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Abstract This report evidences factors controlling soil or-
ganic carbon at the national scale by modelling data of 2,158
soil samples from France. The global soil carbon amount, of
about 1,500 Gt C, is approximately twice the amount of
atmosphere C. Therefore, soil has major impact on atmo-
spheric CO2, and, in turn, climate change. Soil organic
carbon further controls many soil properties such as fertility,
water retention and aggregate stability. Nonetheless, precise
mechanisms ruling interactions between soil organic carbon
and environmental factors are not well known at the large
scale. Indeed, most soil investigations have been conducted
at the plot scale using a limited number of factors. There-
fore, a national soil survey of 2,158 soil samples from
France was carried out to measure soil properties such as

texture, organic carbon, nitrogen and heavy metal content.
Here, we studied factors controlling soil organic carbon at
the national scale using a model based on stepwise linear
regression. Factors analysed were land use, soil texture, rock
fragment content, climate and land management. We used
several criteria for model selection, such as the Akaike
information criterion (AIC), the corrected AIC rule and the
Bayesian information criterion. Results show that organic
carbon concentrations in fine earth increase with increasing
rock fragment content, depending on land use and texture.
Spreading farmyard manure and slurry induces higher car-
bon concentrations mostly in wet and stony grasslands.
Nonetheless, a negative correlation has been found between
carbon and direct C input from animal excrements on grass-
lands. Our findings will therefore help to define better land
management practices to sequester soil carbon.

Keywords Land use .Manure . SOC . Rock fragment
content . Climate . Soil texture . AIC . AICc . BIC .
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pet Potential evapotranspiration
prec Precipitation
RMSE Root mean square error
RMQS French National Soil Survey (Réseau
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RPD Ratio of performance to deviation
R²adj Adjusted coefficient of determination
temp Temperature

1 Introduction

Worldwide soils store more carbon (ca. 1,500 Gt C) than the
biosphere (ca. 500 Gt C) and atmosphere (ca. 700 Gt C)
combined (e.g. Grace 2004). Given the short-term dynamic
behaviour of soil organic carbon (SOC), in essence determined
by the balance between soil C input (mainly coming from plant
residues) and the mineralization of organic material, the soil is
recognised as an important reservoir of the global C cycle that
can act as a significant source or sink of atmospheric CO2 (e.g.
Schulze et al. 2010). Furthermore, organic carbon is consid-
ered a key element for soil quality because it controls several
functions and environmental factors, such as water-holding
capacity, aggregate stability and fertility. Because organic mat-
ter is composed for 50% of carbon, soil organic carbon is
commonly used as main indicator for soil fertility (Dawson
et al. 2007). Moreover, its capacity to adsorb pesticides and
breakdown excess nitrogen in the soils underlines its crucial
role in combating current soil and groundwater contamination
threats (Poissant et al. 2008). Consequently, the importance of
studying soil organic carbon in a multidimensional context is
reflected in different international frameworks and treaties such
as the Kyoto Protocol (climate change) and European Union
Soil Thematic Strategy (soil protection).

Different attempts were made to catch the SOC variability
at the regional/national scale, starting with the calculation of
average or median carbon values by land use and/or soil type
(e.g. Lettens et al. 2005). Given the rather complex interac-
tions between many determining factors, more enhanced sta-
tistical methods were recently developed to capture the
heterogeneity of SOC and predict it as a function of a wide
set of environmental variables such as land use, soil type,
climate and agricultural management. Martin et al. (2011)
constructed for example a boosted regression tree model and
Jones et al. (2005) developed a rule-based system using pedo-
transfer rules to predict topsoil carbon in France and Europe,
respectively. Meersmans et al. (2011) developed a multiple
linear regression model to predict soil organic carbon in
Belgium, where the model terms (i.e. variables and their
interaction terms) were added following a trial-and-error pro-
cedure in order to maximise the adjusted coefficient of deter-
mination (R²adj) under the condition that all parameters are
significant (p<0.05). Because a very high number of potential
linear combinations of the different terms exits, this manual
model construction procedure is time consuming and the
ultimate best model may not be found. Therefore, we aim to
further develop this part of the data processing by applying an
automatized model selection procedure.

Selecting the most complex model will result in the best
fit with the data used to calibrate the model, but will (most
probably) end up with too much variation in the model. This
will result in worse predictions when the model is extrapo-
lated to novel positions. So the precision of the model is not
optimal. On the other hand, when the simplest model is
used, much of the variation in the measurements cannot be
explained. This obviously results in inaccurate extrapola-
tions. The aim of model selection criteria used here is to tune
the model complexity so that precision and accuracy are
balanced. In the history of model selection criteria, in gen-
eral two thoughts are present. Both groups start from a
measurement series and a set of models and assume that
the measurement series can be described by a mathematical
model disturbed by a stochastic noise source. Akaike (1974)
wonders which model to select from this set so that the
selected model will predict the outcome if the measurements
were to be redone. Schwarz (1978), on the other hand,
assume that one of the models in this model set is the ‘real’
model, which can explain the variation in the data. They
came up with rules to identify that model, which has the
largest chance of being that ‘real’ model. Both selection
criteria are based on assumptions regarding the ‘real’ model.
In practice, we rarely know if the ‘real’ model meets these
assumptions, so the selection criteria favour certain classes
of models. For that reason, we compared several criteria and
looked if any general pictures emerged. Later, these selec-
tion criteria have further been refined. For example, when
the measurement series becomes too short, both types of
criteria select too complex models. This is remedied in, e.g.
De Ridder et al. (2005). If the number of observations would
tend to infinity, both the classical and refined model selec-
tion criteria would converge to the same results.

In this study, we aim to model topsoil SOC (0.3 m) as a
function of land use, soil type, climate and agricultural man-
agement variables. To do this, a stepwise linear regression
procedure in combination with the use of model selection
criteria is programmed in order to automate the model con-
struction process. The question, which can be answered by so-
called model selection criteria is which model is the most
appropriate to describe the variations observed in the measure-
ments. Hence, the output obtained by using different model
selection criteria will be compared and discussed in detail.

2 Materials and methods

2.1 Soil data

A total of 2,158 sites from the Réseau de Mesures de la
Qualité des Sols (RMQS) soil survey, gathered by the French
National Institute for Agriculture Research between 2000 and
2009, are used in this study. In the framework of this large-

874 J. Meersmans et al.



scale soil sampling campaign, many topsoil properties (e.g.
texture, plant nutrients and heavy metals) have been measured
all over France following a systematic 16×16 km grid (Fig. 1).
Composite samples for each site were made from 25 subsam-
ples taken within a 20×20 m grid (Arrouays et al. 2002).

In this study, SOC in the top 0.3 m of the soil is considered.
Under cropland, average soil organic carbon, clay, silt, sand
and rock fragment concentrations until this reference depth
were calculated as a weighted average of their concentrations
measured in the uppermost layer (i.e. plough layer, Ap) and
the layers below, whereby the thickness of the horizon (with a
maximal depth equal to 0.3 m) were used as weights. For all
other land uses, the uppermost horizon corresponds to the 0–
0.3 m depth interval. Organic carbon concentrations (g Ckg−1)
of the fine earth were measured using the dry combustion
method (e.g. Meersmans et al. 2009a). Here we refer, accord-
ing to the definition given by Poesen and Lavee (1994), with
fine earth to soil particles with a diameter smaller than 2 mm
and with rock fragments to particles with a diameter of 2 mm
or larger.

Given the rather large diversity in soil types covering
France, i.e. vast areas of sandy soils (Podsols) in the south-
west, fertile loess soils (Luvisols) in the north, various shallow
soils (Leptosols) developed from calcareous rocks and large
areas of dystric Cambisols in West and Central parts of the
country (Fig. 2), in this study, Food and Agriculture Organiza-
tion of the United Nations texture classification (CEC 1985)
was used to analyse model output. Moreover, clay and silt
contents were attributed to the corresponding texture class by
calculating their median values using the entire French national
soil inventory database (i.e. DoneSol 2.0, N017,484 horizons;
Table 1).

2.2 Manure data

Manure application and animal excrement production statis-
tics (ton per hectare per year) at departmental level (ADEME
2007) were combined with dry matter C concentration values,
i.e. 37.7% for farmyard manure and 36.6% for slurry
(Lashermes et al. 2009). Land use area statistics (AGRESTE
2009) were then used to calculate average yearly C input
related to farmyard manure and slurry production on agricul-
tural soils as well as direct C input from animal excrements on
grassland by department.

2.3 Climate data

Average yearly temperature (degree Celcius) and total annual
precipitation and potential evapotranspiration (millimetre) are
abstracted for each RMQS site from a 0.125×0.125° climatic
grid distributed by Meteo-France, which has been obtained by
interpolating observational data from the period 1993–2004.
In this study, we defined seven climate zones for this study

(Table 2): cold dry (mountainous dry, T<9°C; P<1,000 mm),
cold wet (mountainous wet, T<9°C; P>1,000 mm), moderate–
cold wet (continental, T>9°C and <10.5°C; P>850 mm), mod-
erate wet (oceanic, T>10.5°C and <13.5°C; P>850mm), mod-
erate dry (continental–oceanic, T>9°C and <13.5°C; P<
850 mm), warm wet (oceanic warm T>13.5°C; P>850 mm),
warm dry (Mediterranean, T>13.5°C; T<850 mm). The spatial
distribution of these climate zones with regards to the soil
sampling locations is given in Fig. 1. A more detailed descrip-
tion of the wide range of climatological, pedological and land
use settings present in France can be found in Meersmans et al.
(2012).

2.4 Soil organic carbon modelling

French soil survey (RMQS), climate and manure data have
been used for calibration and validation of the model. A
multicollinearity analysis has been performed to identify po-
tential input variables by considering those that show strong
correlations with organic carbon and avoiding input variables
that are characterised by a strong internal correlation (r>0.70,
e.g. Moore and McCabe 2001). A multiple linear regression
model, predicting topsoil (0.3 m) carbon concentration in fine
earth as a function of land use, soil type, management and
climate (Eq. 1), was created using a combined forward and
backward stepwise regression method. Therefore, a term
could be added or removed from the expression based on
the model selection criteria that was used. First- and second-
order interactions between the input variables were also taken
into consideration during model construction. The effect of
land use was incorporated in the model by estimating terms
land use independent or specific for 1, 2 or 3 land uses.

SOC ¼
Xn
i¼1

aifi

|fflfflffl{zfflfflffl}
linear

þ
Xn
j¼1

Xn
k>j

bj;k fjfk

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
first�order interaction

þ
Xn
l¼1

Xn
m6¼l

g l;mflf
2
m þ "

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second�order interaction

ð1Þ
where, SOC is soil organic carbon concentration (percentage);
n is the number of linear terms; fi is variable i (e.g. clay, silt, rock
fragment content, temperature, precipitation, manure,…); α, β
and γ are model parameters to be estimated with a least squares
estimator and ε is the error term, assumed here to follow a
normal distribution with zero mean and constant variance.

The following three different model selection criteria were
compared: the Akaike information criterion (AIC), the cor-
rected Akaike information criterion (AICc) and the Bayesian
information criterion (BIC) rule (Akaike 1974; Schwarz 1978;
De Ridder et al. 2005). All these criteria take into account the
distance between the predicted and observed values, but pe-
nalise the complexity of the model in order to avoid overfitting
(i.e. when the model is describing stochastic random varia-
tions instead of significant deterministic variations; Eq. 2).
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The only two factors that contribute are the number of obser-
vations and the number of model parameters. One aims at
minimising the following expression:

ln
RSS

N

� �
þ P

� �
ð2Þ

where, RSS is the residual sum of squares, N is the number of
observations, and P is the model complexity penalisation term,
which differs depending on the selection criteria (Eq. 3).

AIC : P ¼ 2nθ
AICc : P ¼ 2N nθþ1ð Þ

N�nθ�2ð Þ
BIC : P ¼ lnðNÞnθ

ð3Þ

where, nq is the number of free parameters in the model.

2.5 Model validation

R² adjusted was computed for each model to assess the quality
of the fit. Additionally, in order to assess model predictive
performance, repeated tenfold cross-validation of the models
was performed (1,000 replicates) where 90% of the data were
used for calibration and 10% were used for validation as it is
commonly recommended (Hastie et al. 2001). Root mean
square error (RMSE, Eq. 4) and ratio of performance to devi-
ation (RPD, Eq. 5) were calculated. These validation measures,

in combination with the coefficient of determination (R²), were
used to compare the different models obtained by using the
aforementioned model selection criteria.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

SOCobsðiÞ � SOCpredðiÞ
� �2

vuut ð4Þ

where, RMSE is the root mean square error (percentage), n is
the number of samples used for validation, SOCobs(i) is the
observed organic carbon concentration of sample i (percent-
age), and SOCpred(i) is the predicted organic carbon concentra-
tion of sample i (percentage).

RPD ¼ STD

RMSE
ð5Þ

where, RPD is the ratio of performance to deviation, and STD
is the standard deviation of organic carbon measurements
(percentage).

2.6 Software

The R-software (version 2.9.0) was used for the modelling and
error calculation part of this research. The pre-programmed
function ‘step’ allowed the automation of the stepwise regres-
sion procedure.

Fig. 1 Spatial distribution of
sample locations with
annotation of climate class
(Table 1) and land use
class in combination with
digital elevation model,
administrative regions
(thick line) and departments
(thin line)
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3 Results and discussion

3.1 Multicollinearity analysis

Regarding texture, the multicollinearity analysis shows that
carbon is strongly correlated with clay content (i.e. r values
ranging between 0.32 and 0.40) and weakly correlated with silt
content under all land uses (Table 3). Moreover, SOC has a
rather strong negative correlation with geometric mean particle
size (dg, Eq. 8) and with sand content, especially under grass-
land and forest (i.e. r values ranging between −0.32 and −0.25
for the latter land uses).

dg ¼ exp
X

fi ln Mið Þ
� 	

ð8Þ

where, dg is the geometric mean particle size, fi is the relative
proportion of particle diameter size class i and Mi is middle of
particle diameter size class i (millimetre; i.e. sand01.025 mm,
silt00.026 mm, clay00.001 mm).

Consequently, clay, sand and dg might all have the po-
tential to serve as input variables for the model. Because the
internal correlations between sand and silt, between sand
and clay, and between dg and sand are above the threshold
of Moore and McCabe (2001; i.e. r00.7) for nearly all land
uses, these variables may not be inserted together in the
model. Only clay, silt and dg were selected as soil texture
input variables for the model. In fact, a high correlation
between the particle size fractions, sand, silt and clay is
not surprising, due to the constraint of their summing to
100%. There are methods to deal with this constraint, e.g.
the additive log-ratio transform (e.g. Lark and Bishop 2007),
and we potentially lose some information by not accounting
for the constraint prior to the multicollinearity analysis.
However, we tested the additive log-ratio transform in this
particular case study, and did not find it to give a better
model (in terms of R2 adjusted and RPD); therefore, we
decided to proceed with analysis using the selected raw
variables, clay and silt fractions, due to their direct inter-
pretability. In addition, SOC shows a strong positive corre-
lation with rock fragment content under cropland (r00.37)
and to a lesser extent under forest and vineyard/orchard (r0
0.16 and 0.22, respectively). No significant correlation was
found between carbon and rock fragment content for grass-
land. Nevertheless, because rock fragment content was not
correlated to other potential input variables, it was also
considered as an important model input variable.

By comparing the correlation coefficients between SOC
and the climate-related potential input variables, one can
conclude that the influence of precipitation is of primary
importance under cropland, grassland and forest (i.e. r0
0.38, 0.35 and 0.38, respectively), whereas temperature

Table 1 Median clay and silt content (%) by texture class following
Commission of the European Communities, revised Food and Agriculture
Organization of the United Nations triangle (CEC 1985) and the entire
France National Soil Inventory Database (i.e. DoneSol 2.0, N017,484)

Texture class N samples Median clay (%) Median silt (%)

Very fine 194 66.1 12.1

Fine 4,106 43.5 39.9

Medium fine 2,175 25.2 66.9

Medium 8,192 20.7 38.4

Coarse 2,817 7.5 12.1

Fig. 2 Soil map of France showing major soil types following the World Reference Base for Soil Resources classification system, abstracted from the
Soil Atlas of Europe (European Soil Bureau Network European Commission, 2005)
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plays a key role under grassland, forest and vineyard/or-
chard (i.e. r0−0.4, −0.31 and −0.31, respectively). Because
potential evapotranspiration shows a weaker correlation
with carbon compared to precipitation or temperature and
given the fact that this variable is too strongly correlated
with temperature (i.e. for cropland, forest and vineyard/
orchard, r>0.7), this variable was excluded from further
analyses. Consequently, only temperature and precipitation
were considered as climate-related input variables.

Slurry and farmyard manure-related C production shows a
strong positive correlation with organic carbon under cropland
and vineyard/orchard (i.e. r00.28 and r00.41, respectively).
The results do not indicate such correlation under grassland.
Nevertheless, the later land use shows a rather strong (nega-
tive) correlation between SOC and direct C input from animal
excrements. Both slurry- and farmyard-related C production
and direct C input from animal excrements were integrated in
the model.

3.2 Models selected using different selection criteria
(AIC, AICc and BIC)

The AICmodel selection criterion method resulted in the most
complex model, while the simplest model was obtained using
the BIC model selection criterion. This is not surprising, since
AIC tends to select models which are too complex, while BIC
usually selects simpler model classes (De Ridder et al. 2005).
This can be explained by the theory behind these selection
criteria: BIC-type criteria are looking for that model which has
the highest probability to be true. AIC-type models are devel-
oped to predict novel observations of the same underlying
system. This is exactly what we do here: extrapolating the
model to interpret regions with the same land use. So it is not
at all surprisingly that AIC-type criteria outperform in this set-
up. Both trends can be seen in these data. Due to the large
number of predictors, it is hard to assess the origin of the
differences in the selected models.

Notice that the AIC model and the AICc model have
comparable R²adj (i.e. 0.492 and 0.491, respectively) and
RPD (i.e. 1.40 and 1.39, respectively) values (Table 4). These

model quality measures are remarkably lower for the BIC
model (i.e. R²adj00.459 and RPD01.36). Furthermore, the
AIC model has 36 parameters, of which only 30 are significant
(p<0.05), whereas the AICc model has 30 parameters that are
all significant. Only in the limited case of very large datasets,
AIC and AICc identify the same model complexity. If the
datasets are rather small, the AIC has the tendency to select
models that are too complex, while AICc remains unbiased
under these conditions. Although our dataset is not small (N0
2,158), this is still the case in this particular study. Consequent-
ly, one might conclude that AIC risks overfitting the system.

3.3 Explaining factors

Table 5 presents the terms of the models with annotation of
the selection criteria. Moreover, they were grouped by their
land use independent or land use specific (i.e. estimated for 1,
2 or 3 land uses) character and into texture-, climate- and
management-related variable groups and their interactions.
The number of terms by variable/interaction type group can
be considered as an indicator for their importance in predicting
SOC.

The fact that the models have climate-related land use-
independent terms (i.e. precipitation and interaction between
precipitation and temperature) underlines the overall impor-
tance of climate on soil organic carbon (Table 5). The model
expressions reveal, as well, land use-specific effects for tex-
ture, for the interaction between rock fragment content and
texture and for the interaction between texture and climate.
Moreover, these results show that the influence of manure on
organic carbon depends on land use, texture and precipitation
settings. Both slurry- and farmyard manure-related C produc-
tion and direct C input from animal excrements are expressed
in the model, in land use-specific interaction terms with tex-
ture, precipitation and rock fragment content. In addition, the
model also contains interaction terms between farmyard ma-
nure and slurry production-related C input and texture.

Since the AIC and AICc have comparable RPD and R²adj
values but a different degree of model complexity (i.e. 36
versus 30 parameters, respectively) the predictions obtained

Table 2 Average standard
deviation and median of
average yearly temperature
(degree Celcius) and total
yearly precipitation amount
(millimetre) by climate class

Climate class N Average yearly temperature (°C) Total yearly precipitation amount (mm)

Average SD Median Average SD Median

Cold dry 38 7.4 1.5 7.7 845 82 847

Cold wet 78 7.9 1.1 8.2 1,395 289 1,332

Moderate-cold wet 269 10.0 0.4 10.1 1,106 232 1,006

Moderate dry 769 11.5 0.8 11.4 757 58 764

Moderate wet 732 11.8 0.9 11.7 1,021 165 971

Warm wet 116 14.0 0.4 13.9 1,082 194 1,030

Warm dry 155 14.5 0.9 14.1 737 77 748
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Table 3 Correlation coefficients between site variables under different land
uses: soil organic carbon (SOC) concentration (percentage), clay, silt and
sand content (percentage), geometric mean particle size (dg, millimetre),
rock fragment content (rock, percentage), average total yearly precipitation

amount (prec, millimetre), average year temperature (temp, degree Celsius),
yearly total potential evapotranspiration (pet, millimetre), slurry- and
farmyard-related C production (man, ton per hectare per year) and direct
C input from animal excrements (man_df, ton per hectare per year)

SOC clay silt sand dg rock temp prec pet man man_df

Cropland (n0882)

SOC 1.00 0.37** −0.05 −0.17** −0.22** 0.37** −0.19** 0.38** −0.16** 0.28**

clay 1.00 −0.05 −0.54 −0.52 0.04 0.02 −0.07 0.10 −0.23

silt 1.00 −0.82a −0.62 −0.32 −0.26 −0.04 −0.29 0.10

sand 1.00 0.82a 0.25 0.21 0.07 0.19 0.05

dg 1.00 0.08 0.09 0.04 0.06 0.01

rock 1.00 0.03 0.13 0.12 0.03

temp 1.00 0.00 0.75a −0.15

prec 1.00 −0.09 0.40

pet 1.00 −0.36

man 1.00

Grassland (n0613)

SOC 1.00 0.32** 0.06 −0.25** −0.26** 0.07 −0.40** 0.35** −0.12* 0.02 −0.18**

clay 1.00 0.12 −0.72a −0.58 −0.16 −0.04 0.09 0.00 −0.06 −0.01

silt 1.00 −0.78a −0.65 −0.20 −0.09 0.13 −0.23 0.21 0.31

sand 1.00 0.83a 0.24 0.09 −0.15 0.16 −0.11 −0.21

dg 1.00 0.06 0.16 −0.20 0.19 −0.12 −0.16

rock 1.00 −0.09 0.13 0.11 −0.12 −0.20

temp 1.00 −0.32 0.64 −0.14 0.14

prec 1.00 −0.28 0.22 −0.09

pet 1.00 −0.51 −0.42

man 1.00 0.63

man_df 1.00

Forest (n0597)

SOC 1.00 0.40** 0.13* −0.31** −0.32** 0.16** −0.31** 0.38** −0.02

clay 1.00 0.37 −0.79a −0.65 0.09 −0.17 0.13 0.07

silt 1.00 −0.86a −0.74a 0.07 −0.20 −0.05 −0.11

sand 1.00 0.84a −0.10 0.23 −0.04 0.04

dg 1.00 −0.22 0.29 −0.04 0.00

rock 1.00 0.10 −0.02 0.31

temp 1.00 −0.35 0.70

prec 1.00 −0.19

pet 1.00

Vineyard/orchard (n065)

SOC 1.00 0.32* −0.03 −0.19 −0.11 0.22 −0.31* 0.04 −0.22 0.41**

clay 1.00 0.31 −0.83a −0.64 −0.17 −0.28 0.05 −0.19 0.07

silt 1.00 −0.79a −0.71a −0.25 0.00 −0.05 0.09 −0.17

sand 1.00 0.83a 0.25 0.18 0.00 0.07 0.06

dg 1.00 0.15 0.03 0.09 −0.11 0.04

rock 1.00 0.08 −0.12 0.17 0.03

temp 1.00 −0.33 0.83a −0.55

prec 1.00 −0.37 0.33

pet 1.00 −0.55

man 1.00

*P<0.01, significant correlation between soil organic carbon (SOC) and site variables; **P<0.001, significant correlation between soil organic
carbon (SOC) and site variables
a Too strong correlation between potential input site variables of the model (in order to insert them both in the model)
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by using both models are compared and discussed in more
detail in the following paragraphs.

3.3.1 Land use, climate and texture

Figure 3 shows the average organic carbon concentration by
land use–climate–texture class combination predicted by the
model (Table 5) with the AIC and AICc criteria. The error
bars present the associated standard deviation due to vari-
ability in other factors (i.e. manure and rock fragment con-
tent). Average yearly temperature and precipitation values
(Table 2) and median clay and silt contents (Table 1) were
used as settings of climate and texture variables for each
class in these simulations. Generally, carbon tends to in-
crease towards more cold/wet climates and more fine-
textured soils for all land uses. Very fine and fine-textured
soils have remarkably high carbon concentrations compared
to other texture classes and sand-textured soils have very
low carbon concentrations. In most land use–climate–tex-
ture class combinations, the AIC and AICc model output are
comparable. Nevertheless, the less complex model (AICc)
shows an opposite trend under cropland for cold wet cli-
mates and under vineyard/orchard for cold wet, cold dry and
moderate-cold wet climates. These classes are characterised
by sparse data. Furthermore, De Ridder et al. (2005) pointed
out that AIC tends to chose too complex models under these
circumstances.

The importance of land use, climate and texture variables
for predicting SOC contents (Fig. 3) is highlighted as well in
other studies investigating soil carbon in relation to envi-
ronmental factors at the regional, national or continental
scale. Using a boosted regression tree model, Martin et al.
(2011) identified land use, climate and clay content as the
three most important factors explaining the variation of SOC
in France. Organic carbon is physically protected against
microbial mineralisation within soil (micro)aggregates or
chemically stabilised through adsorption to clay and silt
particles in fine textured soils (Six et al. 2002; Razafimbelo
et al. 2008). Many other studies also found remarkably high
C concentrations in the fine-textured soils compared to the
coarse-textured soils and consequently used clay (or clay

and silt) content as a predictor for carbon (Zinn et al. 2005).
Rusco et al. (2001) illustrated that carbon is positively
correlated with precipitation amount and negatively corre-
lated with temperature at the continental scale. This corre-
sponds with Martin et al. (2011) for France and Meersmans
et al. (2011) for Belgium who found that carbon is more
strongly correlated with precipitation than with temperature.

3.3.2 Rock fragment content

Figure 4 confronts predicted SOC contents with rock frag-
ment content for AIC and AICc models by land use–texture
class combination. The results obtained by AIC and AICc
models are similar and organic carbon often (e.g. for forest
and grassland) does not increase much for a rock fragment
content less than 25%. Greater than 25%, the results be-
tween the methods can differ rather strongly and remarkable
increases in carbon concentrations are predicted for many
land use–texture class combinations; however, the number
of samples characterised by a high rock fragment content is
limited and so the associated uncertainty will be large. The
results of the AIC and AICc are comparable for cropland on
coarse-textured soils with constant carbon values (for dif-
ferent rock fragment contents). More explicit increases in
SOC with increasing rock fragment content are reported for
the more fine-textured soils. In addition, the increase in the
medium- to fine-textured soils is larger using the AIC model
than the AICc model.

Considering grassland, soil organic carbon increases
strongly with increasing rock fragment content in silt-
dominated texture classes (i.e. medium fine and to a lesser
extent medium) in both models. This increase is less pro-
nounced in clay-dominated texture classes (i.e. very fine and
fine). Organic carbon tends to decrease slightly for rock
fragment contents increasing from 0 to 25% in coarse tex-
tured soils. The models diverge for higher rock fragment
contents (25–50%). The AIC model simulates a strong
increase in carbon and the AICc predicts constant carbon
values.

Under forest, all texture classes are characterised by an
increase in organic carbon when the rock fragment content

Table 4 Model fit quality properties by model selection criterion (i.e. Akaike information criterion (AIC), the corrected AIC rule (AICc) and Bayesian
information criterion (BIC)) for land use specific and overall cases

Method N n (p<0.05) Max P R²adj RMSE RPD

AIC 2,158 36 (30) 0.1525 0.4921 1.45±0.24 (1.41) 1.40±0.10 (1.39)

AICc 2,158 30 (30) 0.0429 0.4908 1.46±0.24 (1.42) 1.39±0.09 (1.38)

BIC 2,158 12 (12) 0.0040 0.4586 1.48±0.26 (1.43) 1.36±0.09 (1.36)

Average and standard deviations as well as median values (in parentheses) of RMSE and RPD obtained by external cross-validation procedure are given

N number of samples, n number of parameters with annotation of number of significant parameters at p<0.05 within parentheses, max P is maximal P
value of all estimates parameters, Radj adjusted coefficient of determination, RMSE root mean squared error, RPD ratio of performance to deviation
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increases. There is a remarkably strong increase in very fine
(AIC model) and coarse (AICc) textured soils with a rock
fragment content above 25%. The models give different
results under vineyard/orchard. Carbon increases with in-
creasing rock fragment contents mainly in clay-dominated
texture classes following the AIC model, whereas the AICc
model indicates increased SOC values foremost for silt-
dominated texture classes. The AIC model predicts an early
decline of organic carbon (between rock fragment content of
0 and 20%) up to 0% C and later (between rock fragment
content of 20 and 50%) an increase, while the AICc model
simulates a slight decrease in SOC between 0 and 25% and

constant values above rock fragment contents of 25% in the
coarse texture class.

The results indicate a positive correlation between rock
fragment content and carbon concentration. One could
hypothesise that when C input rate and mineralization con-
ditions are constant, a higher rock fragment content would
result in higher organic carbon concentrations in the fine
earth proportional to the increase in volumetric rock frag-
ment content in order to obtain similar carbon stocks. Our
results indicate that higher rock fragment content often
results in higher carbon contents, but the relationship is
not as straightforward as stated in the hypothesis (Fig. 4).

Table 5 Land use dependent or independent estimated terms of overall multiple linear model

Land use TXT CLIM MAN TXT×TXT CLIM×CLIM TXT×CLIM TXT×MAN CLIM×MAN Cte

Cr+Gr+Fo+Vi/Or preca,b,c temp.precc clay².preca,b Call
a,b,c

temp².preca,b,c clay².tempc

rock.tempa

Cr+Gr+Fo silt².rocka rock.prec²a

Cr+Gr+Vi/Or rock².tempa prec.mana

Cr+Fo+Vi/Or silt².preca

silt.prec²b

Gr+Fo+Vi/Or rockb clay².rocka

clay.rock²a

dg.rock²a

dg².rocka

Cr+Gr dg.prec²a

Cr+Fo clay.rock²a rock.temp²a,c

clay².rockb

silt.rocka

silt².rockb

Cr+Vi/Or clay².tempa,b,c prec.man²a,b

Gr+Fo claya,b,c clay.rocka clay.tempa,b

clay.temp²a,b

clay.precb

dg².preca

Gr+Vi/Or silt.rock²a,b,c rock.preca rock.manb

rock².mana

Fo+Vi/Or silt.rock²a

Cr dg.rockc clay².preca dg.manb

Gr precb man_dfb silt².rocka temp.prec²a silt.temp²a clay².manb prec².mana

clay.manb prec.man²b,c

rock.man_dfb prec.man_dfb

rock.man_df²b prec².man_dfa,c

prec.man_df²a,b

Fo dg.rock²b rock.tempb

dg².rockb

Vi/Or rock.tempb

Cr cropland, Gr grassland, Fo forest, Vi/Or vineyard and orchard, TXT texture variable, CLIM climate variable, MAN management variable
a Obtained using AIC selection criteria
b Obtained using AICc selection criteria
c Obtained using BIC selection criteria
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One can state that SOC stock only increases when organic
carbon concentration more than doubles when rock frag-
ment content increases from 0 up to 50%. Figure 4 suggests
that this is only (obvious) the case under medium-fine (i.e.
silt) grassland soils and (very) fine-textured cropland soils.
For the other soil/land use types, the organic carbon con-
centration increase (for rock fragment contents ranging be-
tween 0 and 50%) is smaller, indicating decreasing carbon
stocks with increasing rock fragment contents. This is prob-
ably due to the direct or indirect influence of rock fragments
on mineralisation and C input conditions. Poesen and Lavee
(1994) stated that rock fragment contents have a first-
order influence on plant productivity because high rock
fragment contents limit the soil volume for nutrient
supply and root development. Furthermore, rock frag-
ments have a rather complex interaction with thermal
properties in the topsoil, water-holding capacity, infiltra-
tion and evaporation rates, which all depend on the type
(and porosity) of rock and depth of occurrence in the
profile (Poesen and Lavee 1994; Cousin et al. 2003).

The results from this study also indicate important dif-
ferences according to land use and texture class. A
higher rock fragment content only results in remarkably
higher organic carbon contents in soils with a high clay
and silt fraction under cropland and vineyard/orchard
(Fig. 4). This can be explained by the fact that the associated
additional C will only be protected against human-induced
mineralisation due to soil disturbance (i.e. ploughing and
rainfall effects on bare soils) when stored in micro-
aggregates or when bound to clay minerals. The fact that
SOC tends to increase with rock fragment content in the more
silt-dominated texture class (i.e. medium fine) under grassland
may be the result of a naturally high plant-available water
capacity in the fine earth fraction of silt-textured soils. Despite
the potential decline in water-holding capacity due to the
presence of rock fragments, a high plant-available water ca-
pacity will be retained. Hence, plant growth and C input are
less affected compared to other texture classes characterised
by the same rock fragment content, but with lower fine earth
plant available water capacity.

Fig. 3 Predicted soil organic carbon concentrations by land use–cli-
mate–texture class combination using the model (Table 5) with Akaike
information criterion (AIC) and corrected Akaike information criterion
(AICc). Error bars RMSE of the corresponding subdataset. Texture
classes: C coarse, M medium, MF medium fine, F fine, VF very fine.
This figure clearly shows that high carbon concentrations are predicted

in cold/wet climates and fine textured soils, which can be explained by
lower carbon mineralization rates under these climate conditions and
the physical protection of soil organic carbon within soil (micro)aggre-
gates and chemical stabilisation through adsorption to clay and silt
particles. In most land use–climate–texture class combinations the AIC
and AICc model outputs are comparable
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3.3.3 Manure

Figure 5 presents predicted soil organic carbon by land use–
precipitation–rock fragment content class combination as a
function of departmental average farmyard manure and slurry
or direct-on-field animal excrement-related C input. The AIC
and AICc model simulations for cropland indicate that high
farmyard manure- and slurry-related C input does not result in
significantly higher organic carbon contents compared to low
slurry- and farmyard manure-related C input. Under grassland
and vineyard/orchard, SOC tends to increase with increasing
slurry- and farmyard manure-related C input under wet and/or
stony soils. Rock fragment content seems to influence this
relation much more than precipitation. The AIC and AICc
model outputs for grasslands that consider the influence of
direct-on-field manure-related C input from animal excrements
on soil carbon are different, especially for stony soils. The
general declining trend of carbon with increasing direct C input
from animal excrements identified by the model (Fig. 5) is in
agreement with the negative correlation between these varia-
bles detected by the multi-collinearity analysis (i.e. −0.18,
Table 3). However, the AIC model output under all conditions
and AICc model output for non-stony soils suggest that for
very high direct-on-field C input values carbon increases with
C input.

Since a higher rock fragment content means a smaller
volume of fine earth, farmyard manure and slurry-related C
input will have a higher impact on organic carbon concen-
trations in stony soils (Fig. 5). The limited effect of farmyard
manure- and slurry-related C input on soil carbon under
cropland can be explained by the low physical protection
of the added C due to intensive soil disturbance by tillage,

resulting in higher mineralisation rates compared to other
land uses or croplands characterised by no till or reduced
tillage (West and Post 2002). A net flux of C from cropland
to grassland can be created due to manure cycling at farm
level. Manure applied under cropland might not always
result in significantly higher SOC levels because the miner-
alization rate is higher for crops and part of the manure C
inputs may come from the crop residues previously removed
from the cropland to produce the manure. Crop residues
generally account for a large portion of C in the manure
(i.e. foremost as straw in farmyard manure) produced at the
farm, which can then be spread both on cropland and grass-
land. Under grassland, the lower mineralization conditions
and the external origin of part of the manure C inputs can
cause stabilisation and accumulation of manure-derived C,
which results in a net gain of carbon on the long term. A
recent study (Bolinder et al. 2010) shows that when receiv-
ing the same inputs of manure, soils under long forage
rotations accumulate more carbon than under short forage
rotation or crop rotation. However, the results of this study
show a clear trend of increasing SOC with increasing ma-
nure under stony vineyard/orchard soils. Large applications
of farmyard manure and slurry under this land use are
seldom (indicated by tick marks on the x-axis) because high
nitrogen status can have a bad influence on wine quality
(Bell and Henschke 2005).

While the results explained above indicate that manure
applied on the field by the farmer will result, in most cases,
in a direct net enrichment of organic carbon concentration in
fine earth (Fig. 5), this picture is somewhat more complex
for C added directly to the field by excrements of livestock,
because grazing animals affect, as well other factors, deter-
mine SOC content (i.e. the balance between input and
mineralization). More precisely, animals have a direct im-
pact on the quality and quantity of vegetation growing on
the field. Due to grazing, this source of C input diminishes
considerably. In extreme situations, such as overgrazing, a
loss of soil structure, which makes the soil more vulnerable
to Cmineralization and to soil and vegetation degradation, can
be observed (e.g. Dai et al. 2011). In addition, a conversion of
stable C in grass into labile C in manure as well as the direct
transformation of carbon from plant material into CH4 and
CO2 by enteritic processes and respiration takes place. All
these factors will have most probably an important contribu-
tion in explaining the declining trend of carbon with increas-
ing departmental average direct-on-field C input from animal
excrements (Fig. 5). The slight increase toward very high
values may be related to the fact that at high animal density,
the livestock will need supplementary food sources (i.e. forage
or fodder crop) other than those obtained directly by grazing.
This causes C fluxes from cropland to grassland. Because the
AIC and AICc model output are different, more research is
needed to clarify and understand these trends.

Fig. 4 Average predicted soil organic carbon concentration as a func-
tion of rock fragment content by land use–texture class combinations.
Error bars standard deviation on predictions due to variability in other
factors (i.e. climate and manure). Sample distributions along rock
fragment content are indicated by tick marks on the x-axis. The general
positive relationship between rock fragments and organic carbon con-
centration is related to the fact that a higher rock fragment content
means a smaller volume of fine earth. But as rock fragments affect
thermal properties, water-holding capacity, infiltration and evaporation
rates, they potentially hamper plant growth, reduce C input and in-
crease mineralization. More in detail, this figure shows that organic
carbon concentration tends to increase with increasing rock fragment
content in all texture classes under forest, in silt (i.e. medium fine and
to a lesser extent medium) textured soils under grassland, and only in
soils with high silt and clay fractions (i.e. very fine and fine texture
classes) under cropland and vineyard and orchard. The latter seems to
indicate that under cropland associated additional C will only be
protected against human-induced mineralisation due to soil disturbance
(i.e. ploughing and rainfall effects on bare soils) when stored in micro-
aggregates or when bound to clay minerals. Under silt-dominated
grassland, the naturally high plant-available water capacity in the fine
earth fraction characteristic for this texture class counteracts the
lowered water-holding capacity status due to the presence of rock
fragments
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The results clearly illustrate that slurry- and farmyard
manure-related C production are good predictors of organic
carbon content, underlining their potential importance to be
used to improve regional/national SOC estimates. Notice that
manure application data were only available at departmental
level. Probably, a more clear relation between SOC and ma-
nure could be identified if this variable was available at a finer
spatial scale. This underlines the importance of collecting
manure data at the field scale, e.g. detailed agro survey com-
pleted by the farmers at the sample sites.

3.4 Model error, validation and evaluation

Model error values for individual carbon predictions are rather
high. The median relative error (i.e. model error divided by
predicted value) is estimated at 46.6% for the AICc model and
at 59.7% for the AIC model. The RPD value of the present
study (i.e. 1.40 (AIC)–1.39 (AICc)) lies between the values
obtained by Meersmans et al. (2011) for Belgium (i.e. 1.35
(1960) and 1.40 (2006)). Nevertheless, Meersmans et al.
(2011) could integrate soil drainage (i.e. maximal and minimal
depth of the ground water) in the model and show that this
variable is one of the main factors explaining SOC variability
at the regional scale. This variable was not available for France.
We believe that the overall model uncertainty of the present
study would be considerably lower if we would have been able
to integrate soil drainage (e.g. depth of ground water) in the
model. Other potentially interesting variables to increase the
predictive power of the model can be topography (i.e. slope,
curvature; e.g. Van Oost et al. 2007), net primary production
(Martin et al. 2011), land use history (i.e. years since land use
change or abandonment; e.g. Stevens and van Wesemael
2008), total soil depth and tillage depth (e.g. Meersmans
et al. 2009b)

The adjusted coefficient of determination for the presented
models (i.e. 0.49) corresponds with the predicted power
obtained in other studies. Meersmans et al. (2011) applied a
comparable method in order to map carbon in Belgium for
1960 and 2006, resulting in an R²adj of 0.42 for 1960 and 0.65
for 2006. Furthermore, Schulp and Verburg (2009) obtained
R²adj values ranging between 0.21 and 0.42 for their predictions
of organic carbon for different regions in the Netherlands.

Within the AIC-type selection criteria, one can expect that
the classical AIC will be slightly worse than the AICc criteria.
The AIC criterion will select the appropriate model if the
measurement set will be infinitely large. Most real-world
datasets are rather short. For the classical AIC criterion, this
will results in the selection of too complex models (e.g. De
Ridder et al. 2005). The corrected AIC criterion does not
suffer from this shortcoming. This is exemplified in the re-
markably higher median relative model error for the AIC
model (i.e. 59%) compared to AICc (i.e. 47%), which is
probably related to the existence of six insignificant parame-
ters (p>0.05) in the AIC model. Furthermore, the unrealistic
prediction of negative carbon values in very few cases (e.g.
stony sandy grassland or vineyard/orchard soils, Figs. 3 and 4)
by the AIC model is probably the consequence of overfitting.
Given the small difference in RPD and R²adj values (Table 4),
one might recommend using the AICc instead of the AIC
model selection criteria method when constructing a similar
multiple linear regression model predicting SOC as a function
of environmental variables. However, Fig. 3 illustrates that the
AICc model has some difficulties predicting organic carbon
for land use–climate–texture class combinations characterised
by sparse data. Hence, this model predicts a decrease of
carbon toward more fine-textured soils under cropland and
vineyard/orchard for relatively cold and/or wet climates. This
is opposite to the AIC model output and to general literature
findings (e.g. Zinn et al. 2005). Nevertheless, Leifeld et al.
(2005) show for grasslands in Switzerland a significant rela-
tionships between SOC and clay (percentage) below 1,000 m
asl (i.e. for more dry/warm climates) but not above this eleva-
tion (i.e. for more cold/wet climates). This result seems to be
in accordance with the unclear organic carbon–texture rela-
tionship obtained for cold/wet climates in the present study,
but more research is needed to unravel this interaction.

4 Conclusions

The results show that the influence of rock fragment content on
soil organic carbon concentration depends on land use and
texture settings. Organic carbon tends to increase with increas-
ing rock fragment content in all texture classes under forest, in
silt-textured soils under grassland, and only in soils with high
silt and clay fractions under cropland, and vineyard and or-
chard. Moreover, farmyard manure- and slurry production-

Fig. 5 Average predicted soil organic carbon concentration as function
of departmental average slurry and farmyard manure or direct-on-field
manure-related C input by land use–precipitation–rock fragment content
class combination (no stones, rock fragment content00%; stony, rock
fragment content030%; dry, yearly precipitation0700 mm; wet, yearly
precipitation01,100 mm). Error bars standard deviation on predictions
due to variability in other factors (i.e. texture, temperature). Sample
distributions along departmental average slurry and farmyard manure or
direct-on-field manure-related C inputs are indicated by tick marks on the
x-axis. Soil organic carbon concentrations increases with increasing
farmyard manure and slurry production-related C input, mostly under
wet and/or stony grassland soils. This is probably the consequence of
reduced mineralization conditions and smaller fine earth volumes. The
effect is much less pronounced under cropland, which can be explained
by the low physical protection of the added C due to intensive soil
disturbance by tillage. Moreover, high livestock densities (and direct on
field manure C input rates) seems to lower the organic carbon level under
grassland. The latter can be related to the fact that grazing reduces the
quantity and quality of vegetation related C input, converses stable C in
grass into labile C in manure, causes loss of soil structure and makes the
soil more vulnerable to C mineralization
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related C input is positively correlated to organic carbon con-
centrations mostly under wet and/or stony grasslands. This
effect is much less pronounced under cropland, and orchard
and vineyard. Furthermore, the results suggest that high live-
stock densities might decrease SOC values in grassland. This
underlines the importance of integrating manure-related varia-
bles in studies investigating soil carbon stocks and dynamics.
Model fit quality (R²adj) and validation (RMSE, RPD)measures
of the AIC and the AICc model are almost the same, while the
overall model performance of the BIC model is worse. How-
ever, not all parameters of the AIC model are significant and
probably overfit the data. We therefore recommend using the
less complex AICcmodel. Nevertheless, this model might have
difficulties predicting reliable values for variable settings char-
acterised by sparse data. The presented novel approach, unrav-
elling the relation between soil organic carbon and a large range
of site factors within a multidimensional context, can be a
useful tool in optimising sustainable soil management at larger
administrative levels in order to combat, in an appropriate way,
soil fertility decline and climate change-related threats.
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