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Abstract: To make visual data a part of quantitative
assessment for infrastructure maintenance management,
it is important to develop computer-aided methods that
demonstrate efficient performance in the presence of
variability in damage forms, lighting conditions, viewing
angles, and image resolutions taking into account the lu-
minous and chromatic complexities of visual data. This
article presents a semi-automatic, enhanced texture seg-
mentation approach to detect and classify surface dam-
age on infrastructure elements and successfully applies
them to a range of images of surface damage. The ap-
proach involves statistical analysis of spatially neighbor-
ing pixels in various color spaces by defining a feature
vector that includes measures related to pixel intensity
values over a specified color range and statistics derived
from the Grey Level Co-occurrence Matrix calculated on
a quantized grey-level scale. Parameter optimized non-
linear Support Vector Machines are used to classify the
feature vector. A Custom-Weighted Iterative model and
a 4-Dimensional Input Space model are introduced. Re-
ceiver Operating Characteristics are employed to assess

and enhance the detection efficiency under various dam-
age conditions.

1 INTRODUCTION

The deteriorating condition of infrastructure worldwide
and the excessive costs required for reparative work
necessitate the invention of efficient and effective de-
tection techniques. Recent estimates suggest that $1.6
trillion dollars will be needed for rehabilitation, replace-
ment, and maintenance of current infrastructure sys-
tems with the next 20 years for the United States alone
(Adeli and Jiang, 2009). With this in mind, it is vital
that a comprehensive strategy for the periodic inspec-
tion and monitoring of structures (Schoefs et al., 2011;
Lajnef et al., 2011; Gangone et al., 2011) is developed
beginning from the construction phase. This is even
more relevant given the increased loads and ever chal-
lenging environmental conditions that structures are
faced with (Cusson et al., 2011; Xia et al., 2011). Non-
Destructive Testing (NDT) techniques are frequently
used for the inspection process as they often offer the
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only practical means for detecting the presence of dam-
age and quantifying its severity. The information ob-
tained from NDT techniques may be used to better
understand damage mechanisms such as initiation and
propagation. Identifying these factors allows for im-
proved estimates of the remaining service life which
leads to a more reliable Infrastructure Management
System (IMS) (Rong-Yau et al., 2010). A reliable IMS
can help the decision makers to optimize intervention
strategies and enable them to make informed decisions
regarding the future course of action that would maxi-
mize the potential of their investments. This aspect has
attracted a growing interest in recent years as the impor-
tance of life cycle optimization and the related financial
benefits continue to be recognized (Sarma and Adeli,
1998; Sirca and Adeli, 2005). For a well calibrated IMS,
it is important that the input information from an NDT
technique is accurate and comprehensive. The measure
of the onsite performance of a NDT tool remains a per-
tinent question in the majority of cases (Schoefs et al.,
2012a). The most suitable NDT for a given application
will largely depend on the damage to be detected and
will require an in-depth knowledge of the advantages
and limitations associated with each option.

There exists a broad range of NDT techniques to
choose from. NDT techniques may be partitioned into
two categories: non-visual and visual based techniques.
Among the non-visual NDT techniques are ultrasonic
scanning (Iyer et al., 2005), surface wave simulation
(Kim and Kwak, 2008), acoustic emission techniques
(Sohn et al., 2008; Li et al., 2011a), ground penetrat-
ing radar (Belli et al., 2008), eddy current testing (Yusa
et al., 2006), as well as a lot of recent interest in vibration
based techniques (Cruz and Salgado, 2009; Adewuyi
and Wu, 2011; Jafarkhani and Masri, 2011; Li et al.,
2011b; Talebinejad et al., 2011). There are several spe-
cialist visual techniques such as remote visual inspection
(Nugent and Pellegrino, 1991) and laser based scanners
(Mei et al., 2004; Park et al., 2007), etc., yet the most
common visual based approach is standard visual in-
spections carried out by trained engineers.

Visual inspections performed by trained engineers in-
volve significant qualitative and some limited quantita-
tive assessments. The quality of the assessment largely
depends on the ability of the inspectors to observe
and objectively record details of defects. However, this
approach is prone to considerations such as operator
boredom, lapses in concentration, subjectivity, and fa-
tigue. These aspects contribute to the variability and
reduced accuracy of visual inspections (Agin, 1980;
Komorowski and Forsyth, 2000). Furthermore, there is
no agreed protocol of collection and subsequent inter-
pretation of visual information despite playing a cen-
tral role in any infrastructure maintenance manage-

ment framework. One feature of visual inspections that
does remain constant is that the inspections are al-
most always accompanied with the creation of an im-
age archive. However, there exist very few techniques
that fully exploit these images in either a qualita-
tive or quantitative fashion. Employing an image pro-
cessing based approach in conjunction with traditional
visual inspection techniques seems like a natural part-
nership given that photographing damaged regions is al-
ready a widely embraced practice for visual inspections.
The primary advantages associated with image process-
ing offset some of the limitations of visual inspections.
Image processing based detection of damages offers a
far greater reproducible and measurable performance
over visual inspection techniques (Gallwey and Drury,
1986). Additionally, it enables a quantitative assessment
of the current extent of damage, as well as offering an
accurate assessment of degradation over time by ana-
lyzing archived images.

Some examples of application of image processing al-
gorithm in visual detection of damages have been de-
veloped by researchers in the field of pipe engineering
(Iyer and Sinha, 2006; Tsai and Huang, 2010), concrete
crack detection (Nishikawa et al., 2012), and road ma-
terials (Cord and Chambon, 2011). However, the im-
age based segmentation techniques are far from be-
ing fully exploited in the field of NDT. This article
presents a semi-automatic image based technique for
detection and classification of damaged regions in im-
ages of infrastructural elements using texture as the
basis for segmentation. The image segmentation algo-
rithm is unique in including information derived from
Grey Level Co-occurrence Matrix (GLCM) based on a
quantized grey-level scale along with statistical and en-
ergy information from the pixel intensity values based
on a predefined range [0,255] to form a feature vec-
tor representing the texture characteristics of the im-
age and consequent classification of such feature vectors
from all parts of the image to identify damaged region
through non-linear Support Vector Machines (SVM)
models.

Texture is an innate property of surfaces (Haralick
et al., 1973) which can be utilized to identify dam-
aged regions on infrastructural elements which typically
have differing textures compared to the undamaged sur-
faces. For human observers, texture may be qualified
by terms, such as fine, coarse, smooth, rippled, molled,
irregular, or lineated (Haralick et al., 1973). From a
computational perspective, quantifying the perceived
texture in an image is significantly more challenging.
There are numerous texture based techniques which
attempt to characterize texture: wavelet analysis (Lu
et al., 1997), Laws’ texture energy (Choi et al., 2011),
First-Order Statistics (FOS) (Gill, 1999), and GLCM
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(Gadelmawla, 2004). This article adopts a GLCM ap-
proach in conjunction with FOS. The use of GLCM
statistics in conjunction with first order descriptive
statistics has been employed before by Abbiramy and
Tamilarasi (2011) in the field of medical imaging to
detect abnormalities in human spermatozoa. Their ap-
proach entailed a pre-processing stage involving noise
reduction, followed by the calculation of 15 GLCM
statistics coupled with four first-order descriptive statis-
tics from converted grey-scale images. GLCM and FOS
statistics formed part of a larger feature vector that was
also populated with nine additional morphological fea-
tures. The authors used a single feature vector assigned
to the overall image which was later classified through
a neural network structure. The proposed technique
in this article extends this image classification study to
a color image segmentation algorithm incorporating a
number of original aspects that are particularly advan-
tageous to the chosen application.

The proposed technique involves a unique set of tex-
ture measures that are calculated at every pixel in an
image using a sliding window approach. Four GLCM
statistics are calculated based on a quantized grey-level
scale with 8 levels. These are: Angular Second Mo-
ment (ASM), homogeneity, contrast, and correlation.
Six FOS and energy information features are calcu-
lated directly from the pixel intensity values which are
based on a predefined range [0,255]. These are: Shannon
entropy, mean, variance, range, skewness, and kurto-
sis. The quantized range adopted for the GLCM statis-
tics avoids formation of sparse matrices during compu-
tation, leading to a faster detection. The wider range
adopted for the FOS and Shannon entropy offers more
sensitivity allowing for more accurate and representa-
tive features to be extracted.

Non-linear SVM models are used to classify pixels
as either damaged or undamaged based on the feature
vector. Although GLCM had been used previously in
conjunction with SVM classification (Ben Salem and
Nasri, 2010; Xian, 2010), the approach in this arti-
cle introduces two new SVM classification models; a
Custom-Weighted Iterative (CWI) model and a four-
dimensional input space (4DIS) model in which the fea-
ture vectors were mapped to a 4DIS. This article also
presents a Receiver Operating Characteristics (ROC)
based framework for parameter optimization. The pa-
rameter optimization procedure involved measuring the
performance of an SVM classifier for a given pair of pa-
rameters using the α-δ method (Schoefs et al., 2012b)
and adjusting the parameters accordingly until suitably
optimized. The proposed technique was evaluated in
various color spaces (Red–Green–Blue (RGB), Hue-
Saturation-Value (HSV), and L∗a∗b∗) to determine the
best segmentation space.

The following section details the methodology of
the proposed technique. The proposed methodology
is evaluated through the identification of six disparate
damage types from six different images of ageing infras-
tructural elements under different lighting and environ-
mental conditions. Section 3 evaluates the performance
of the SVM classification models applied to each image
in each color space. Section 4 concludes the article.

2 METHODOLOGY

An image based damage detection algorithm has been
proposed in this article. The algorithm involves two
steps; the first step is to develop a texture character-
istics map of a color image. The map has been devel-
oped using feature vector for each pixel following the
method described in Section 2.1. The second step is to
classify the damaged regions in the image using SVM as
described in Section 2.2. The methodology is illustrated
in the following flowchart (Figure 1).

2.1 Texture characteristics map

A texture characteristics feature vector {vf}a,b,c has to
be generated for each pixel within the original image, I,
for each color channel, c, where f indicates the index of
the vector element and (a,b) indicates the spatial coordi-
nates of the pixel. The first four elements of {vf}a,b,c are
obtained by computing statistics derived from a GLCM.
These statistics are ASM, homogeneity, contrast, and
correlation. The GLCM is primarily calculated for grey
images yet may be readily extended to individual color
channels. The remaining six first-order texture features
are based on measures calculated from the original pixel
values mapped over a range of [0, 255]. These features
are Shannon entropy, mean, variance, range, skewness,
and kurtosis.

The feature vector for each pixel is calculated sep-
arately for each color channel and can be combined
together to form a four-dimensional array. The fea-
ture vector is generated for each pixel using a slid-
ing window, SW, that moves throughout the image and
provides the basis for the GLCM statistics and the dis-
tributions used for calculating descriptive statistics and
Shannon entropy. The window started at the top left-
hand corner of the image and horizontally moved in
steps of one pixel until it reached the end of a row, at
which point it progressed onto the leftmost point in the
next row. The center is indicated as (a,b) and the size
of the window (N-pixel × N-pixel) is optimized for best
performance. A trial and error approach is used to de-
termine the optimal size. The optimal size of SW is not
necessarily the one which most effectively describes the
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Fig. 1. Methodology Flowchart.

textural composition of one region, but the one which
provides the best differentiation between damaged and
undamaged zones which have distinct textures. This
optimization step may be worthwhile if large batches
of images featuring similar damaged surfaces are be-
ing processed. It was experimentally found, however,
that the classification accuracy of the technique was not
overly sensitive to the window size. Similarly, the com-
putational time of the technique was not significantly af-
fected by the size of SW. An increase in the size of SW
was accompanied by a marginal increase in the overall
computational time. In this article, a nominal window
size of 10 × 10 square pixels was used.

Fig. 2. Overview of the GLCM process.

2.1.1 GLCM features. The process in which the GLCM
is created is illustrated in Figure 2.

The GLCM is a matrix of frequency values of paired
combinations of pixel intensities as they appear in cer-
tain specific spatial arrangements within an image or
sub-image. The GLCM for each pixel is generated
through a sub-image that is a sliding window, SW, cen-
tred on the pixel. Combinations of various pixel pairs
within SW were counted and the resulting total was as-
signed to the gij, in the GLCM which corresponds to
the spatial arrangement of the pixel pairs being sum-
mated. The spatial indices i and j of the GLCM match
the grey level in the reference pixel and the destination
pixel, respectively. The spatial arrangement of the refer-
ence pixel and destination pixel in relation to each other
in SW are governed by two parameters: the interpixel
distance, d, and the angle of offset, θ . The grey levels
are defined using integer values between 1 and G. In
this article, the grey levels are defined on a scale of 1–8
(G = 8) instead of a larger scale such as [0,255]. Quantiz-
ing in this manner increases computational parsimony
at the expense of making the GLCM less sensitive to
minute fluctuations in pixel intensity values within the
sliding window. Despite this reduced sensitivity, the dis-
crimination capabilities of the GLCM remain largely
unperturbed as perceivable changes in intensity values
between neighboring pixels continue to be taken into
account, thus creating condensed yet still descriptive
matrices. An illustrated example of the creation process
for a GLCM is presented in Figure 2. In this example,
the number of occurrences of pixels with a quantized
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grey level of 4 and 5 appearing horizontally alongside
each other in the sliding window (d = 1 and θ = 0◦)
are computed. The number of occurrences of this pair
is then assigned to the (4, 5) element in the GLCM cor-
responding to the chosen value of d and θ . It was ex-
perimentally found that paired combinations of inten-
sity values of pixels that are spatially neighboring tend
to be more relevant than combinations that involve spa-
tially distant pixels. Accordingly, a value of 1 was chosen
for d to ensure a certain level of spatial proximity. The
angle along which the interpixel distance was counted,
was defined as the angles of offset and the four angles
for the offset that were chosen are, θ = 0◦, θ = 45◦, θ =
90◦, θ = 135◦. So, this generated a set of 4 GLCMs (d =
1; θ = 0◦, 45◦, 90◦, 135◦) for each color channel at each
pixel.

The GLCM for each pixel is populated as:

(gi j )d,θ
=

N∑
u=1

N∑
z=1

A whereA=
{

1 if suz = iand sd,θ
uz = j

0 otherwise (1)

where suz is the pixel intensity expressed in quantized
grey levels for the reference pixel located at row u and
column z within the sliding window; sd,θ

uz , is the pixel in-
tensity expressed in quantized grey levels for the des-
tination pixel located at an interpixel distance d along
an angle θ from the reference pixel. The GLCMs are
normalized as:

p(i, j)d,θ = (gi j )d,θ

N(N − 1)
(2)

The following four texture features are determined
from the GLCM:

Angular Second Moment (ASM) represents the uni-
formity of distribution of grey level in the image.

(v f =1)d,θ =
G∑

i=1

G∑
j=1

{
p(i, j)d,θ

}2 (3)

v1 ranges from 1/G2 to 1. A value of 1 indicates a uni-
form image.

Homogeneity gives a measure of the similarity of grey
levels in the image.

(v f =2)d,θ =
G∑

i=1

G∑
j=1

m · p(i, j)d,θ where m = |i − j | (4)

v2 ranges from 0 to G-1. A value of 0 indicates a strong
similarity of grey levels in the image.

Contrast is a measure of the local variations present
in an image. If there is a high amount of variation the
contrast will be high.

(v f =3)d,θ =
G−1∑
m=0

m2

⎧⎨
⎩

G∑
i=1

G∑
j=1

p(i, j)d,θ

⎫⎬
⎭ (5)

v3 ranges from 0 to (G-1)2. A value of 0 indicates a uni-
form image.

Correlation is a measure of the grey level linear-
dependencies in an image. Correlation will be high
if an image contains a considerable amount of linear
structure.

(v f =4)d,θ =
G∑

i=1

G∑
j=1

(i j)p(i, j)d,θ − μ̄1μ̄2

σ1σ2
(6)

where μ̄1, μ̄2, σ1, and σ2 are the means and standard de-
viations of the marginal probability matrices, P1 and P2,
obtained by summing the rows and columns of p(i, j)d,θ ,
respectively. v4 ranges from −1 to 1. A value of 1 indi-
cates a perfectly positively correlated image. An unde-
fined value is returned in the case of a uniform image.

2.1.2 Descriptive statistics and Shannon entropy. The
feature vector was further populated by considering five
descriptive statistics of the pixel intensity values, along
with Shannon entropy. These six features were derived
for each pixel using the same sliding window approach
employed to calculate the GLCM features. Unlike the
GLCM approach, the intensity values used in the dis-
tribution adopted the scale [0,255] for several reasons.
First, the nature of the statistics generated directly from
the intensity values differed from that of the GLCM
statistics as it was the magnitude of the intensity values
that was considered and not their frequency of occur-
rence. As such, it was more important for the intensity
values to contain as much information as possible which
required them to be accurately and precisely defined.
Having a bigger sample space provided more sensitive
information for characterizing texture. Conversely, the
GLCM statistics produced more meaningful results by
having similar intensity values grouped together as sep-
arately counting perceptually close values may under-
state their prominence in the sliding window. Secondly,
the number of grey-levels employed in the GLCM gen-
eration stage directly affected the size of the GLCM,
which in turn affected the computational time of the al-
gorithm. The intermediate GLCM generation stage al-
ready accounted for a significant portion of the algo-
rithm time so for this reason it was desirable to keep the
size of the GLCM to a minimum. Employing quantized
intensity values for the descriptive statistics and Shan-
non entropy on the other hand resulted in no benefits in
terms of increased computational efficiency.

A key point to note is that the range of intensity val-
ues differed for various color channels. To ensure equal-
ity and compatibility, a standardization procedure was
employed which linearly scaled the original pixel inten-
sity value Ia,b,c in each plane to a new pixel intensity,
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I′
a,b,c, such that it was in the range [0,255] as per:

I ′
a,b,c = 255 × Ia,b,c − min(Ia,b,c)

max(Ia,b,c) − min(Ia,b,c)
(7)

This standardization procedure was necessary as the
customary range of values in some color channels would
be less conducive to statistical analysis. For instance, the
typical range for the a∗ and b∗ channels in the L∗a∗b∗

color space is [−128,128]. Proceeding with this range
would lead to the Shannon entropy producing meaning-
less and undefined results for all distributions that had
values in the bottom half of the range, [−128,0]. Using
scaled pixel intensity values in the sliding window, de-
noted by s̃uz, avoids this problem.

As with the GLCM based statistics, each of the
FOS in the feature vector describes some aspect of the
textural composition in a sliding window. The meaning
and contribution of each statistic is discussed. Shannon
entropy, v5, is a statistical measure of the uncertainty
associated with a random variable.

(v f =5) = −
N∑

u=1

N∑
z=1

s̃uz log2 s̃uz (8)

v5 ranges from −(N2 max(s̃uz) log2(max(s̃uz))) to infin-
ity, which for a pixel intensity range of [0,255] becomes
[−2039 N2,∞].

Mean gives the arithmetic average of the intensity
values in a window.

(v f =6) = 1
N2

N∑
u=1

N∑
z=1

s̃uz (9)

v6 can range from the minimum value of s̃uz, 0, to maxi-
mum value of s̃uz, 255.

Variance is a measure of how far a set of numbers is
spread out from the mean.

(v f =7) = 1
N2

N∑
u=1

N∑
z=1

(s̃uz − v6)2 (10)

v7 ranges from 0 to (max(s̃uz)− min(s̃uz))2

4 , which equates to
1.625×104 for the [0,255] range.

Range gives the difference between the maximum
and minimum intensity values in the distribution:

(v f =8) = max(s̃uz) − min(s̃uz) ∀(u, z) (11)

Skewness is a measure of the asymmetry of the data
around the sample mean.

An estimate for the skewness is

(v f =9) = 1

v
3/2
7

N∑
u=1

N∑
z=1

(s̃uz − v6)3 (12)

v9 ranges from −∞ to ∞.

Kurtosis is a measure of the peakedness of a distribu-
tion. A positive value for kurtosis indicates that the dis-
tribution has a greater peakedness than that predicted
by a normal distribution, although a negative value indi-
cates that the distribution is less peaked than predicted
by a normal distribution.

An estimate for the kurtosis is given by

(v f =10) = 1

v2
7

N∑
u=1

N∑
z=1

(s̃uz − v6)4 − 3 (13)

v10 ranges from −2 to ∞.
As with the GLCM statistics, undefined values, or in-

finite values, can result for certain descriptive statistics
such as skewness and kurtosis when the intensity val-
ues in the window are perfectly uniform, that is, when
the standard deviation is equal to zero. The value of
entropy may also be undefined in the case of pixel in-
tensities having a value of zero in a given distribution.
These undefined values are ignored by the SVM clas-
sifier. Their influence on the classification accuracy is
negligible however as not only do the undefined val-
ues tend to appear infrequently, but by having a large
feature vector containing a greater number of correctly
defined texture measures, their effect is vastly dimin-
ished. Moreover, since the sensitivity of each texture
measure varies according to the surface type and dam-
age form, having a large feature vector is useful as it
ensures that the influence of any texture measures that
is ineffective at differentiating between damaged and
undamaged regions is offset by other texture features
that have a higher sensitivity to regions of contrasting
texture.

2.2 Non-linear SVM classification

SVM are used to classify pixels as being either dam-
aged or undamaged, based on the texture feature vec-
tor assigned to each pixel. SVM is a supervised learning
classifier based on statistical learning theory. The linear
SVM is used for linearly separable data using a (k-1)
dimensional hyperplane in k-dimensional feature space
(Vapnik, 1995). This hyperplane is called a maximum-
margin hyperplane which ensures maximized distance
from the hyper plane to the nearest data points on either
side in a transformed space. For linearly non-separable
data a non-linear SVM is used which relies on kernel
function and maximum-margin hyperplane. The ker-
nel function is adopted for non-linear classification in-
stead of the dot product between the data points and
the normal vector to the hyperplane as used for the lin-
ear classification. The kernel function concept is used
to simplify the identification of the hyperplane by trans-
forming the feature space into a high dimensional space
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(Boser et al., 1992; Cortes and Vapnik, 1995; Cristianini
and Shawe-Taylor, 2000). The hyperplane found in the
high dimensional feature space corresponds to a non-
linear decision boundary in the input space.

In SVM the classifier hyperplane is generated based
on training data sets. Given a training data set of l points
in the form {(xh, yh)}l

h=1, where h denotes the hth vector
in the data set, xh is a k-dimensional input vector (xh ∈
Rn), and yh is an instance label vector (yh ∈ {1,−1}l); for
this study, a value of +1 indicates presence of damage
and −1 indicated absence of damage. To identify the
maximum-margin hyperplane in the feature space, the
SVM requires the solution of the following optimization
problem:

{w, e} = arg min
w,e,ξ

(
1
2wTw + C

l∑
h=1

ξh

)
; C > 0

subject to yh(wTϕ(xh) + e) ≥ 1 − ξh; ξh ≥ 0

(14)

The function ϕ maps the training vectors xh into a
higher dimensional space. The vector w is the weight
vector which is normal to the hyperplane, e is the bias, ξ

is the misclassification error, and C is the cost or penalty
parameter related to ξ . The solution to the problem is
given by

min
α

1
2

l∑
h=1

l∑
q=1

αh αq yh yq K(xh, xq) −
l∑

h=1

αh (15)

With Constraints:
l∑

h=1
αh yh = 0

0 ≤ αh ≤ C, h = 1, . . . , l
(16)

where K is the kernel function, α is the Lagrange mul-
tiplier, q is the index of the input point xq. The Radial
Basis Function (RBF) kernel has been used here,

K(xh, xq) = exp
(
−γ

∥∥xh − xq
∥∥2

)
, γ > 0 (17)

where γ is a kernel parameter. There are two prese-
lected parameter values for the SVM, C and γ . To es-
timate the optimum parameter values, a novel ROC
curve based optimization framework was employed. In
this article, the training data set was obtained using tex-
ture features from both damaged and undamaged re-
gions in an analyzed image.

2.3 SVM models

Two models were explored to determine the most ac-
curate and efficient approach. The first stage was com-
mon to both models and involved training of the SVM
with a training set of data. However, the dimensions of
the input vectors in the training data sets were different

for each model. Also, different implementation meth-
ods were carried out in the SVM classification stage.
The performance and computational time of each ap-
proach was noted.

2.3.1 CWI model. The input vector of each pixel com-
prises 30 elements: the 10 features stacked together for
3 color channels. A single binary output was achieved
by introducing a weighting system which gave a greater
prominence to texture measures relating to greater dif-
ference between damaged and undamaged regions. The
damaged and undamaged zones were identified from
the training data. The equation for the weight, W, is as
follows:

Wv f =
∣∣∣∣ v̄ f, damaged − v̄ f, undamaged

v̄ f, total

∣∣∣∣ (18)

where v̄ f, damaged and v̄ f, undamaged are the averages for
the f th texture descriptor in the feature vector for the
damaged and undamaged regions in the training data
respectively. The average of the overall training data is
v̄ f,total .

The normalized weight, ωvf , is then assigned to each
texture feature, vf .

ωv f = Wv f∑
v f

Wv f

(19)

A fundamental issue with the CWI model was that it
required 30 separate applications of SVM classifier, one
for each of the 10 texture features in each of the three
color channels. This does not represent the most effec-
tive approach in terms of computational time. However,
the weighting system was found to be quite successful in
terms of classification accuracy.

2.3.2 4DIS model. The other model considered a 4D
input space where the feature vector and the color chan-
nels create two dimensions along with image coordi-
nates for the remaining two dimensions. The SVM is
applied once to separate the 4D input space into dam-
aged and undamaged segments using a cubical space. It
was found that this approach offered the fastest classi-
fication time with comparable classification accuracy to
the CWI model.

2.4 Performance indicators

The performance of the texture analysis based detection
in conjunction with each of the SVM models is evalu-
ated by plotting performance points as a coordinate in
the ROC space where the Detection Rate (DR) and
the Misclassification Rate (MCR) are the vertical and
horizontal coordinates respectively (Rouhan and
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Fig. 3. Sample images in the RGB color space: (a) pitting corrosion on metal sheet piling, (b) corroded metal sheeting, (c)
corrosion at a half joint, (d) staining through bridge deck, (e) marine growth on underwater steel surface, (f) exposed bridge deck

through pavement.

Schoefs, 2003; Schoefs et al., 2009). The DR and MCR
are represented as a percentage between 0% and 100%.
The DR and MCR are defined as:

DR ≈ Card(Q)
nc

with Q = {g ∈ �; yk = 1} (20)

MCR ≈ Card(T)
n

with T = {g ∈ �; yk = −1} (21)

where Card(.) indicates the cardinality of a particu-
lar set, � = {1, . . . , n}, nc denotes the number of cor-
roded pixels, and T gathers situations of incorrectly de-
tected pixels and undetected corroded pixels although
Q gathers the correctly detected ones. The ROC space
provides a common and convenient tool for graph-
ically characterizing the performance of NDT tech-
niques and its usage has been extended to image detec-
tion (Pakrashi et al., 2010). A box counting approach
(O’Byrne et al., 2011) was employed to calculate nc for
each image in each color space. The DR and the MCR
values formed the basis of selecting the performance
point in the ROC space employing the α-δ method
(Baroth et al., 2011; Schoefs et al., 2012b). This method
relies on calculating the angle, α, and the Euclidean dis-
tance, δ, between the best performance point and the
considered point to give a measure of the performance
of the NDT associated with the point under consid-
eration. The best performance point is defined as an
ideal NDT with 100% detection and 0% misclassifica-
tion rates and represented in the ROC space with coor-
dinates (0,100). For the current article the δ parameter
alone may be used for comparison. A low value for δ is
indicative of a strong performing technique.

3 EVALUATION OF PROPOSED
SEGMENTATION TECHNIQUE

The proposed segmentation technique was applied on
six images of various forms of damage on the surface
of infrastructural elements. To assess the robustness
of the technique, the six images were chosen to re-
flect a broad range of surfaces, damage forms, view-
ing angles, lighting conditions, and image resolutions
as shown in Figure 3. The sample images in the fig-
ure depict, (a) pitting corrosion on metal sheet piling
in marine conditions, (b) corroded metal sheeting in
coastal regions, (c) corrosion at a half joint on bridge
span, (d) staining through bridge deck shown from un-
derneath, (e) marine growth on the surface of under-
water steel pile wharf, and (f) exposed concrete bridge
deck through wear of pavement surfacing; all in RGB
color space. The sample images are shown in HSV and
L∗a∗b∗ in Figures 4 and 5, respectively. The technique
was performed on the images in all three color spaces
(RGB, HSV and L∗a∗b∗) so as to determine whether
a particular color space offered a superior level of
performance.

3.1 Results

The following subsections present the results obtained
from the CWI and 4DIS models for each color space.
The final subsection details the procedure for select-
ing the SVM parameters: the penalty parameter of the
error term, C, and the kernel parameter, γ , so as to op-
timize the classification accuracy.

8



Fig. 4. Sample images in the HSV color space.

Fig. 5. Sample images in the L
∗
a

∗
b

∗
color space.

3.1.1 CWI model. The detected regions using the CWI
model are shown for each color space in Figures 6–8.
The detection and misclassification rates are summa-
rized in Table 1. The CWI model performed well in
terms of identifying the locations of the damaged re-
gions in the sample images. However, these regions
were often poorly defined in many instances, resulting
in reduced DR. An example of this is Figure 6c, where
the damaged regions in the RGB space have been lo-
cated, but the identified damage is not homogeneous
and the outer boundaries of the damaged areas are in-
adequately identified. This problem is also observed in
the other color spaces.

The classification accuracy was found to be depen-
dent on color space. The δ values in Table 1 provide a
quantitative measure of the variation in classification ac-
curacy among color spaces. HSV color space achieved a

high level of performance on a consistent basis although
the RGB and L∗a∗b∗ color spaces were prone to more
varied performance levels. The DR values for the sam-
ple images in L∗a∗b∗ space were generally high but were
accompanied with a high MCR as well. The images in
RGB color space on the other hand showed moderate
DR and high MCR values.

Although the HSV color space generally outper-
formed the RGB and L∗a∗b∗ color spaces, a notable
exception to this was in the case of image (f) which
produced the best result in the L∗a∗b∗ color space.
The L∗, or lightness, plane in L∗a∗b∗ is essentially the
original image with the color data reduced to certain
shades of grey only. The L∗ plane typically responded
well to feature extraction by means of statistical anal-
ysis. Conversely, extracting textural features through
statistical analysis in the a∗ and b∗ planes in L∗a∗b∗

9



Fig. 6. Detected regions using the CWI model for the RGB color space.

Fig. 7. Detected regions using the CWI model for the HSV color space.

Fig. 8. Detected regions using the CWI model for the L
∗
a

∗
b

∗
color space.
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Table 1
Performance for the six images in each color space using the CWI model

Color space

RGB HSV L∗a∗b∗

Sample image DR MCR δ DR MCR δ DR MCR δ

(a) Pitting corrosion 83.96% 30.89% 0.35 84.30% 7.20% 0.17 85.50% 34.64% 0.38
(b) Corroded metal 96.31% 19.69% 0.20 98.00% 20.10% 0.20 94.05% 25.99% 0.27
(c) Half-joint damage 70.82% 10.77% 0.31 94.65% 11.98% 0.13 99.96% 23.23% 0.23
(d) Stained deck 83.57% 36.44% 0.40 79.49% 23.50% 0.31 80.58% 26.10% 0.33
(e) Marine growth 70.16% 40.48% 0.50 43.80% 20.93% 0.60 43.25% 20.12% 0.60
(f) Exposed deck 66.61% 29.05% 0.44 54.38% 6.06% 0.46 73.85% 9.09% 0.28

Fig. 9. Detected regions using the 4DIS model for the RGB color space.

generally yielded quite poor results as it was found that
these planes were relatively nondescript and offered lit-
tle distinction between damaged and undamaged re-
gions in terms of texture. As a consequence, the CWI
model had to rely disproportionately on the texture
descriptors in the L∗ plane to obtain a reasonable re-
sult. However, this issue was largely offset in the case
of image (f) as the dominant colors in the image were
varying shades of grey resulting in the L∗ plane con-
taining a high proportion of the original image data.
As a result, this image was largely unaffected by the
poor performances of the statistical analysis in a∗ and b∗

planes.
The explanation for the poor performance in the

RGB color space may be attributed to the high cor-
relation between its RGB components (Cheng et al.,
2001). The pixel intensities from the Red, Green, and
Blue color channels are all correlated as they contain
the same light and contrast information as received by
the scene. Hence, the image descriptions in terms of
these components make discriminating damaged and

undamaged regions difficult. Descriptions in terms of
hue-saturation-brightness are often more distinct and
therefore more relevant for detection purposes, a point
reinforced by the good results attained from the six sam-
ple images in the HSV color space.

3.1.2 4DIS model. The detected regions for the 4DIS
are shown for each color space in Figures 9–11. The
detection and misclassification rates are summarized in
Table 2. The 4DIS model succeeded at defining the
damaged regions to a better extent than the CWI model.
In the majority of the cases, there were only a few
spurious regions that were misclassified as being dam-
aged. However, there were occasional cases where com-
paratively large portions of undamaged regions in the
images were misclassified such as in Figure 10f and
Figure 11a. As with the CWI model, the performance
levels varied significantly between the color spaces. The
HSV color space was deemed as the best option. The
slightly worse performances in the RGB and L∗a∗b∗
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Fig. 10. Detected regions using the 4DIS model for the HSV color space.

Fig. 11. Detected regions using the 4DIS model for the L
∗
a

∗
b

∗
color space.

color spaces may be attributed to the same reasons as
outlined for the CWI model.

3.2 Comparison of model performances

A graphical comparison of the models for each image
and color space is provided in Figure 12, in which the
performance points corresponding to each model–color
space combination are plotted in the ROC space.

To ensure comparability between the CWI and 4DIS
model, the same training data were used for each model
and color space. Of the six images tested in each color
space, the 4DIS model outperformed the CWI model in
61% of cases. However, the performance of the mod-
els varied from image to image, with some images re-
sponding better to classification via CWI although the

other images attained comparatively better results with
the 4DIS model (Figure 12).

Both the models performed consistently in different
color spaces and the HSV color space typically provided
the best results. It is evident in Figure 12, where the per-
formance points corresponding to the HSV color space
for both the CWI and 4DIS models are far closer to
the best performance point as compared to the other
points in the ROC space. The RGB color space used
in conjunction with the 4DIS model and the L∗a∗b∗

color space used with both the CWI and 4DIS mod-
els achieved similar performance levels, reflected by the
δ values for a given image in these color space–model
combinations. The images in the RGB color space
analyzed using the CWI model showed the poorest
performance accuracy although the images in the HSV
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Table 2
Performance for the six images in each color space using the 4DIS model

Color space

RGB HSV L∗a∗b∗

Sample image DR MCR δ DR MCR δ DR MCR δ

(a) Pitting corrosion 77.78% 32.04% 0.39 88.66% 10.47% 0.15 89.92% 30.22% 0.32
(b) Corroded metal 95.92% 24.14% 0.24 80.25% 9.95% 0.22 86.10% 14.69% 0.2
(c) Half joint damage 94.69% 25.91% 0.26 92.45% 8.02% 0.11 83.22% 10.96% 0.2
(d) Stained deck 71.43% 19.35% 0.35 67.19% 22.96% 0.4 53.27% 16.05% 0.49
(e) Marine growth 64.11% 28.96% 0.46 67.89% 22.45% 0.39 43.49% 15.98% 0.59
(f) Exposed deck 52.06% 10.11% 0.49 86.47% 23.72% 0.27 96.70% 36.21% 0.36

Fig. 12. Performance points in the ROC space showing the
performance of the classification models in each color space

for images a–f.

color space analyzed using 4DIS model achieved the
best performance accuracy.

3.3 Computation times of models

Whilst both models produced apparently comparable
classification accuracy, their respective computational
times provide a conclusive source of differentiation,
with the 4DIS model being the superior option. The
computation times for all sample images in RGB space
for both models are presented in Table 3 for illustrative
purposes. The other color spaces demonstrate similar
results. The different computation times for the sample
images can be attributed to the image size.

A significant portion of the time in the CWI model
may be attributed to its weighting system, which is re-
quired to calculate the dissimilarity between texture fea-

Table 3
Classification times for the 4DIS and CWI models

Time taken
(seconds)

Image size 4DIS CWI
Image (sq pixels) model model

(a) Pitting corrosion 1,056×1,408 46.5 893.6
(b) Corroded metal 635×846 12.6 322.3
(c) Half joint damage 436×648 6.5 130.6
(d) Stained deck 441×427 3.0 97.6
(e) Marine growth 1,056×1,408 51.5 875.2
(f) Exposed bridge deck 255×391 2.5 47.0

tures in the damaged and undamaged zones, along with
the inefficient application of the SVM classifier which is
required to be iteratively performed for 30 times.

3.4 Parameters of the SVM classifier

SVM classification requires a penalty parameter of the
error term, C, and the kernel parameter, γ , which
define the decision boundary. The parameters should
be chosen carefully to produce an effective classifier.
An ROC based optimization framework was adopted
through which the two components were independently
optimized (Schoefs et al., 2012a). Whilst theoretically
it would be preferable to search for the optimum
(C, γ ) pairing, it was found experimentally that this ex-
haustive and computationally intensive approach was
largely unnecessary as the C and γ values were largely
independent of each other. For illustrative purposes,
the performances of various C and γ values for Figure
3a, analyzed through the 4DIS model, are presented in
Tables 4 and 5 respectively. The corresponding ROC
curves are displayed in Figures 13a and b, respectively.

The δ values attained for the set of parameter val-
ues trialled indicate that the optimum values for C
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Table 4
Performance of SVM for various C values (γ kept constant

at 1)

C-value DR MCR δ

0.001 57.00% 11.88% 0.45
0.25 67.90% 17.65% 0.37
0.5 70.20% 20.20% 0.36
0.75 74.90% 26.92% 0.37
1 77.80% 31.90% 0.39
10,000 77.61% 33.13% 0.40

Table 5
Performance of SVM for various γ values (C kept constant

at 0.5)

γ -value DR MCR δ

0.25 39.72% 6.24% 0.61
0.5 57.24% 10.65% 0.44
0.66 62.45% 13.72% 0.40
0.75 64.44% 15.44% 0.39
0.8 66.14% 16.74% 0.38
1 70.28% 20.22% 0.36
1.33 77.74% 31.45% 0.39
2 86.79% 53.83% 0.55

and γ were 0.5 and 1, respectively. It was found that
combining these independently optimized parameters
provided satisfactory results, with negligible differences
from that of the jointly optimized (C,γ ) pair. Moreover,
the classifier demonstrated a low sensitivity to devia-
tions from the optimal pairing suggesting that a highly
optimized pairing was not integral to the classifier per-
formance. This was especially true for the penalty pa-
rameter, C, which returned similar performance levels
across a range spanning multiple orders of magnitude.

4 CONCLUSION

This article presents a semi-automatic texture analysis
based technique for the detection and classification of
damaged regions on the surface of infrastructural ele-
ments. The technique involves generating a texture fea-
ture vector for each pixel in the image including infor-
mation derived from GLCM based on a quantized grey-
level scale along with statistical and energy information
from the pixel intensity values. The pixels are conse-
quently classified through non-linear SVM models.

The proposed technique has a number of favorable
aspects:

1. Each pixel is qualified through a large feature
vector containing ten texture related measures
representing both grey-levels and pixel intensities
in appropriate scales providing a well-rounded
description of the image in terms of the textural
characterizing. This aspect also increases the ro-
bustness of the technique as some measures may
be good at differentiating regions in one image
and may not necessarily be particularly useful
in another image. This robustness is showcased
by the ability of the technique to perform effec-
tively when applied to images featuring a broad
range of surfaces and damage forms, exposed to
various lighting conditions, viewing angles, and
resolutions.

2. The technique is more immune to variations in
lighting conditions than color based techniques,
where only the pixel intensity values are consid-
ered as opposed to texture based segmentation
techniques in which the relationship between ad-
jacent pixel intensity values are considered. This
relationship is often maintained to a significant ex-
tent even when inherent chromatic and luminous
complexities are introduced to the scene.

Fig. 13. (a) ROC curve for varying values of C (γ kept constant at 1). (b) ROC curve for varying values of Gamma (C kept
constant at 0.5).
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3. The technique requires only three parameters to
be optimized: the size of the sliding window and
two SVM parameters. A ROC curve-based op-
timization framework has been presented which
shows a simple means of attaining suitable values
for the SVM parameters. The size of window can
be independently chosen through trial-and-error.

Two SVM classification models have been explored:
a CWI model and a 4DIS model. The CWI model
employed a weighting scheme based on the relative
differences of textural descriptors in the damaged and
undamaged training data. The SVM was applied iter-
atively to each texture measure in each color channel.
The 4DIS model offered a more efficient approach, re-
quiring only one application of the SVM. The 4DIS
model had the fastest computational time and, overall,
achieved slightly better classification accuracy over the
CWI model.

The proposed technique was performed in RGB,
HSV, and L∗a∗b∗ color spaces. The HSV color space,
in conjunction with the 4DIS model, offered a consis-
tently high level of performance in a time efficient man-
ner, and is thus concluded to be the best combination.
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