the neutral element for the product

operation. OR and AND type rules are equally managed.

5. The output is computed through the centroid defuzzification.

This procedure allows the rule base to be adaptive: new rules competing with existing ones.

D. Decision trees

The decision trees were proposed by Quinlan [12]. Their application is restricted to classification ap-

proaches. The objective is to design paths leading to pure leaves, each leaf corresponding to an incomplete

rule. The tree represents a subspace of all the possible rules.

Ichihashi et al. [13] propose a neuro-fuzzy implementation of Quinlan’s ID3 algorithm (Interactive

Dichotomizer). Unlike the other methods mentioned in section III, the input space partitioning must be

user defined prior to running the algorithm.

The tree induction is an iterative process. At each step a new node is added. A node corresponds

to an input variable and generates a number of subnodes equal to the number of fuzzy sets, also called

attributes, of the selected variable. The process is repeated until all leaves are pure, i.e. they contain

elements belonging to the same given class.

The selected variable, at a given step, is the one which maximizes the information gain. The tree can

be regarded as a source of a message, the information needed to generate this message is the sum, for all

the nodes, of the node entropies. The rule associated to a given node b is written as:

IFxi1 is Aj1
i1

AND xi2 is Aj2
i2

. . . THEN y is Cb.

Aj1
i1

corresponds to the first node of the path starting from the root and leading to the node b, meaning
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that the first selected variable is i1, and the subtree leading to node b starts from the j1 attribute of this

variable. Cb is the most represented class in node b. An illustration is shown in figure 3.

0

1 32

6 7 94 5 8

xi

xj xk

A1
j

A1
i

xl xm xj xl

Node 5 rule : If xi is A
1
i and xj is A

2
j Then y is C5

A2
j A2

k A3
kA1

k A4
k

A3
iA2

i

Node 2 rule : If xi is A
2
i Then y is C2

Fig. 3. An illustration of a fuzzy decision tree

The premise of the rule corresponding to node b is defined by the set, Q, of the couples (i, j), the jth

attribute of the ith input variable, along the branch from the root to node b.

The entropy for node b is defined as:

Hb = −
∑

k

pbk ∗ log(pbk)

pbk is the k class density within b node, that means the proportion ratio of elements belonging to class k.

The cardinalities are fuzzy, and computed as the sum of the rule firestrengths for all the elements in the

node.

pbk =
|Db

k|

|Db|
with |Db| =

∑

x∈Db


 ∏

(i,j)∈Q

µi,j(x)




µi,j(x) is the membership degree of pair x input i value to the jth fuzzy set of input i. . |Db
k| is defined

in the same way but with the subset of x ∈ Db which belongs to class k.
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Let H be the node entropy, and V the number of fuzzy sets of the considered input variable. The new

entropy is the weighted sum of the subnode entropies:

E =

V∑

v=1

qbv ∗Hv with qbv = |Dbv |/|Db|

The information gained by selecting the considered input variable is : G = H − E.

To cope with expert uncertainty, the algorithm is adapted to deal with belief functions within the

evidence theory formalism, proposed by Dempster and Shafer [14].

The main advantage of fuzzy decision trees is that they generate incomplete rules constrained to a given

partitioning. Incomplete rules were introduced in section II. They offer a compact description of a given

context by using only the locally most significant variables. The rules generated by decision trees will be

informative for experts provided that the initial partitioning was carefully defined.

IV. Fuzzy clustering

Fuzzy clustering algorithms form a well identified family of rule induction techniques. They are used to

organize and categorize data. The result is a partition of the data into homogeneous groups. The space

partitioning is derived from the data partitioning: a rule is associated to each cluster. Unlike within the

previous section, the fuzzy sets are not shared by the set of rules. For a given dimension, each of them is

tailored for one rule only. The resulting fuzzy sets are usually difficult to interpret.

A. Fuzzy C-Means clustering

The first method, called Fuzzy C-Means, was introduced by Dunn in 1973 [15] ; Bezdek demonstrated

its properties and proposed the first cluster validity criteria [16], [17]. Each of the n data pairs belongs to

each of the c groups with a membership coefficient, uik being the membership degree of pair k to cluster

i. Let D2
ki be the distance between pair k and cluster i, basically defined as the Euclidean norm and more

generally as:

D2
ki = ‖xk − vi‖

2
A = (xk − vi) A (xk − vi)

T

xk being the kth data pair used for the clustering, A being a positive definite symmetric matrix and vi

being the prototype of cluster i.

Let U be the uik coefficient matrix, and V the center coordinate matrix. The algorithm yields U and

V which minimize the following loss function:

JFCM =
n∑

k=1

c∑

i=1

um
ikD

2
ki

under the probabilistic constraint:

c∑

i=1

uik = 1 ∀k = 1, . . . , n.
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m ≥ 1, is the fuzzy exponent.

The function optimization is done by an alternating optimization procedure. First, the uik coefficients

are randomly initialized. Then, at each step, the two following operations are successively carried out:

1. Compute the fuzzy centers vi, assuming the uik degrees are constant numbers, using the following

equation:

vi =

n∑
k=1

um
ik xk

n∑
k=1

um
ik

(3)

2. Compute the memberships uik, assuming the vi centers are constant vectors, using:

uik =
1

c∑
j=1

(
Dik

Djk

) 2
m−1

(4)

These operations are reiterated until convergence, when the center coordinates are stable with respect

to a given tolerance.

The FCM algorithm is suitable for clusters with comparable size and shape (spherical when using the

identity matrix), or when the clusters are well separated. The cluster prototypes are data points, chosen

as the cluster centers.

A.1 Variations of the original algorithm

A lot of improvements or generalizations of the basic algorithm have been proposed.

Krishnapuram [18], [19] introduced the Possibilistic C-Means by releasing the probabilistic constraint

and by adding a punishment term in the loss function in order to penalize low membership degrees. The

PCM loss function is written as:

JPCM =
n∑

k=1

c∑

i=1

(
um
ik‖xk − vi‖

2 + ηi (1− um
ik)
)

with ηi =

∑n
k=1 u

m
ik‖xk − vi‖

2

∑n
k=1 u

m
ik

In the Gustafson-Kessel algorithm [20], the A matrix is defined according to the data. The covariance

matrix, for group i, is:

Ci =

n∑
k=1

um
ik (xk − vi)

T (xk − vi)

n∑
k=1

um
ik

And the distance between pair k and group i becomes:

D2
ki = (xk − vi)

[
det(Ci)

1/n C−1
i

]
(xk − vi)

T
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The Fuzzy C-Regression Model, FCRM, [21], [22], [23] produces hyperplane-shaped clusters, instead

of hypersphere-shaped ones for FCM, and the prototypes are hyperplanes instead of datapoints. The

prototype of the ith group is:

yi = XTP i with X = [1 x1 · · ·xm]T and P i = [ai0 ai1 · · · a
i
m]T

The premise membership functions are generalized gaussians expressed as:

A(x) = e
−
(

x−p1
p2

)2

p1 and p2 are tuned by a gradient method.

A.2 Which data for fuzzy clustering ?

Fuzzy clustering can be done using input-output data, input data only or output data only. Depending

on this choice the induced rules may or may not be completely defined.

Some authors [24], [25] want to take advantage of all the available information and apply the clustering

to the product space, X × Y . Therefore the corresponding rule is completely defined: the premise

corresponds to the input part, and the conclusion to the output part. Input plus output based clustering

could be confusing. Some items could belong to the same cluster while being neither close in the input

space nor in the output space: their closeness in the cluster is due to distances compensating each other

in the input-output space.

Sugeno and Emami [26], [27] run the clustering in the output space. The rule premises are then defined

by projecting clusters onto the input space. This operation is not trivial: the result is usually affected by

some noise. It can happen that several rules be generated from a single cluster. Indeed, projection of the

multidimensional cluster onto one input dimension may yield more than one fuzzy set. This feature could

reflect a real property: there exist different premises leading to the same conclusion.

When using only the input part of the data pairs, a conflict management procedure is needed: some

pairs with different output values may belong to the same group because their input parts are similar.

The FCM algorithm and its derivatives requires some parameters such as the number of clusters and

the value of the fuzzy exponent.

B. Cluster validity

Since Bezdek early work, many teams have been involved in finding the optimal number of groups, also

called the cluster validity problem. Two main techniques are available: run the FCM algorithm with an

increased number of clusters (c = 2, . . . , n− 1) and characterize each partition using indexes or, run one

time only an algorithm which determines by itself the best suited number of groups.
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B.1 Indices to characterize fuzzy partitions

Xie and Beni [28] define the best partition as the one which minimizes the ratio of compactness, C(c),

to separation, S(c). These measures ares defined as follows:

C(c) =
1

n

c∑

i=1

n∑

k=1

um
ik‖xk − vi‖

2
A

S(c) = min
i6=j

‖vi − vj‖
2
A

Sugeno [26] suggests choosing the number of groups which minimizes the following criterion:

V (c) =

n∑

k=1

c∑

i=1

(uik)
m (‖xk − vi‖

2
A − ‖vi − x‖2A)

x being the centroid of the data set. The first term is the within group variance, the second one is the

between group variance.

Emami et al. [27] use a similar formula: the centroid x is replaced by its fuzzy extension v. The

difference between Enami’s and Sugeno’s criteria gets larger as the fuzzy exponent increases.

Burrough et al. [29] use a coefficient partition, F , and a classification entropy , H, to characterize each

partition. They are defined as:

F =
1

n

n∑

k=1

c∑

i=1

u2
ik,

1

c
< F < 1

H =
1

n

n∑

k=1

c∑

i=1

−uik ∗ ln(uik), 1− F < H < ln(c)

Their values depend on the number of clusters. In order to make F and H independent, they can be

scaled as:

Fs =
F − 1

c

1− 1
c

and Hs =
H − (1− F )

ln(c)− (1− F )

For good partitions Fs values are expected to be large while Hs values are expected to be small. The

user has to find a compromise.

B.2 Subtractive clustering

The algorithm proposed by Chiu [24] is an improvement of the one called “Mountain method” developed

by Yager [30].

Each data point is considered as a potential cluster center. A measure of the potential is associated to

each point according to its neighborhood, itself being defined by a radius, ra. For the point i, it is written

as:

Pi =
n∑

j=1

e
−4‖xi−xj‖

2

r2a with ra > 0
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The point with the highest potential, P ∗
1 , written x∗

1, is selected to become the first cluster center. Once

the center is selected, the potential of each pair is decreased according to its distance to x∗
1. The new

potential for pair i becomes:

Pi = Pi − P ∗
1 e

−4‖xi−x∗
1‖2

r2
b with rb ≈ 1.5ra

The process is repeated. To avoid introducing the noisy part of the data into the model, two thresholds

are defined, s+ and s− typically set to 0.5 and 0.15, and a new center candidate, x∗
k at step k, with its

associated potential P ∗
k , is managed as follows:

if P ∗
k > P ∗

1 ∗ s+, x∗
k is accepted as a new cluster center;

if P ∗
k < P ∗

1 ∗ s−, x∗
k is rejected as a new cluster center and the algorithm stops;

else

let dmin be the shortest distance between x∗
k and all previously found cluster centers

if
dmin

ra
+

P ∗
k

P ∗
1

≥ 1 x∗
k is accepted as a new cluster center;

(That means if it is far enough from the closest cluster)

else x∗
k is rejected, its potential is set to 0 and the algorithm goes on.

This algorithm is quite sensitive to the different parameters such as the neighborhood radius and the

potential thresholds. Unfortunately, there is no theoretical guidance for choosing them.

0 0.5 1
0

0.5

1
Data pairs and centers (a)

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1
X1 variable membership functions (b) X2 variable membership functions (c)

X1

X2

Fig. 4. The subtractive clustering

Figure 4 shows the results of the subtractive clustering on a 100 random pair set. The 5 centers found

by the algorithm are highlighted in subfigure (a). They correspond to 5 rules whose premises are defined

by gaussian membership functions shown in subfigures (b) and (c). These functions are computed by

projecting the points belonging to each cluster onto each dimension.

C. Tuning the fuzzy exponent

The value of the fuzzy exponent controls the amount of fuzziness in the clustering process. The larger

it is, the fuzzier the partition is. When m tends towards infinity, all cluster centers tend towards the

centroid of the data. Many authors recommend a fixed value of m, usually 1.5 or 2.
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Chen and Wang [31] propose an iterative method to tune the fuzzy exponent. The membership function

associated to cluster i is:

MFi(x) =
1

1 +
(

x−vi

σi

)bi

vi, σi, bi being respectively the center, the width and the crossover slope of the function.

σi is taken as the square root of the trace of the i group covariance matrix, bi is chosen according to

σi and cluster center locations to make sure the membership functions overlap enough to avoid inference

breaking.

The objective is to find a value of m such as there exists, for each dimension of the work space, at

least one cluster for which the inner deviation for the kth dimension, σik, is greater than the training set

deviation for the given dimension, σk. The value of m, initially set to 1.5, is increased by 0.1 at each step

of the algorithm. This costly method needs to run the FCM algorithm and to compute the covariance

matrices for each increment. An alternative way would be to check the sensitivity of the final model to

the fuzzy exponent.

Another method, proposed by Li and Mukaidono [32], does not use any fuzzy exponent. The loss

function to minimize is written as:

J =
n∑

k=1

c∑

i=1

uikD
2
ki with

c∑

i=1

uik = 1 ∀k = 1, . . . , n

This last method, called Gaussian-clustering method, maximizes the entropy with respect to each input

pair k, under the two following constraints: (a) minimization of the loss function for pair k, and (b)

normalization of membership degrees. The problem becomes:

maximize

{
−K

c∑

i=1

uik log(uik)

}
K > 0 (5)

subject to (a)
c∑

i=1

uikD
2
ki = κ κ being a small positive number

and (b)

c∑

i=1

uik = 1

Their algorithm is similar to the FCM one, the cluster prototypes vi are updated using equation 3,

while equation 4 to update the uik is replaced by equation 6 which is the solution of the optimization

problem 5.

uik =
e−

D2
ki

2σ2

c∑
j=1

e−
D2

ki
2σ2

(6)

2σ2 is called the temperature, σ being related to κ by constraint (a).
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V. Hybrid methods

This set of methods integrates many different tools, the most famous and widely used being the genetic

algorithms and the neural networks. Neural networks brought their learning algorithms and numerical

accuracy to FIS, without paying much attention to the semantic. Genetic algorithms are more likely to

find a global optimum and may optimize both the structure and the parameters of the corresponding

FIS. These tools prove useful when there is no available expert knowledge and for applications for which

semantic is not a prime concern.

A. Neuro-fuzzy modeling

Neuro-fuzzy models [33], including ANFIS which stands for Adaptive Neuro Fuzzy Inference Systems

[34], [4] are fuzzy inference systems implemented as neural nets. Each layer in the network corresponds to

a part of the FIS: input fuzzification, rule inference and firestrength computation, output defuzzification.

The main advantage of this kind of representation is that the FIS parameters are encoded as weights

in the neural network and thus can be optimized via powerful well known neural net learning methods

(Hebbian rule, back-propagation, · · · ).

In this paper, we are first focusing on a particular type called RBF, for Radial Basis Functions networks.

The main idea of RBF relies on a local tuning of the process units, each of them corresponding to a local

model. The architecture was first proposed by Moody and Darken [35], since then a lot of work has

been done to bridge the gap between neural nets and FIS. Jang showed that RBF are equivalent to FIS

under few restrictive conditions [36], the most important being that the rule conclusion are scalars. More

recently Cho and Wang [37] suggested improvements to deal with polynomial or fuzzy conclusions.

A RBF is a three layer network: the input layer of size equal to the input vector size p, the output layer

of size q and one hidden layer. The number of nodes in the hidden layer corresponds to the number of

rules, it is upper bounded by the number of pairs.

Hidden layer units are locally tuned radial receptive fields. Learning aims to setup the network so that

a hidden unit recognizes one and only one kind of pattern. The hidden layer is fully connected to the

input layerb, and unit i performs the following operation: Ri(x) = e
−

(x−ci)
2

σ2
i , ci and σi being the center

and the standard deviation of the gaussian membership functionc respectively.

The output layer is fully connected to the hidden layer. Within the configuration where rule conclusion

are scalars, the defuzzification is easy: for each output the corresponding unit computes the weighted

sum of the connections, the weight is the firestrength of the rule for the current pair. When the rule

conclusions are polynomial, yi = bio + bi1x1 + bi2x2 + · · · + bipxp, the weights between input and hidden

layers are not constant. The weights correspond to the bi1, . . . , b
i
p coefficients, and a fixed input, set to 1,

is artificially added with a bi0 weight.

bThat means each unit of the hidden layer is connected to each unit of the input layer.
cAny kind of radial basis function can be used, the gaussian one is given as an example.
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Learning consists of determining the minimum number of units in the hidden layer, i.e. the number of

rules, the corresponding vectors ci and σi, and their weights.

First, the number of rules is set to 0. Then, at each step all the pairs of the training set are processed

in turn. For each pair i, at step k, where rk(j) is the jth hypersphere radius and ǫ is a tolerance value:

if |yi − ŷik| > ǫ then

if there exists node j such as
(xi − cj)

2

σ2
j

< rk(j) then

modify cj and σj using the gradient method.

else create new node whose center is xi
d.

else train the hidden nodes using the gradient method.

Once all the pairs have been processed, the hypersphere radii are decreased before the next step.

The algorithm terminates when the squared sum of errors is less than a given tolerance or after a

predefined number of iterations have been done. Note that this algorithm may be sensitive to the data

processing order.

This technique is close to the subtractive algorithm introduced in section IV-B.2, and thus could be

classified as a clustering one.

Recent work attempts to use neural networks in a different way, with interpretability in mind. In [38],

[39], the authors build a network for classification purposes. Each input is partitioned into three fuzzy

sets, each fuzzy set being in turn modified by three hedges. The network has two output nodes per class or

convex subclass. The first node is used to classify items which belong to the output class (positive items),

and the second one to recognize negative items for the same class. The interpretability effort consists in

generating a single rule for each output node. This is achieved by a backtracking procedure which selects

the maximal weighted path from the input layer to the output node.

B. Genetic Algorithms

Since they were proposed by Goldberg [40], genetic algorithms have been widely used to learn input

output relations and to design fuzzy controllers [41], [42], [43], [44], [45]e. As an illustration, let us examine

the model introduced by Russo [47] which aims to combine the respective advantages of fuzzy logic, neural

networks and genetic algorithms.

Its evolutionary algorithm considers a population of neural networks. Training consists of adjusting the

different weights, unit removal is allowed. Once defined, the network is encoded as a chromosome and

evolves within the population using selection, crossover and mutation operations.

The network, corresponding to a r-rule FIS, is made of 4 layers:

1. Input layer: it has at most p neurons, p being the input vector size.

2. Fuzzification layer: the number of neurons is at most rp. There is one fuzzy set for each active input

dThe initial value of σ is computed using the standard deviation of the data set.
eAlthough GA are very popular other stochastic techniques can be used such as simulated annealing [46].
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and for each rule. Its gaussian membership depends on c and γ, the center and the inverse of the standard

deviation respectivelyf. These values are encoded as weights and learnt through a back-propagation

algorithm. An important choice is done in this layer: the fuzzy sets are tailored for each rule. The

complexity is decreased compared with fuzzy sets shared by all rules, but the induced partitioning is less

suitable for human cooperation.

3. Inference layer: the rule firestrength is computed using the min operator. All weights are set to 1.

4. Output layer: rule conclusion are scalars. The defuzzification is either done using the weighted mean

of rule contributions (see equation 1) or using their weighted sum.

The fitness function of the genetic algorithm is not restricted to accuracy performance, it also rewards

compact systems, which use a minimum number of input variables, and favors incomplete rules.

VI. Conclusion

The three rule induction technique families are quite different and may correspond to specific needsg.

Figure 5 shows the applicability of the first two families of methods. Each one is better on one or the

other of the plane areas defined by the training set characteristics: work space size and coverage.

Clustering

Leg
ibilit

y ?

Curse
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im
en
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nali

ty ?

Complet
en
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 ?
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ac

e 
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ve
ra

ge

Work space size

Shared partitions

Fig. 5. Choosing a rule induction method according to data characteristics

The methods which use shared fuzzy sets for the rule base are appropriate within a small size work

space with a good coverage. Otherwise, in case of a weak coverage the rule base completeness is not

fThe use of γ instead of σ allows the optimization of the learning time (by replacing the division operation by a multipli-

cation), and may avoid singularities in the neighborhood of σ = 0.
gTable I summarizes the most important conclusions.
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guaranteed and, when dealing with large systems, the number of combinations to manage is huge.

Clustering is well adapted for large work spaces with a small amount of training examples. However,

the induced rule legibility gets worse as the work space size gets larger.

The hybrid methods, including neuro-fuzzy modeling techniques and genetic algorithm based ones, are

not easy to locate on the figure. They cannot be viewed as a homogeneous group: all of them are not

on the same side. Their performance highly depends on their implementation, and particularly on the

problem encoding. Thus, their global evaluation remains difficult. The main reason for using such tech-

niques is their universal approximator property. They allow to optimize all the FIS parameters including

the membership function parameters. If only guided by numerical accuracy the tuning algorithms may

generate an unreadable partitioning. In these conditions there is not much to be expected in terms of

interpretability. Even if the partitioning is carefully respected, other difficulties occur due to the great

number of tunable parameters. A new research trend aims to produce a readable set of rules with hybrid

methods, by trying to extract the most significant rules.

Once rule induction is done, whatever the technique used, the different parts of the FIS should be

optimized to improve the interpretability.

Part II

System optimization

Historically research teams have been interested in different levels of FIS optimization falling into two

main categories: parameter and structure optimization.

Methods for the parameter optimization, membership function fine tuning and rule conclusion opti-

mization, are widely used. Their respective advantages and drawbacks are well known [4], [5].

In this paper we will focus on structure optimization: input variable selection and rule base reduction.

Defining the FIS using the most useful variables only would benefit to interpretability and stability.

Removing extra variables leads to a more compact set of rules and improves the rule interpretability.

Moreover, rule base and parameter optimization are easier to achieve once extra variables have been

removed. These extra variables are also likely to bring more noise than useful information.

As the available databases are getting larger and larger, FIS will be helpful for the increased needs of

knowledge discovery if automatic procedures for variable selection and rule base reduction are included

in their design.

VII. Variable selection

Variable selection can be achieved in a global or in a local way. In the first case, the variable is removed

and none of the rules can use it while in the second case, the selection is done at the rule level leading to
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2

Family Methoda Drawbacks Answers

All the possible rules (III-A) Curse of dimensionality Partition refinement (III-B.1)

Shared partitions One rule per pair (III-C) Completeness not guaranteed

Decision trees (III-D) Pre-requisite partitioning

Clustering : FCM (IV-A) Number of clusters? Subtractive clustering (IV-B.2)

Neuro-fuzzy including RBF (V-A) Depending on implementation,

Hybrid Methods Genetic Algorithms (V-B) on encoding.

TABLE I

The main methods for fuzzy rule induction from data

aThe number in parentheses is the section number which describes the approach.
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incomplete rules.

Some of the previously introduced rule induction methods are dealing with variable selection. In a

decision tree the path from the root to each leaf node only involves the few variables necessary for defining

the associated rule. The genetic algorithm objective function used by Russo [47] aims to minimize the

number of variables. Neural networks may be helpful too: the output sensitivity to the input variables

can be used to rank the input variables [48], [49].

A. Regularity criterion

Sugeno, [26], proposed to make the selection using a cross-validation procedure. The training set is

randomly split into two groups, A and B, and the criterion to be minimize is:

RC =
1

2

[
1

kA

kA∑

i=1

(
yAi − yAB

i

)2
+

1

kB

kB∑

i=1

(
yBi − yBA

i

)2
]

yAi (respectively yBi ) is the observed output for pair i of group A (respectively B), and yAB
i (respectively

yBA
i ) is the inferred output, for pair i of group A (respectively B) after training using group B (respectively

A) sample.

The variables are selected using an ascending procedure. At the first step, p models made of a single

variable are considered. The first selected variable is that for which the corresponding model minimizes

the regularity criterion. At the second step, p−1 models of two variables, the already selected one and each

of the remaining candidate ones, have to be assessed. The procedure ends when the criterion increases.

The maximum number of models is bounded:
p(p+ 1)

2
. Even if this number is large, it is still less than

the number of all possible combinations: 2p − 1.

B. Geometric criteria

Once the clustering is done, Emami et al. [27] obtained the fuzzy sets by projecting the groups onto each

input. If a membership function is equal to one on a wide range for a given rule, then the corresponding

variable is neutral, 1 being the neutral element for AND operators. An index of input non-significance

for a given rule is defined as the ratio to the entire range of the interval in which its membership function

is 1. Note that this index is local to a rule. However, the authors use a global combination of the local

indices, their product, to make the variable selection for the whole set of rules.

Another static and geometric method was proposed by Lin and Cunningham [50]. Its complexity is

linear with respect to the number of inputs and the number of training pairs. Each pair k in each input

j is fuzzified as follows:

µjk(x) = e
−
(

xjk−x

b

)2

with b ≈
xmax
j − xmin

j

10

A fuzzy rule is associated to each training pair. For each input j, the output of each training pair l is

computed as:
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cjl =

n∑
k=1

µjk(xjl).yk

n∑
k=1

µjk(xjl)

The set of cjl values is the fuzzy curve of input j. Significant input variables are supposed to have a

wider range for their fuzzy curves, (cmax
j − cmin

j ).

The process of the fuzzy curve building is shown in figure 6.
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Fig. 6. Fuzzy curve process

The fuzzy curve looks like a kernel estimator projected onto one dimension. These estimators have

been thoroughly studied by mathematicians, and none of their results is related to the significance of

such isolated projections. Moreover, dealing with isolated variables relies on the assumption that they are

independent. This assumption is not usually satisfied in real world problems, local contexts being defined

by a subset of some interacting variables.

C. Individual discrimination power

The originality of the method proposed by Hong and Chen [51] is to make the selection before defining

the space partitioning. However it is restricted to classification problems. It is a five step procedure:

1. Let qi be the number of unique values for input i: Aij , j = (1, . . . , qi)

2. Let nij be the number of instances whose i input value is Aij . Let nijk, the number of instances

belonging to class k whose value is Aij , nijk ≤ nij . The discrimination power is based on the number of

instances for which an input value corresponds to only one class. This number, ti, is computed as:

ti =
∑

j

nijk {j = 1, . . . , qi|∃k, nijk = nij}

3. Compute the discrimination power index of each input variable, i. The following two formulae are

proposed:
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fi=
ti
n

fi=1−




−

1

qi

qi∑

j=1

c∑

k=1







nijk
c∑

k=1

nijk


 logp




nijk
c∑

k=1

nijk











The second formula corresponds to an entropy definition, c being the number of classes.

4. Sort the variables in descending order of discrimination power.

5. Select the relevant input variables: the variables are selected in the order mentioned above till the error

becomes less than a threshold (0.1 given as an example). The error variable, err, is initialized to 1 and

updated as err = err ∗ (1− fi) when input i is selected.

This approach also makes the assumption of variable independence, so that their individual contributions

are additive.

D. Entropy variation index

This approach, proposed by Pal [49], is similar to the previous one: it also deals with classification

problems and it implicitly assumes variable independence.

The entropy is a measure of fuzziness. For a given fuzzy set A, it may be expressed as:

H(A) =
1

nlog2

n∑

i=1

−µA(xi)log(µA(xi))− (1− µA(xi))log(1− µA(xi))

H(A) reaches a maximum when A is most fuzzy, i.e. when µA(xi) = 0.5 ∀i, and a minimum when

µA(xi) = 0 or 1 ∀i.

The author uses a S-type function membership for modeling µ, defined as follows on the interval [a, c],

b being the crossover point for which the function value is 0.5, b = a+c
2 :

µA(xi; a, b, c) =





0, xi ≤ a

2
[
xi−a
c−a

]2
, a ≤ xi ≤ b

1− 2
[
xi−c
c−a

]2
, b ≤ xi ≤ c

1, xi ≥ c

Let xqj be the values of input variable q for the pairs belonging to class j. Let Hqj be the H value of

the fuzzy set defined by the following parameters:





b = (xqj)av

c = b+max(|(xqj)av − (xqj)max| , |(xqj)av − (xqj)min|)

a = 2b− c
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av, min and max being respectively the average, the minimum and the maximum value of xqj .

The highest values of Hqj are reached when a great number of pairs have a membership degree close

to 0.5, that means when the pairs are grouped in the neighborhood of the average. In other words, Hqj

varies in the reverse order of the within group variance of input variable q for class j.

If two classes are merged, j and k, and once the parameters a, b and c have been computed according to

the new group, the corresponding entropy, Hqjk, will be smaller as the average values of the two classes,

xqj and xqk are further from each other. In other words, Hqjk varies in the reverse order of the between

group variance of input variable q for the classes j and k.

Thus, the most discriminant variable for the two classes, is the one which minimizes the variable

evaluation index:

V EIq =
Hqjk

Hqj +Hqk

In order to deal with more than two classes, the following generalization is proposed:

OV EIq =

c∑

j, k = 1

j 6= k

Hqjk

c∑
j=1

Hqj

The overall variable evaluation index yields an average: a variable which separates one class from all

the others will not be assigned a high value. Its value does not depend on the cardinality of the classes,

which can be considered sometimes as an advantage, sometimes as a drawback depending on the context.

The characteristics of the available variable selection methods are summarized in table II.

VIII. Rule base optimization

Three properties are usually required for the rule base: continuity, consistency and completeness. The

continuity guarantees that small variations of the input do not induce big variations for the output.

Consistency means that if two or more rules are simultaneously fired their conclusions are coherent.

Completeness means that for any possible input vector, at least one rule is fired, there is no inference

breaking. When the interpretability is of major importance, it is also necessary to eliminate redundancy.

Some of the previously introduced rule induction methods deal with the rule base size. The objective

function of the genetic algorithm is partly defined by the number of rules ; the RBF and the subtractive

algorithm tend to minimize the number of generated rules by starting from a small size rule base and

incrementally adding rules when needed.

The converse method is also possible: generate a high number of rules, at most one for each training

pair, and then reduce the rule base. The rule base reduction methods are also useful when two or more
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7

Methoda Technique Hb Advantage or drawback

Regularity criterion (VII-A) Cross validation Incremental method- Time consuming

Genetic Algorithm (V-B) Selection for all the rules or Poor information

Rule by rule selection

Geometric criteria (VII-B)

Fuzzy set kernel width Rule level measurement • Combination of local indices at the rule base level

Fuzzy curve Kernel estimator • Criterion interpretation?

Restricted to classification problems:

Decision trees (III-D) Incomplete rules

Individual discrimination power (VII-C) All the classes • Selection done before partitioning

Entropy variation (VII-D) For pairs of classes • Rule base selection

TABLE II

Variable selection methods

aThe number in parentheses is the section number which describes the approach.
bVariable independence implicit hypothesis.
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bases are to be merged, for example an expert knowledge based rule base and some rules induced from

data.

Two kinds of techniques are available. The first one consists of merging compatible elements: clusters,

fuzzy sets or variables. The second family of methods is based upon statistic input domain transformation.

A. Merging

Generate a high number of rules using a clustering method makes the resulting partition less sensitive

to the initial conditions. Babuska and his co-workers [52], [53], [25], [54] propose an improvement of the

compatible cluster merging procedure first introduced by Krishnapuram and Freg [55]. The cluster shape

is defined by the eigenvectors (ellipsoid direction) and the corresponding eigenvalues (axis length). The

clustering is done using the Gustafson-Kessel algorithm: the distance function uses the covariance matrix.

For a given cluster i, the hyperplane is defined by the following equation (x− vi).φis = 0, where φis is

the smallest eigenvalue of cluster i.

The two merging criteria are for clusters i and j:

1. Their hyperplanes are almost parallel: |φis.φjs| ≥ k1, k1 close to 1.

2. Their centers are close: ‖ci − cj‖ ≤ k2, k2 close to 0.

Two matrices are computed, C1 and C2. c1ij (respectively c2ij) is the degree of similarity of cluster

i and j according to the first (respectively the second) criterion. These values are fuzzified into a two-

dimensional space, so that the ideal candidate coordinates become (1, 1), leading to new matrices C̃1 and

C̃2. The two criteria may partially compensate each other: two clusters whose hyperplanes are not so

parallel but whose centers are very close can be merged, and conversely. To take this fact into account

the criteria are combined into a single matrix using the geometric mean: µij =
√

c̃1ij . c̃2ij . These

compatibility degrees are then thresholded with a given value (0.7 as an example). Finally, the remaining

candidates are merged if they do not contain in their common neighborhood any incompatible cluster.

This condition is formalized as:

min max

ci ∈ M

ck /∈ M

dik > max
ci,cj∈M

dij

dij being the distance between cluster i and j in the premise space, the clustering being done in the

product space.

Cluster merging is strictly equivalent to rule merging as a rule is associated to a cluster. In another

method, also proposed by the researchers of Delft university [56], the elements to be merged are the

fuzzy sets, the rule base reduction being a consequence. The authors highlight three kinds of unwanted

similarities between fuzzy sets produced by automatic rule induction: similarity between two fuzzy sets

for a given input variable ; similarity of a fuzzy set to the universal set U (µU (x) = 1 ∀x ∈ X) ; similarity

of a fuzzy set to a singleton set.
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The paper proposes automatic methods to manage the first two types but not for the last one. The

corresponding rules may rarely be fired but, this situation may also correspond to exception handling,

thus the removal of close to singleton fuzzy sets has to be confirmed by experts.

An example of a similarity measure between two fuzzy sets, A and B, is:

S(A,B) =
|A ∩B|

|A ∪B|

where |.| stands for the fuzzy cardinality and ∩ and ∪ operators represent the intersection and union

respectively.

The algorithm consists of merging the two most similar fuzzy sets into a new one and then of updating

the rule base. This operation is repeated until there exist compatible fuzzy sets, those for which the

similarity measure is greater than a given threshold. Finally, sets that are close to being universal sets

are removed, the closeness being defined by another threshold.

When the fuzzy sets are trapezoidal, a1, a2, a3, a4 being the parameters for fuzzy set A, the resulting

fuzzy set C is defined from A ∪B by:

c1 = min(a1, b1)

c2 = λ2a2 + (1− λ2)b2

c3 = λ3a3 + (1− λ3)b3

c4 = max(a4, b4)

λ2, λ3 ∈ [0, 1], both set at 0.5 in the example.

The result of the process depends on the thresholds for merging fuzzy sets and for removing universal

sets. The interpretability improves as the thresholds get lower.

It is sometimes possible to combine input variables and thus, to reduce significantly the rule base size.

Before combining the variables, the user has to check if the new variable is still meaningful. Within a

control framework, Lacrose [57] combined the error and all its derivatives into a single variable.

The use of multidimensional membership function also leads to a small number of rules. The input space

partitioning is done by a Delaunay meshing, i.e. triangulation for a two-dimensional space. The definition

of meaningful multidimensional membership functions may be difficult. Foulloy [58], [59] designed in this

way symbolic sensors for color evaluation.

B. Statistic based methods

These methods also initialize a great number of rules, one rule per pair, and select the most influential

ones using statistic based methods. These methods are powerful and mathematically well established.

However, some of them perform an input domain transform which yields a loss of semantic.
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B.1 Orthogonal least squares methods

The OLS family [60], [61] makes the selection using a linear regression. To use linear methods for

nonlinear optimization the problem must be rewrittem. A FIS can be seen as a two layer system: at

first, the input variables are mapped through a non linear projection into a new space, and secondly, the

output is computed as a linear combination of this new space components. For Wang and Mendel [62], a

FIS is a linear combination of fuzzy basis functions, FBF, each of them performing a non linear mapping

of the input vector.

First, a rule per data pair (see III-C) is generated. The rule i membership function for dimension j is

a gaussian function centered around xi
j :

µAi
j
(xj) = aij e

− 1
2

(

xj−xi
j

σi
j

)2

with 0 < aij ≤ 1

The inferred output, for a given input x is:

f(x) =

r∑
i=1

ci

(
p∏

j=1

µAi
j
(xj)

)

r∑
i=1

(
p∏

j=1

µAi
j
(xj)

)

The FBF, fi(x), is the relative contribution of rule i for the x example inferred output:

fi(x) =

p∏
j=1

µAi
j
(xj)

r∑
i=1

(
p∏

j=1

µAi
j
(xj)

)

Thus the fuzzy system can be written as: ŷ =
∑
i

fi(x) θi, where θi ∈ R are the scalar parameters to

optimize, or y = Fθ + E ; y being the observed output vector, and E the error.

Each regressor, fi, is a r − dimensional vector, the general term fji being the firestrength of rule i for

pair j.

The OLS learning algorithm transforms the fi vectors into a set of orthogonal ones using the Gram-

Schmidt procedure. The F matrix is decomposed into an orthogonal matrix W and an upper triangular

matrix A. The space spanned by the set of orthogonal vectors is the same that spanned by the fi vectors,

so the problem can be written as: y = Wg + E. The orthogonal least square solution is ĝi =
wT

i y

wT
i wi

,

1 ≤ i ≤ r . The quantities ĝ and θ̂ satisfy the triangular system: Aθ̂ = ĝ. The wi vectors being orthogonal,

their individual contributions are additive (no covariance). At each step the algorithm selects the vector

wi, which maximizes the explained variance of the observed output y, i.e. the following criterion:

[err]i =
g2i wT

i wi

yT y
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The algorithm stops when the output has been reconstructed well enough. This occurs at step rf such

as: 1−

rf∑

i=1

[err]i < ǫ, ǫ being a threshold value.

Once the rules have been selected, Hohensohn and Mendel [63] propose to re-run the algorithm with

the only objective to optimize rule conclusions, without doing any selection. They note that after the first

pass the selected vectors wi still contain information related to removed rules.

B.2 Multivariate data analysis based methods

Multivariate data analysis provides tools for working space reduction, the most popular being the

Principal Component Analysis (PCA). These methods are all based on a rectangular matrix property

named Singular Value Decomposition (SVD).

The decomposition is written as:

X =
l∑

i=1

√
λi ui v

′
i or X = UΣV T

l ≤ min(n, p), is the rank of matrix X, λi are the singular values of X sorted in a descending order. ui are

the n − dimensional eigenvectors within the row space, vi are the p − dimensional eigenvectors within

the column space. All of them are orthonormal.

Some recent work shows interest in this technique [64], [65]. The model of Yen et al. [64] is of the form

Y = Xb. X is initialized from data pairs like in the former section. The rule i conclusion is computed as:

yi(x) = b0i + b1i x1 + · · · + bpi xp. Thus the jth line of matrix X contains n blocks, one for each rule.

Each block is made of p+1 values corresponding to the jth pair coordinates weighted by the firestrength

wi(j) of each rule i for the jth pair. The values of the rule i block are:

wi(j) wi(j) x1(j) wi(j) x2(j) · · · wi(j) xp(j)

The final space size, r, r ≤ rank(X), is determined after checking the singular values. Then the V

matrix is partitioned as: V =


V11 V12

V21 V22


, where V11 is a r × r matrix. Let V

T
= [V T

11 V T
21]. Applying

the QR algorithmh to V , Q being a r × r orthogonal matrix and R11 an upper triangular matrix, yields

the permutation matrix Π: QTV
T
Π = [R11 R12]. The first r columns of Π indicate the corresponding

fuzzy partitions.

The PCA is used by Kim et al. [23] to build new uncorrelated components from the input variables.

The rules are initialized by a clustering procedure and the transformation is done within each cluster.

For each rule, the covariance matrix is computed, and the rule is defined in the eigenvector space, each

eigenvector being a linear combination of the p input variables.

hThis method is similar to the Gram-Schmidt procedure.
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While the merging techniques preserve the semantic, the input domain transform based methods pro-

duce rules that cannot be read by an expert, so they are not suited to human cooperation. The charac-

teristics of the rule base reduction methods are summarized in table III.

IX. Conclusion

Many techniques to design FIS from data are available, they all take advantage of the property of FIS to

be universal approximators. In order to compare FIS with other modeling techniques, their performance

is usually measured by a numerical index: the mean square error. But, the blind improvement of the

performance may conflict with the originality of fuzzy logic, its interpretability. What are the necessary

conditions for a set of induced rules to be interpretable? First the fuzzy partition must be readable, in

the sense that the fuzzy sets can be interpreted as linguistic labels. These labels must be meaningful for

experts of the problem under study, so as to allow the rules to be compared to each other, and to lead to

knowledge discovery. Second the set of rules must be as small as possible. The reduction of a set of rules

results in a loss of numerical performance on the training dataset, but a more compact set has a better

generalisation capability while being easier to read. For large systems a third condition is required: the

rules should be incomplete rules. If the rule premisses involve the whole set of variables, there is a loss

of interpretability without a corresponding increase of performance, when the rule context can be defined

by a subset of the available variables only. The systematic presence of all variables in all rules can be

considered as a drawback of most automatic rule induction methods, due to the techniques themselves.

It is not an intrinsic characteristic of the problem.

The interpretability needs depend on the final use of the FIS, table IV summarizes the main potential

applications and the corresponding rule base needs.

Table V compares the main families of rule induction and rule base optimization methods in terms of

interpretability. Generally speaking the methods where all the rules share the same partitioning yield a

higher degree of interpretability, as they fulfill the first condition stated above. Nevertheless as shown in

figure 5, most of these methods become redhibitory for large systems. Indeed the curse of dimensionality

prevents the use of methods which generate all the possible rules. The techniques which generate one rule

per pair either suffer from an insufficient space coverage or have a great number of data points at their

disposal, which also leads to a curse of dimensionality. The only method from that family that at once

escapes from that inconvenient and has a good interpretability level is the fuzzy decision tree. Recall that

it needs a prior fuzzy partitioning, which is a bearable constraint when one searches for an interpretable

system.

Clustering approaches are very effective in large systems with a low space coverage. However, as the

induced fuzzy sets are different for each rule, this forbids rule comparison and considerably reduces the

interpretability.

The third family of methods is characterized by a variable interpretability level due to its heterogeneity.
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Family Major approachesa Technique Advantage or drawback

Clustering (IV) Choice of the number of rules

Incremental procedures RBF (V-A) Rule addition Introduction of noise

Partition refinement (III-B.1) into the model.

Clusters merging Heuristic Less sensitive to initial conditions

Merging (VIII-A) Fuzzy sets merging Similarity measures Formally defined fuzzy arithmetic

Mathematical merging Variable recombination Keep aware of semantic

Symbolic merging Multidimensional fuzzy sets Difficult to design

OLS (VIII-B.1) Regression after a non linear projection Mathematically established (robust)

Statistic based methods SVD (VIII-B.2) Work space size reduction Legibility?

PCA (VIII-B.2) Inadvisable

TABLE III

Rule base optimization methods

aThe number in parentheses is the section number which describes the approach.
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Constraint Application Semantic Consistency Continuity Completeness

Control + +++ +++ +++

In line Classification + ++ + +++

Decision support ++ +++ +++ ++

Off line Diagnosis +++ +++ ++ +

Simulation +++ +++ +++ +

TABLE IV

Rule base needs according to FIS applications

Historically these methods were not designed with an interpretability concern. Recent work noticeably

improved that side.

The second condition to be met for a good interpretability is the reduction of the rule base. The first

step is of course the variable selection. Other optimization methods can follow, whose interpretability

level is summarized in table V. Statistic based methods yield a set of rules difficult to be interpreted, as

the partitioning is defined onto the transformed input domain. Merging techniques are more suitable for

interpretability purposes. However the interpretability depends on the elements to be merged: it is higher

for fuzzy set merging than for cluster merging.

The only approach which deals with the third interpretability condition is the fuzzy decision tree. Most

of the available variable selection methods operate in a global way: unselected variables are completely

removed and cannot be used by any rule. Only fuzzy decision trees are able to generate incomplete rules

but in the restricted context of classification.

Recent work by [66] showed that the selection and the simplification can also be done, within a rule

neighborhood which includes a small group of rules, using reasoning based methods in order to produce

reusable knowledge .

The set of procedures able to generate and merge incomplete rules, data induced as well as expert rules,

is still an open way of research.
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