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The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key
distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly
consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are
left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection
procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic
regime. However, we show that recent continuous-variable protocols are able to provide fully secure secret keys
in the finite-size scenario, over distances larger than 50 km.
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I. INTRODUCTION

Quantum key distribution (QKD) is a cryptographic primi-
tive that allows two distant parties, Alice and Bob, to generate
secret keys despite the presence of a potential eavesdropper [1].
When, in 1984, Bennett and Brassard invented the first QKD
protocol [2], they could only prove that their protocol had to
be secure in some appropriate regime (e.g., in the unrealistic
case where Alice and Bob’s data are perfectly correlated) but
were not able to establish any security proof for a realistic
setup at that time. During the last 25 years, security proofs
have steadily improved, and today unconditional security, that
is, security guaranteed in an information-theoretical sense has
been established for many QKD protocols [3–6], including
continuous-variable (CV) protocols [7]. A caveat, however,
is that any theoretical security proof relies on assumptions,
which can be more or less explicit. One such assumption
can be, for instance, that the physical implementation of
the protocol behaves as specified and that no side channels
can be exploited by the adversary. This, unfortunately, is, in
general, impossible to prove [8] unless one considers device-
independent quantum cryptography [9,10], which is certainly
a fascinating theoretical possibility but highly unpractical.
Another assumption which is often made is that one considers
the security of a protocol in the asymptotic regime of infinitely
many signals exchanged by Alice and Bob. Here, on the
positive side, the general framework to address the problem
of finite-size effects already exists. The specific formalism
was developed in Renner’s Ph.D. thesis [6] and subsequently
detailed in [11] and applied in [12]. Note also that another
analysis compatible with composable security was developed
by Hayashi in the case of BB84 with decoy states [13] and
later applied to experimental data [14]. On the negative side,
the results of these various papers are quite pessimistic and it is
not totally unreasonable to think that the security of all QKD
implementations realized until now was in fact jeopardized
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due to the (way) too short length of the blocks exchanged by
Alice and Bob!

So far, finite-size analysis has been restricted to discrete-
variable protocols, that is, protocols described with a finite-
dimensional Hilbert space (see Ref. [15] for an application
to QKD using qudit systems). In contrast, CV protocols,
where information is encoded in phase space, appear to be a
credible alternative to historical protocols like BB84. Indeed,
they are relatively easy to implement, requiring only coherent
state generation together with homodyne detection [16] and
now display very good performances in terms of achievable
distance [17–19].

The basic idea of CV QKD is to encode information in
phase space. To do so, Alice sends random coherent states
to Bob, who decides randomly to measure either one of the
quadratures with a homodyne detection. (Note that a variant
is for Bob to perform a heterodyne detection, that is, to
measure both quadratures simultaneously [20–22].) After this
measurement, Alice and Bob share classical variables x (the
value of the quadrature of the state sent by Alice) and y (Bob’s
measurement result), from which they can, in principle, distill
a key, once they have exchanged sufficiently many signals.
A few protocols of interest have been proven unconditionally
secure [7], depending on Alice’s modulation, which can be
either continuous (Gaussian [16] or eight-dimensional [19], to
allow for a very efficient reconciliation procedure) or discrete
(binary [23] or quaternary [17,18]). Note that for all such
protocols, no postselection of the classical data [24] should
be performed, as such a postselection is not compatible with
present security proofs.1

The goal of the present paper is to give a finite-size analysis
for CV QKD protocols. In Sec. II, we rapidly review the

1Remember, indeed, that protocols with a postselection procedure
are only proven to be secure against Gaussian attacks. Unfortunately,
in a finite-size context, it is impossible to prove rigorously that an
attack is indeed Gaussian. One can likely upper-bound the probability
that it is not the case, but this is not a trivial task, and it is quite certain
that the final secret key rate one could compute would be very low.
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framework of [11]. In Sec. III, we describe the outline of a
general CV QKD protocol. Then in Sec. IV we discuss the
main specificities of CV protocols in the context of finite-size
analysis. We proceed in Sec. V with a detailed study of the most
important finite-size effect: parameter estimation. Finally, we
present the results of this study in Sec. VI and give some
perspectives.

II. THE GENERAL FRAMEWORK
FOR FINITE-SIZE ANALYSIS

In the following, we note N , the total number of signals
exchanged by Alice and Bob during the protocol. We note x

and y, the classical data of Alice and Bob, respectively, after
they have measured their quantum states, and E refers to the
quantum state of the eavesdropper.

The formalism developed in [6] allows for the following
generalization of the secret key rate of a discrete-variable QKD
protocol which is secure against collective attacks [11]:

k = n

N

(
SεPE (x|E) − leakEC

n
− �(n)

)
. (1)

This key rate has to be compared with the asymptotic key rate
K given by

K = S(x|E) − H (x|y), (2)

and four differences can be noticed.
First, only n signals are used for establishment of the key,

of the N signals exchanged. This is due to the fact that m =
N − n signals are used for parameter estimation. This leads
to the presence of the prefactor n/N in front of the secret
key rate. Note that this factor is not very critical: it would
become relevant if a QKD protocol were to be implemented
and commercialized, as it limits the rate of the protocol, but
in practice, it has little effect on the final rate—say a factor
of 1/2 if 50% of the data are used for parameter estimation.
Indeed, the real theoretical challenge today is to decide whether
a QKD protocol can be used to distill a secret key for some
given conditions (of losses and noise). From this point of view,
optimizing every possible parameter to maximize the secret
key rate seems a little bit premature.

Second, the usual conditional entropy S(x|E) has to be
replaced by the expression SεPE (x|E), taking into account the
finite precision of the parameter estimation. Indeed, whereas
the quantum channel can be assumed to be perfectly known in
the asymptotic regime, here this can only be achieved with a
finite precision related to the probability εPE that the true values
of the nPE channel parameters are not inside the confidence
region computed from the parameter estimation procedure.
Note that there is never unicity of such a confidence region:
one is free to optimize his or her choice among all possible
regions compatible with the failure probability εPE. This choice
can be based on the simplicity of the description of the region
(e.g., the Cartesian product of nPE intervals corresponding to
each estimated parameter) or on an optimization maximizing
the final secret key rate, in which case the confidence region
is a very general region in the nPE-dimensional space of the
parameter space. Unfortunately, such an optimization is often
rather complicated to perform, and in general, one chooses
confidence regions with very simple shapes (one is referred to

Ref. [25] for a discussion of such considerations in the case of
BB84). There also exists a trade-off between the desired level
of precision of the parameter estimation (in particular, the
number nPE of parameters one considers) and the number m

of signals which have to be sacrificed to this end. For instance,
it is known that for BB84, in the asymptotic regime, a full
tomography of the state increases the secret key rate [26].
This is not necessary true anymore in a finite-size context.
In [12], the authors suggest that in the limit where N tends
to infinity, the optimal number of samples m used for the
parameter estimation should be on the order of

√
N . However,

for reasonable values of the block length N , the number of
samples needs to be much larger than

√
N , especially in the

case of CV protocols.
For BB84, only one parameter needs be estimated in theory:

the quantum bit error rate (QBER). In practice, however,
depending on the implementation, additional parameters might
need to be estimated, especially if weak coherent states are sent
instead of true single photons, for instance, in the case where
the decoy-state technique [27] is applied. Using Hoeffding’s
inequality, for instance, one can find a confidence interval
(parameterized by εPE) for the QBER such that the true value
of the parameter is inside the interval with probability of
at least 1 − εPE. In the case where several parameters must
be estimated (e.g., in CV QKD protocols), the notion of
confidence interval should be replaced by a multidimensional
confidence region such that the true value of the parameters
lies in the region with a probability of at least 1 − εPE. Then
one needs to compute the minimum value of the conditional
entropy S(x|E) compatible with the confidence interval:
this gives SεPE (x|E). Whereas this procedure is relatively
straightforward for the QBER (which is a bounded parameter,
since 0 � QBER � 1), we will see in the following that the
question is more involved for CV QKD protocols, where one
needs to estimate a priori unbounded parameters such as the
excess noise. In this paper, we consider two parameters to
be estimated in CV QKD: the transmission T and the excess
noise ξ . In principle, these are not the only parameters to be
estimated in a real implementation, as one also needs to know
Alice’s modulation variance (as well as the electronic noise
and the quantum efficiency of the detectors if one considers
a scenario where Bob’s detection is calibrated), but one can
reasonably assume that this parameter is relatively well known,
in comparison to T and ξ .

Third, leakEC corresponds to the amount of information
which needs to be exchanged by Alice and Bob during the
reconciliation phase. This quantity is necessarily equal to or
larger than the conditional entropy H (x|y), but in practice, it
always turns out out be strictly larger than the optimal value.
We would like to emphasize that the effect of an imperfect
reconciliation, which is parameterized by leakEC here, was
already taken into account for the study of CV QKD through
the so-called reconciliation efficiency β. This reconciliation
efficiency gives the fraction of I (x; y), the mutual information
between Alice’s and Bob’s data, that the legitimate parties
are able to exploit in practice. More precisely, the size of
the (identical) bit strings shared by Alice and Bob after the
reconciliation procedure is nβI (x; y) (the factor n is a reminder
that only n couples of data are processed for the key distillation,
the rest being used for parameter estimation). This imperfect
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reconciliation efficiency for a long time has been the cause
of the limited range of CV QKD protocols (and still is for
protocols involving a Gaussian modulation). In the case of
discrete-variable QKD protocols, leakEC is typically modeled
as

leakEC ≈ fECH (x|y) + 1

n
log2(2/εEC), (3)

where fEC > 1 is a parameter characterizing the reconciliation
efficiency (in a slightly different way than β for CV reconcil-
iation) and εEC is the probability that the reconciliation fails
and that this failure goes undetected by Alice and Bob.2 In
practice, this probability can be made arbitrarily small.

Finally, the parameter �(n) is related to the security of the
privacy amplification. Its value is given by

�(n) ≡ (2dimHX + 3)

√
log2(2/ε̄)

n
+ 2

n
log2(1/εPA), (4)

where HX is the Hilbert space corresponding to the variable x

used in the raw key, ε̄ is a smoothing parameter, and εPA is the
failure probability of the privacy amplification procedure. Both
the smoothing parameter ε̄ and εPA are intermediate parameters
which should be optimized numerically. The first term of
�(n), that is, the square-root term, actually corresponds to the
speed of convergence of the smooth min-entropy (which is the
appropriate measure of the key length) of an independent and
identically distributed (i.i.d.) state (remember that we consider
collective attacks here) toward the von Neumann entropy.
Indeed, only in the asymptotic limit is the smooth min-entropy
of an i.i.d. state equal to its von Neumann entropy. The second
term is directly linked to the failure probability εPA of the
privacy amplification procedure.

Note that if one were to consider general security, it would
be necessary to add to Eq. (1) another correction term linked to
the use of the exponential version of the de Finetti theorem [28]
or to the postselection technique [29], and this would give an
even more pessimistic key rate. However, in the case of BB84,
for instance, collective attacks are optimal, even in the case of
finite-size analysis, and such terms are therefore not required.
For CV QKD protocols, it is also conjectured, but not yet
proven, that collective attacks are always optimal. Therefore,
it makes sense to consider the finite-size analysis when the
eavesdropper is restricted to collective attacks. Without the
proof of the optimality of collective attacks, one could use
the bound derived in [7] for application of an exponential
version of the de Finetti theorem for infinite-dimensional
Hilbert spaces. However, because this bound, which is not
believed to be tight, leads to very pessimistic results, we prefer
not to take it into account here and, therefore, limit our analysis
to the case of collective attacks.

In the end, one needs to fix an overall security parameter
ε for the QKD protocol. Indeed, contrary to the more usual
asymptotic scenario, no such thing as perfect security can
exist in a finite-size setting, and one is limited to ε security.

2In fact, fEC and β are related to each other (for binary vari-
ables) through (fEC − 1)H (x|y) = (1 − β)I (x; y). Using the fact
that I (x; y) = H (x) − H (x|y) = 1 − H (x; y) for symmetric binary
variables, one obtains fEC = {1 − β[1 − H (x|y)]}/H (x|y).

The (small) parameter ε corresponds to the failure probability
of the whole protocol, meaning that the protocol is assured to
performed as it is supposed to except with a probability of at
most ε. Again, here we do not consider problems due to an
imperfect implementation, which might lead to the existence of
side channels that can be used by an eavesdropper. The failure
probability ε can be computed from the various parameters
already described, and in the limit of small parameters, one
has

ε = εPE + εEC + ε̄ + εPA. (5)

Note that all parameters εEC,ε̄,εPA, and εPA can indepen-
dently be fixed at arbitrarily low values (possibly by increasing
the total number N of exchanged signals to a rather high
value):

1. εPE can be made as low as desired simply by increasing
the size of the sample used for parameter estimation (and
therefore not used for establishing a key).

2. εEC can be decreased with the following procedure:
Alice and Bob simply need to compute a hash of their
respective bit strings after the reconciliation and to publicly
compare it. This method is very interesting because computing
a hash acts like an error amplification: even if the original
strings differ for only a few bits out of several millions, their
hash will be different with a very high probability. Hence Alice
and Bob can check that they share a common bit string while
sacrificing only a negligible quantity of data.

3. ε̄ and εPA are virtual parameters that can be optimized
in the computation. They must simply satisfy both equality (4)
and equality (5).

As a consequence, the overall security parameter ε can be
chosen arbitrarily small, to a value corresponding to Alice and
Bob’s wishes. Obviously, this comes at the cost of decreasing
the final secret key size.

III. OUTLINE OF A CONTINUOUS-VARIABLE
QUANTUM KEY DISTRIBUTION PROTOCOL

IN A FINITE-SIZE CONTEXT

Traditionally, in the asymptotic regime, one can make the
assumption that the quantum channel is perfectly known,
before the transmission is even performed. Hence the opti-
mization of the various free parameters can be made before
the exchange of data, and the final secret key rate, in principle,
can be known in advance (as long as the quantum channel
behaves as anticipated).

In the finite-size scenario, the situation is quite different. In
particular, one does not know in advance the characteristics of
the quantum channel. To be fair, even after the exchange of
quantum signals, the quantum channel is only partially known:
more precisely, a few relevant parameters (QBER for qubit
channels, transmission and excess noise for CV channels)
are known to lie inside some confidence regions, except with
probability εPE.

Even if Alice and Bob do not know in advance the properties
of the quantum channel they will use, they can guess them
with a reasonable accuracy, making the assumption that no
eavesdropper will actually try to control the quantum channel.
Note that this guess is only used to a priori optimize various
parameters of the protocols and consequently maximize the
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expected secret key rate, under “normal use” of the quantum
channel. If an eavesdropper is present, the guess made by
Alice and Bob might not be very good, hence leading to a
nonoptimized use of the quantum channel, but the security of
the key distribution will not be affected.

For a CV QKD protocol, the secret key rate depends (in the
asymptotic limit) on three main physical parameters: Alice’s
modulation variance VA, the transmission of the channel T ,
and the excess noise ξ , which corresponds to the noise on
Bob’s state in excess compared to the shot noise. The idea
is to optimize VA to maximize the expected secret key rate.
To do that, Alice and Bob can guess the values of T and ξ .
The transmission can be evaluated quite precisely with T ≈
η10−0.02d , where η is the known quantum efficiency of Bob’s
detection and d is the distance in kilometers between Alice and
Bob. Here, we assume an optical fiber with losses of 0.2 dB
per kilometer. In practice, Alice and Bob generally have a
good estimate of the value of the transmission of the quantum
channel before they start the QKD protocol. The value of ξ , in
contrast, depends on the quality of the setup and turns out to be
fairly stable from one experimental run of the QKD protocol
to the next. Typically, for state-of-the-art implementations,
its value is about 1% of the shot noise [30]. Note that this
corresponds to the expected value of the excess noise. As we
see later, the measured value might differ significantly from
the theoretical value due to a high statistical noise.

At the beginning of the protocol, Alice and Bob agree on a
particular value of the overall security parameter ε. They also
agree on a reconciliation protocol, meaning that they know
the parameter εEC in advance. Since both ε̄ and εPA are virtual
parameters that have to be optimized afterward, the rest of the
initial (that is, before the quantum distribution) optimization
consists in studying the parameter εPE, which quantifies the
failure probability of the parameter estimation. This parameter
depends on the number m = N − n of samples used for this
parameter estimation as well as on some properties of the
quantum channels, such as the expected true values of the
parameters T and ξ . Therefore, given the expected behavior
of the quantum channel, one can infer the value of m required
to obtain a particular value of the parameter εPE. This in turn
puts a lower bound on the block size N necessary to obtain an
ε-secure secret key.

At this point, still before the actual start of the QKD
protocol, Alice and Bob can optimize the values of the total
number N of signals exchanged, the length of the raw key
n, and the optimal value for Alice’s modulation variance VA

to maximize the expected secret key rate compatible with the
overall security parameter ε. The values of N , n, and VA can
be considered to be fixed at this stage.

Then Alice and Bob proceed with the quantum exchange
part of the QKD protocol: Alice sends N random coherent
states (or N/2 for protocols with heterodyne detection)
according to the modulation characterizing the protocol (with
a modulation variance VA) who measures them with a
homodyne (or heterodyne) detection. Bob informs Alice of his
measurement choices (that is, for each state, Bob tells Alice
whether he measured the X quadrature, the P quadrature, or
both) and Alice discards the data that Bob did not measure.
They publicly disclose N − n of their correlated data to
estimate the true values of the transmission and excess noise of

the quantum channel. They can therefore compute the value of
SεPE (y|E), the conditional von Neumann entropy of Bob’s data
(which will be used to form the key in a reverse reconciliation
procedure) given Eve’s quantum state, which is compatible
with the estimated parameters except with probability εPE. If
this value is compatible with a positive secret key rate, Alice
and Bob continue with the reconciliation procedure; otherwise,
they abort the protocol. At the end of the reconciliation
procedure, Alice and Bob compute the hash of their respective
bit strings (for some well-chosen hash function, that is, a
randomly chosen hash function from a family such that the
equality of both hashes guarantees that the reconciliation
procedure worked except with probability εEC).3 If their strings
differ (because their hashes differ), Alice and Bob abort
the protocol. (Note, however, that Alice and Bob might try
to continue with the protocol by exchanging more classical
information to complete the reconciliation procedure.) If their
hashes are identical, Alice and Bob compute the final key size
compatible with the security parameter ε (by optimizing over
ε̄ and εPA) and perform the privacy amplification; that is, they
randomly pick a hash function from a two-universal family of
hash functions which outputs a string of length l, with l = kN

the size of the ε-secure secret key that they can extract from
their data.

IV. VARIOUS ISSUES SPECIFIC TO CONTINUOUS
VARIABLES

First, we would like to emphasize once again that we
are considering only collective attacks here, and not general
attacks. This decision was motivated by the fact that the
optimality of collective attacks has been proven asymptotically
and that it is conjectured that this optimality could hold in a
finite-size setting. Moreover, the correction terms computed
in [7] are quite large, are likely not tight, and might hide
interesting effects (such as the dependence of the key rate
on parameter estimation) behind purely technical details such
as (temporary?) bounds linked to a particular mathematical
proof (exponential version of the de Finetti theorem for
infinite-dimensional Hilbert spaces).

A. Dimensionality

The main difference between discrete-variable and
CV QKD protocols is obviously the infinite dimensionality of
the Hilbert space required to describe CV QKD protocols. This
is in general rather problematic when studying the security
of CV QKD, but it becomes even more annoying when one
considers finite-size effects. In particular, when one is only
interested in asymptotic key rates, the dimension problem
can be solved by saying that, in the end, everything in the
experiment is discrete (even the homodyne detection since the
local oscillator has a finite energy). Therefore, one can always
theoretically bound the dimension of the relevant Hilbert space
by a number large enough and prove that the correction terms
due to this large dimension all go to 0 in the asymptotic limit.

3We neglect here the (small) number of bits which are revealed
through this procedure.
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Unfortunately, for a finite-size scenario, such an approach
fails, as the convergence toward the asymptotic rate can
be heavily slowed for a high dimension. For instance, the
finite dimension corresponding to the digitalization is often
of the order of d = 212 = 4096 if one uses 12-bit analog-
to-digital converters. If one compares such a system with a
two-dimensional one, Eq. (4) tells us that the same �(n) is
attained for an n ∝ d2, that is, for a value of n 1.4 × 106 times
higher in the high-dimensional case. The magnitude of such
factors clearly shows that bounding the dimensionality of the
system by a finite value is not enough for ensuring its security
in practical circumstances. This dimension should also be as
small as possible, and it is important to come up with security
proofs that are as dimension independent as possible.

Fortunately, in some CV protocols [17,19,31], the raw key
is encoded on bits, and this allows us to take dimHY = 2 for
the numerical evaluation of Sec. VI. When this is not possible,
one should be able to replace the real dimension of the system
by its effective dimension, but this remains essentially an
open question. Such an effective dimension is generally much
smaller than the real dimension and is sufficient to capture the
relevant features of the CV system. Different definitions for
this effective dimension can be proposed. Generally, however,
one defines the effective dimension deff

1 of a mixed system
ρ as

deff
1 (ρ) ≡ 1

trρ2
, (6)

which quantifies the number of states over which ρ is
spread [32]. For instance, a totally mixed state over N

orthogonal states has deff
1 = N . A more speculative variant

would be to remember that according to [33], the proper
max-entropy Hmax of a state is not given by the Rényi entropy
of order 0 (which diverges for any quantum state of a CV
system) but by the Rényi entropy of order 1/2. Therefore one
could also define the effective dimension deff

2 as the exponential
of this entropy; that is,

deff
2 (ρ) ≡ (tr

√
ρ)2. (7)

The advantages of the first definition are that it relates to the
energy of the state, and that it is automatically bounded, for
any (physical) state ρ.

To be rigorous, the preceding effective dimension defined
previously will probably be defined under the form of “smooth
dimensions,” depending on a small parameter ε, in a way
similar to the smooth entropies introduced in [34], which have
allowed us to look at the finite-size effect. In any case, it is
intuitively clear that, ultimately, it is such effective dimensions
that should appear in security proofs of CV QKD protocols.
This question certainly needs to be investigated further. We
stress again that such a problem, which is rather benign in the
asymptotic limit, plays a crucial role in a finite-size analysis.

B. Ill-defined entropies for continuous variables

Another specificity of the CV QKD is that classical
entropies are ill defined for continuous variables: the Shannon
entropy has to be replaced by a differential entropy, which is

not a practical quantity for analyzing secret key rates. For this
reason, the expression

SεPE (y|E) − leakEC

n
(8)

is inadequate for CV QKD. The solution is to rewrite the
different quantities in terms of mutual information instead
of relative entropies. Hence, the previous expression can be
replaced by

βI (x : y) − SεPE (y : E) (9)

in the case of a CV protocol. Here βI (x : y) gives the
amount of mutual information Alice and Bob were effectively
capable of extracting through the reconciliation phase: β is
the reconciliation efficiency, which ranges from 0 when no
information was extracted to 1 for a perfect reconciliation
scheme. While SεPE (y|E) is defined as the minimum con-
ditional entropy compatible with the statistics given by the
parameter estimation except with probability εPE, SεPE (y : E)
is naturally defined as the maximum of the Holevo information
compatible with the statistics except with probability εPE.
Hence, in the case of a CV QKD protocol, the secret key
rate obtained for a finite-size analysis reads

k = n

N
[βI (x : y) − SεPE (y : E) − �(n)]. (10)

C. Reconciliation efficiency

Whereas the question of error correction was never a
crucial issue for DV protocols where it just implied a small
correction term, the same is not true for CV protocols without
postselection. For these schemes, Alice and Bob need to
be able to extract their mutual information very efficiently.
The absence of efficient reconciliation protocols working in
the low signal-to-noise ratio (SNR) regime was, for a long
time, the reason why CV protocols could not distribute secret
keys as far as their DV counterparts. To be more precise, a
reconciliation protocol is considered efficient if β is larger
than roughly 80%. For such efficiencies, the correction term
appears quite negligible and has a limited impact on the QKD
protocol. For a Gaussian modulation, the best-known protocols
achieve efficiencies higher than 80% only for SNRs higher
than 1 [31,35,36]. For lower SNRs (relevant to increasing the
range of the protocol), no good protocol is known for the
reconciliation of correlated Gaussian variables. Fortunately,
this problem can be solved in this regime by switching to a
discrete modulation where efficient protocols are available for
all SNRs lower than 1 [17].

To summarize, both modulation schemes (Gaussian and
discrete) are useful, depending on the working distance of
the protocol. When working at short distances, a Gaussian
modulation should be chosen, whereas a discrete modulation
is more adapted to reaching longer distances. In both cases,
the effect of imperfect reconciliation can be taken care of by
taking β = 0.8, which is a conservative value consistent with
state-of-the-art reconciliation schemes. Note that one can make
the best of both worlds (continuous and discrete modulation)
by using a specific eight-dimensional continuous modulation
(see Ref. [19] for a detailed presentation of such a protocol).
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V. PARAMETER ESTIMATION

For discrete-variable QKD protocols, it turns out that the
principal finite-size effect, in terms of its consequences on
the secret key rate, is the parameter estimation [12]. A similar
situation is expected for CV protocols, the main problem being,
without any doubt, estimation of the excess noise ξ .

In this section, we study the parameter estimation procedure
for CV protocols, without postselection. Quite fortunately,
despite being described in an infinite-dimensional Hilbert
space, these protocols display only a few parameters that
need to be estimated: these are the parameters characterizing
the covariance matrix of the state shared by Alice and Bob
in the entanglement-based version of the protocol [37]. On
the positive side, this covariance matrix can be symmetrized
through a technique similar to the one explained in [38], and
this symmetrized version is described by only two unknown
parameters (in addition to Alice’s modulation variance). On
the negative side, to be able to estimate the two relevant pa-
rameters, it seems that one still has to make the assumption of
a Gaussian channel. This does not look as a very constraining
assumption, as it is known that Alice and Bob can always
assume their state to be Gaussian (see [17]). However, this
result has only been established in the asymptotic limit, and
one cannot yet rigorously exclude the (improbable) situation
where this result does not hold in general.

A non-Gaussian attack that would exploit such a possible
loophole would have to be quite subtle. Indeed, the usual
security proof stating that Gaussian states are the ones which
minimize the secret key rate cannot be used here because the
proof implicitly assumes knowledge of the covariance matrix.
For a given covariance matrix, the state maximizing Eve’s
information is Gaussian. The only possible loophole would be
that because the covariance matrix is not perfectly known in
a finite-size scenario, there might exist a non-Gaussian state,
compatible with the estimated covariance matrix computed
with a Gaussian assumption, that would be better for Eve than
the Gaussian state estimated by Alice and Bob. Let us detail
things a bit. Let us note Sg

εPE , the set of states compatible
with the results of the parameter estimation, under a Gaussian
model, except with probability εPE. Let us note Sng

εPE , the set of
states compatible with the results of the parameter estimation,
under a general, non-Gaussian model, except with probability
εPE. It is not easy to compare the two sets a priori, but
one can imagine that they likely get closer and closer as
εPE goes to 0 (we typically consider εPE = 10−10). In the
following, because we make the Gaussian assumption, we
consider the Gaussian state ρg ∈ Sg

εPE , which maximizes Eve’s
information (note that Sg

εPE is not composed of Gaussian states
only, but we know that the worst case, from Alice and Bob’s
point of view, is Gaussian). However, it is not yet possible
to exclude the existence of a non-Gaussian state ρng ∈ Sng

εPE

such that the secret key rate obtained for ρng is strictly
lower than the one obtained for ρg . This is, however, quite
unlikely.

For this reason, we conjecture that the Gaussian optimality
still holds in a nonasymptotic scenario, and in the following, we
make the assumption of a Gaussian channel. Again, we insist
on the point that even if this conjecture were proven wrong,
the bounds computed here would still be quite accurate. Note,

however, that this conjecture was recently established in the
case of protocols with a Gaussian modulation [39].

Our goal here is to compute SεPE (y : E), the maximal value
of the Holevo information between Eve’s and Bob’s classical
variable compatible with the statistics except with probability
εPE. The nice property of CV protocols without postselection
is that S(y : E) can be bounded from above by a function of
two parameters only. More precisely, this function depends on
the covariance matrix �AB of the state ρAB shared by Alice
and Bob in the entanglement-based version of the protocol
(see [39–41] for protocols with a Gaussian modulation and
[17,18] for protocols with a discrete modulation). One can
always assume that �AB take the following form:

� =
(

(VA + 1)12

√
T Zσz√

T Zσz (T VA + 1 + T ξ )12

)
, (11)

where VA is the variance of Alice’s modulation in the prepare
and measure scheme, and T and ξ refer to the experimentally
estimated effective transmission and excess noise of the
channel [38]. The parameter Z is a function of VA which
depends on the modulation scheme. For instance, one

hasZGauss =
√

V 2
A + 2VA in the case of a Gaussian modula-

tion. For a discrete modulation, Z has a more complicated
expression but turns out to be almost equal to ZGauss for small
variances (see [17]): for the two-state protocol, one has

Z2 = VA

1 + e−2VA

√
1 − e−2VA

, (12)

and for the four-state protocol, one has

Z4 = VA

(
λ

3/2
0

λ
1/2
1

+ λ
3/2
1

λ
1/2
2

+ λ
3/2
2

λ
1/2
3

+ λ
3/2
3

λ
1/2
0

)
, (13)

where

λ0,2 = 1
2e−VA/2 [cosh(VA/2) ± cos(VA/2)] ,

(14)
λ1,3 = 1

2e−VA/2 [sinh(VA/2) ± sin(VA/2)] .

Finally, for the continuous eight-dimensional modulation [19],
one has

Z8 = 1

2
e−2VA

∞∑
k=0

√
k + 4

k!
V

k+ 1
2

A . (15)

These various parameters are related through

Z2 < Z4 < Z8 < Zg. (16)

To compute SεPE (y : E), one simply needs to evaluate �εPE ,
the covariance matrix compatible with the data except with
probability εPE, which maximizes the Holevo information
between Eve’s and Bob’s classical data.

The estimation of �εPE is made through the sampling of
m ≡ N − n couples of correlated variables (xi,yi)i=1···m. As
we said before, we consider here a normal model for these
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variables. Within this model, Alice and Bob’s data are linked
through the following relation:4

y = tx + z, (17)

which is a normal linear model parametrized by t = √
T ∈ R

and where z follows a centered normal distribution with
unknown variance σ 2 = 1 + T ξ . The random variable x can
be either a normal random variable with variance VA, in the
case of the CV QKD protocol with a Gaussian modulation, or
an unbiased Bernoulli random variable taking values ±√

VA

in the case of the two- and four-state protocols (and a similar
situation occurs for the continuous eight-dimensional modu-
lation). At this point, it is worth considering the dependence
of S(y : E) in the variables t and σ 2. One can, in particular,
check numerically that the following inequalities hold for any
value of the modulation variance VA and for all modulation
schemes considered here:

∂S(y : E)

∂t

∣∣∣∣
σ 2

< 0 and
∂S(y : E)

∂σ 2

∣∣∣∣
t

> 0. (18)

This means that one can find the covariance matrix �εPE which
minimizes the secret key rate with a probability of at least
1 − εPE:

�εPE =
(

(VA + 1)12 tminZσz

tminZσz

(
t2
minVA + σ 2

max

)
12

)
, (19)

where tmin and σ 2
max correspond, respectively, to the minimal

value of t and the maximal value of σ 2 compatible with the
sampled data, except with probability εPE/2. Note that this
means that the confidence region we consider here is simply a
two-dimensional rectangle. One could obviously study more
complicated regions that might slightly improve the final key
rate. However, here we prefer to restrict ourselves to this
simpler solution, which has the advantage of displaying the
same features as a more complicated model does but without
drowning them with overly technical mathematical details.

Maximum-likelihood estimators t̂ and σ̂ 2 are known for the
normal linear model [42]:

t̂ =
∑m

i=1 xiyi∑m
i=1 x2

i

and σ̂ 2 = 1

m

m∑
i=1

(yi − t̂xi)
2. (20)

Moreover, t̂ and σ̂ 2 are independent estimators with the
following distributions:

t̂ ∼ N
(

t,
σ 2∑m
i=1 x2

i

)
and

mσ̂ 2

σ 2
∼ χ2(m − 1), (21)

where t and σ 2 are the true values of the parameters. This
allows us to compute tmin, a lower bound for t , and σ 2

max, an

4The simplicity of this relation comes from the fact that the state
ρAB and, consequently, the quantum channel are symmetrized.

upper bound for σ 2 in the limit of large m:5

tmin ≈ t̂ − zεPE/2

√
σ̂ 2

mVA

,

(22)

σ 2
max ≈ σ̂ 2 + zεPE/2

σ̂ 2
√

2√
m

,

where zεPE/2 is such that 1 − erf(zεPE/2/
√

2)/2 = εPE/2 and erf
is the error function defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt. (23)

In a given experiment, one can simply compute the values
of both estimators, t̂ and σ̂ 2, and plug them into Eq. (22) to get
the values of tmin and σ 2

max and, finally, the value of SεPE (y : E).
To keep analyzing the protocol from a theoretical point of view,
we take for t̂ and σ̂ 2 their expected values:

E[t̂] =
√

T ,
(24)

E[σ̂ 2] = 1 + T ξ.

Using these values, one can compute tmin and σ 2
max:

tmin ≈
√

T − zεPE/2

√
1 + T ξ

mVA

,

(25)

σ 2
max ≈ 1 + T ξ + zεPE/2

(1 + T ξ )
√

2√
m

.

Finally, one gets the covariance matrix �εPE , which should
be used to compute the expected secret key rate SεPE (y : E) in
the finite case:

E[�εPE ] =
(

� + 0 �Zσz

�Zσz �B12

)
, (26)

with

�Z = −zεPE/2

√
1 + T ξ

mVA

,

�B = zεPE/2√
m

((1 + T ξ )
√

2 − 2
√

T VA) + z2
εPE/2

1 + T ξ

m
.

At the first order, for long distances, the main effect is
clearly the uncertainty on the excess noise. The effective excess
noise �mξ due to the imprecision of the estimation is given
by

�mξ ≈ zεPE/2

√
2

T
√

m
. (27)

We display in the next section the effect of the parameter
estimation on the secret key rate, but we can already give a
hint about the block length that will generally be required

5Indeed, for large m, the χ 2 distribution converges to a normal
distribution. The approximation is almost exact in our case, as we
consider values of m (much) larger than 106.
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for a given distance. Indeed, from Eq. (27), one immediately
obtains

m ≈ 2z2
εPE/2

T 2�mξ 2
. (28)

For εPE = 10−10, one has zεPE/2 ≈ 6.5, and if one requires
�mξ ≈ 1/100, which is a typical value for true excess
noise [30], then the number of samples required scales as a
function of the transmission as

m ∝ 106

T 2
. (29)

For instance, if the distance between Alice and Bob is 50 km,
then T = 10−1, which means that one expects the block length
to be of the order of 108, which is barely realistic. If the distance
is 100 km, then the block length should be of the order of 1010,
which is much more complicated. We see in Sec. VI that the
reality is even worse than that.

Before proceeding with the numerical results, we now
discuss two technical points linked to the problem of parameter
estimation. First, we come back to the assumption made
previously that, in a typical experiment, the value of the
estimators will roughly correspond to the true value of
the parameter. Then we hint on alternative approaches to
improve estimation of the parameters for CV QKD protocols,
which might be more economical in terms of the number of
samples required, but whose mathematical analysis is much
more involved.

1. Expected secret key rate or most probable secret key rate

For a given experiment, the secret key rate can be computed
and is a function of the observed values of the estimators t̂

and σ̂ 2 (but not only). One can write kexp = f (t̂ ,σ̂ 2). From
a theoretical point of view, that is, without performing the
actual experiment, there are two secret key rates that can be
computed.

The first possibility, considered, for instance, in [12], is to
compute the secret key rate k1 obtained for the expected values
of the parameters:

k1 ≡ f (E[t̂],E[σ̂ 2]). (30)

In some sense, this corresponds to what one could call the
most probable secret key rate. This interpretation, however, is
not correct.

The correct theoretical secret key rate k2 is given by the
expected value of the secret key rate, that is,

k2 ≡ E[f (t̂ ,σ̂ 2)]. (31)

Obviously, this value is much more difficult to evaluate in
general, as one needs to know the probability distributions
of both estimators, t̂ and σ̂ 2, whereas in the case of k1, one
just needs to know the expected values. Fortunately, we see in
Sec. VI that in fact both values are remarkably close, meaning
that one can always safely use k1 as the secret key size.

2. More economical parameter estimation procedures

An interesting characteristic of CV QKD protocols is that it
might be possible to perform the parameter estimation without
sacrificing any data. This is obviously something impossible

in discrete-variable QKD where estimating the QBER requires
that Alice and Bob disclose some of their data.

In CV QKD, however, the bit used for the raw key is
encoded in only some of Bob’s classical data. Let us take
the example of the four-state protocol [17]. In this case, Bob’s
data {yi}1�i�N are real numbers and the raw key elements are
simply given by the sign of the variables yi . The absolute value
is sent to Alice through the public, authenticated channel, and
Alice uses it to perform the reverse reconciliation procedure.

In the parameter estimation procedure that we have de-
scribed, Alice and Bob would agree on a certain subset of their
data and completely disclose their data in this subset. This
means that the absolute values of the rest of Bob’s data are
not used for this parameter estimation, whereas it manifestly
contains information concerning the covariance matrix of
the state shared by Alice and Bob. One could certainly use
this information to improve the accuracy of the parameter
estimation or, equivalently, obtain the same accuracy while
using fewer samples, therefore increasing the final secret key
rate. However, the statistics techniques necessary for this study
are beyond the scope of this paper, and we do not address this
question more extensively here.

Before concluding this section, we give another possible
way to improve on the parameter procedure presented here.
For CV QKD protocols, it is clear that the critical parameter
to estimate is the excess noise. The transmission, in contrast,
is less critical for two reasons: first, it can be estimated more
precisely than the excess noise with the same amount of data
(in particular, the relative uncertainty for the transmission
is smaller than that for the excess noise); and second, the
secret key rate is much more sensitive to variations in the
excess noise than in the transmission. Therefore, one could
use the following method to estimate the transmission and the
parameters:

1. The transmission is estimated through the same proce-
dure as before, with m samples.

2. Bob uses the totality of his data to compute an estimation
of the variance of his data. Then, using the relation 〈y2〉 = 1 +
T VA + T ξ and his estimation of T , Bob infers an estimation
for the excess noise.

This approach seems better than the one studied above.
However, it involves computing two dependent estimators,
and the probability distributions of the estimators (necessary
to compute confidence regions) are not known.

Therefore, in this paper we use a likely suboptimal proce-
dure to perform the parameter estimation, but this procedure
allows for the computation of explicit bounds. The question of
what is the best parameter estimation procedure in the case of
CV QKD is still open and is certainly worth investigating
further, as it turns out that the parameter estimation is an
important problem if one wants to distribute secret keys over
a long distance, while using realistic block lengths.

VI. RESULTS

Before we discuss the results in terms of secret key rate,
we start by considering the specific influence of �(n), related
to privacy amplification and defined in Eq. (4). We then study
the influence of the parameter estimation.
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0.1

∆

1

FIG. 1. (Color online) Parameter �(n) as a function of n for
various values of ε̄ and εPA. From top to bottom, ε̄ = εPA = 10−6,
10−7, 10−8, 10−9, and 10−10.

A. Influence of �(n)

In Fig. 1, we plot the value of the parameter �(n) as a func-
tion of n, the size of the raw key. Here, we take dimHY = 2,
since for all CV protocols we consider, the raw key is encoded
on bits [17,19,31]. Among notable features, one sees that the
value of �(n) does not critically depend on the parameters ε̄

and εPA, which need to be optimized in theory. One can easily
see from the curve that, for the plotted domain (n � 104), �(n)
is essentially determined by the first term in Eq. (4),

δ(n) 
 7

√
log2(2/ε̄)

n
. (32)

The important lesson is the large value of �(n), even for
(seemingly) quite large sizes of the raw key. In particular, one
observes that �(n) is larger than 0.01 for raw key sizes smaller
than 107. In practice, this means that if the asymptotic secret
key rate is below 0.01 bit per channel used, then if one wants
to take into account finite-size effects, one has to use block

106 108 1010 1012 1014

m

10−5

10−4

−5

0.00

∆ξ

1

0.01

0.1

1

FIG. 2. (Color online) Parameter �mξ as a function of m for
εPE = 10−10 (in fact, �mξ does not depend too critically on the precise
value of εPE, and one obtains very similar plots for εPE = 10−5, e.g.).
From bottom to top, we consider channel losses of 5, 10, 15, and
20 dB. With a perfect homodyne detection (quantum efficiency equal
to 1), this is equivalent to distances of 25, 50, 75, and 100 km,
respectively.

lengths larger than 10 million to be able to claim to have truly
distributed a secret key among distance parties.

B. Influence of the parameter estimation

Here we focus on the value of the effective excess noise
�mξ due to the finite precision of the parameter estimation. In
Fig. 2, we display this effective excess noise as a function of
m, the number of samples used in the parameter estimation.
From Fig. 2, it is clear that the parameter estimation has a
major impact on the final secret key rate. Indeed, the four-state
protocol, for instance, which can achieve remarkably long
distances in the asymptotic limit, requires very low values of
the excess noise, typically less than 1%, to distribute key over
distances close to 100 km. Here, we see that such parameters
require sampling of 10 billion couples of correlated data! For
this reason, it is doubtful that continuous-variable QKD is
very practical over distances much larger than 100 km, at least
with the security proofs presently available. Note that a similar
situation is also true for discrete-variable protocols.

C. Secret key rate in the finite-size scenario

Here we first consider the secret key rate k1, which is the one
obtained if the estimators t̄ and σ̄ 2 are equal to their expected
values. We do not proceed to a complete optimization of the
various parameters, since it will not fundamentally change the
results, and instead take the following values:

εEC = ε̄ = εPA = εPE = 10−10,

ε ≈ 10−10,

m = n = N/2, (33)

β = 80%,

η = 0.6.

The choice for ε is very conservative, but it turns out that
the secret key rate does not depend very critically on ε (a
similar observation was made in [11]). The choice to use
half of the data for the parameter estimation procedure results
from the fact that the block size is almost entirely decided
by the number of data actually sampled. The reconciliation
efficiency of 80% is a conservative value [17,31]. Finally, we
consider the quantum efficiency of the homodyne detection
to be 60%, which corresponds to a typical experimental
parameter [30]. Moreover, we consider the paranoid mode
where the electronic noise is null. Remember that two models
can be considered when discussing the security of CV QKD:
either the electronic noise of Bob’s detection is considered
regular excess noise (paranoid mode) or it is attributed to Bob’s
detection (realistic mode). The second case is more natural, but
it implies that Bob’s detection stage should be calibrated. As
a first approximation, the paranoid mode without electronic
noise is equivalent (in the asymptotic regime) to the case of a
realistic mode where the electronic noise is non-negligible but
is not supposed to be caused by the action of an eavesdropper.
In the finite-size regime, one can still make the assumption
that Bob’s detection is very well calibrated and that there is
virtually no uncertainty in the value of the electronic noise.
As a consequence, to avoid too many technical details, we
present here results obtained in the paranoid scenario without
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FIG. 3. (Color online) Secret key rate for the four-state protocol.
From left to right, curves correspond, respectively, to block lengths
of N = 108, 1010, 1012, and 1014. Full lines, dashed lines, and dotted
lines correspond, respectively, to an expected value of the excess
noise of 0.001 (optimistic), 0.005 (realistic), and 0.01 (conservative).
The secret key rate is null for a block length of 106.

electronic noise. Note that this solution was also chosen in the
review by Scarani et al. [1].

The secret key rates displayed in Fig. 3 correspond to the
key rate one can expect if the estimators give the true value of
the parameters. As we argued earlier, a more relevant secret
key rate corresponds to the expected value computed for the
probability distributions of the estimators t̂ and σ̂ 2.

As already explained, the most important parameter for
the final secret key rate is the excess noise. This means that
one should mainly consider the probability distribution of the
estimator σ̂ 2. According to Equation (21), one has

mσ̂ 2

σ 2
∼ χ2(m − 1). (34)

For large m, the χ2 distribution tends to a normal distribution,
which translates into

σ̂ 2 ∼ N
(

σ 2,
2σ 4

m

)
, (35)

where, as before, σ 2 corresponds to the true value of the
parameter. Here we can therefore compute an approximate
value of the expected secret key rate k2 as

k2 = E[f (t̂ ,σ̂ 2)] ≈ E[f (t,σ̂ 2)], (36)

since t̂ has a probability distribution peaked around the true
value of the parameter t and because f does not depend
critically on the value of t . Using the normality of the random
variable σ̂ 2, one obtains

k2 =
∫ ∞

−∞

1

2σ 2

√
m

π
exp

(
−m

(s − σ 2)2

4σ 4

)
f (t,s) ds. (37)

It turns out that the behavior of k2 is numerically indis-
tinguishable from the value of k1. For this reason, we do not
display it here. The main consequence is that one can, in very
good approximation, compute the final key rate by considering
the expected values of the parameters being estimated. This
is rather fortunate, as computing k2 is much more demanding
from a computing point of view than computing k1.

0 50 100 150
10−6

10−5

10−4

0.001

0.01

0.1
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K

FIG. 4. (Color online) Secret key rate for the four-state (thin
curves) and eight-dimension (thick curves) protocols obtained for
an expected realistic value of the excess noise of 0.005 and for
εPE = 10−10. From left to right, the block length N is equal
to 108, 1010, 1012, and 1014. The secret key rate is null for a
block length of 106. The eight-dimension protocol is better for all
curves.

Finally, in Fig. 4, we display the results for the recently
proposed eight-dimension protocol described in detail in
Ref. [19], which outperforms the four-state protocol in realistic
cases and may also be easier to implement.

VII. PERSPECTIVES

This article has laid down the basis of finite-size analysis of
CV QKD protocols, but several problems remain open and
should be addressed in further studies. First, a basic tool
used in the asymptotic regime is the Gaussian optimality
theorem [40,41], which remains valid for collective attacks,
even in the case of protocols which do not use a Gaussian
modulation, that is, protocols designed to perform well
over long distance [17,19]. Whereas using this theorem is
completely legitimate in the asymptotic regime [40,41], it
is not so clear in a finite-size scenario, where very subtle
(and highly improbable) attacks might perform slightly better.
Such attacks would have to be based on the idea of fooling
Alice and Bob by having them make wrong assumptions in
the parameter estimation procedure. This subtle point (given
that the blocks have to be very large anyway) deserves further
analysis.

Second, and perhaps more importantly, one should prove
whether or not collective attacks are optimal in the finite-size
setting. If this is the case, then all is for the best, and the
bounds derived here are accurate. But if collective attacks
are not optimal, then one needs to come up with bounds as
tight as possible for coherent attacks. On this subject, it would
seem that adapting the postselection technique from [29]
to continuous variables (using, e.g., symmetries in phase
space as explained in [38]) would lead to much tighter
bounds than the one currently available through an exponential
version of de Finetti theorem for infinite dimensional Hilbert
spaces [7].

Despite the fact that there are still open problems con-
cerning the finite-size analysis of CV QKD, some lessons
can already be learned. First, it should be emphasized again
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that the problem of the reconciliation efficiency at a low
SNR is essentially solved by new protocols using discrete
modulation and high-efficiency reconciliation codes, such as
the four-state [17] and eight-dimension [19] protocols. Then,
as is the case for discrete-variable QKD protocols, the most
important remaining finite-size effect is the limited accuracy
of the parameter estimation. For CVQKD, the main issue is
the value of the channel excess noise, which already has a
critical effect for values as small as 1% of the shot noise.
Nevertheless, operating windows do exist, provided that both
the “real” excess noise is very small, and the block size is very
large. In such circumstances, a secure key distribution over

distances larger than 50 km seems quite feasible, especially
with the eight-dimension protocol [19], as shown in Fig. 4.
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[31] A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier,

Phys. Rev. A 77, 042325 (2008).
[32] S. Popescu, A. Short, and A. Winter, Nature Phys. 2, 754

(2006).
[33] R. König, R. Renner, and C. Schaffner, IEEE Trans. Inf. Theory

55, 4337 (2009).
[34] R. Renner and S. Wolf, in IEEE International Symposium on

Information Theory 2004 (2004), p. 233.
[35] G. Van Assche, J. Cardinal, and N. J. Cerf, IEEE Trans. Inf.

Theory 50, 394 (2004).
[36] M. Bloch, A. Thangaraj, S. McLaughlin, and J. Merolla, in

IEEE Information Theory Workshop, 2006. ITW’06 Punta del
Este (2006), pp. 116–120.

[37] F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and
P. Grangier, Quantum Inf. Comput. 3, 535 (2003).

[38] A. Leverrier, E. Karpov, P. Grangier, and N. Cerf,
New J. Phys. 11, 115009 (2009).

[39] A. Leverrier and P. Grangier, Phys. Rev. A 81, 062314 (2010).
[40] M. Navascués, F. Grosshans, and A. Acı́n, Phys. Rev. Lett. 97,

190502 (2006).
[41] R. Garcı́a-Patrón and N. J. Cerf, Phys. Rev. Lett. 97, 190503

(2006).
[42] A. Montfort, Cours de statistique mathématique (Economica,
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