
44  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSADMINInvent More, Toil Less

B E T S Y B E Y E R , B R E N D A N G L E A S O N , D A V E O ’ C O N N O R , A N D V I V E K R A U

Betsy Beyer is a Technical

Writer for Google Site

Reliability Engineering in NYC.

She has previously written

documentation for Google

Datacenters and Hardware Operations teams.

Before moving to New York, Betsy was a

lecturer on technical writing at Stanford

University. She holds degrees from Stanford

and Tulane.

bbeyer@google.com

Brendan Gleason is a Site

Reliability Engineer in Google’s

NYC office. He has worked on

several Google storage systems

and is currently bringing

Bigtable to the cloud. Brendan has a BA from

Columbia University. bfg@google.com

Dave O’Connor is an SRE

Manager at Google Dublin,

responsible for Google’s shared

storage and the Production

Network. He previously worked

for Netscape and AOL in Ireland, as well as for

several smallish startups in Dublin. He holds a

BSc in Computer Applications from Dublin City

University. daveoc@google.com

Vivek Rau is an SRE Manager at

Google and a founding member

of the Launch Coordination

Engineering sub-team of SRE.

His current focus is improving

the reliability of Google’s cloud platform. Vivek

has a BS degree in computer science from IIT-

Madras. vivekr@google.com

T
his article builds upon Vivek Rau’s chapter “Eliminating Toil” in Site

Reliability Engineering: How Google Runs Production Systems [1]. We

begin by recapping Vivek’s definition of toil and Google’s approach to

balancing operational work with engineering project work. The Bigtable SRE

case study then presents a concrete example of how one team at Google went

about reducing toil. Finally, we leave readers with a series of best practices

that should be helpful in reducing toil no matter the size or makeup of the

organization.

SRE’s Approach to Toil
As discussed in depth in the recently published Site Reliability Engineering, Google SRE

seeks to cap the time engineers spend on operational work at 50%. Because the term opera-

tional work might be interpreted in a variety of ways, we use a specific word to describe the

type of work we seek to minimize: toil.

Toil Defined
To define toil, let’s start by enumerating what toil is not. Toil is not simply equivalent to:

 ◆ “Work I don’t like to do”

 ◆ Administrative overhead such as team meetings, setting and grading goals, and HR

 paperwork

 ◆ Grungy work, such as cleaning up the entire alerting configuration for your service

and to remove clutter

Instead, toil is the kind of work tied to running a production service that tends to be:

 ◆ Manual

 ◆ Repetitive

 ◆ Automatable and not requiring human judgment

 ◆ Interruptdriven and reactive

 ◆ Of no enduring value

Work with enduring value leaves a service permanently better, whereas toil is “running fast

to stay in the same place.” Toil scales linearly with a service’s size, traffic volume, or user

base. Therefore, as a service grows, unchecked toil can quickly spiral to fill 100% of every

one’s time.

As reported by SREs at Google, our top three sources of toil (in descending order) are:

 ◆ Interrupts (nonurgent servicerelated messages and emails)

 ◆ Oncall (urgent) responses

 ◆ Releases and pushes

Toil isn’t always and invariably bad; all SREs (and other types of engineers, for that matter)

necessarily have to deal with some amount of toil. But toil becomes toxic when experienced

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 45

SYSADMIN
Invent More, Toil Less

in large quantities. Among the many reasons why too much

toil is bad, it tends to lead to career stagnation and low morale.

Spending too much time on toil at the expense of time spent

engineering hurts the SRE organization by undermining our

engineeringfocused mission, slowing progress and feature

velocity, setting bad precedents, promoting attrition, and causing

breach of faith with new hires who were promised interesting

engineering work.

Addressing Toil through Engineering
Project work undertaken by SREs is key in keeping toil at man

ageable levels. Capping operational work at 50% frees up the rest

of SRE time for longterm engineering project work that aims

to either reduce toil or add service features. These new features

typically focus on improving reliability, performance, or utiliza

tion—efforts which often reduce toil as a secondorder effect.

SRE engineering work tends to fall into two categories:

 ◆ Software engineering: Involves writing or modifying code,

in addition to any associated design and documentation work.

Examples include writing automation scripts, creating tools or

frameworks, adding service features for scalability and reliabil

ity, or modifying infrastructure code to make it more robust.

 ◆ Systems engineering: Involves configuring production

systems, modifying configurations, or documenting systems

in a way that produces lasting improvements from a onetime

effort. Examples include monitoring setup and updates, load

balancing configuration, server configuration, tuning of OS

parameters, and loadbalancer setup. Systems engineering also

includes consulting on architecture, design, and productioniza

tion for developer teams.

Engineering work enables the SRE organization to scale up

sublinearly with service size and to manage services more effi

ciently than either a pure Dev team or a pure Ops team.

Case Study: Bigtable SRE
It’s important to understand exactly what toil is, and why it

should be minimized, before engaging boots on the ground to

address it. Here’s how one SRE group at Google actively worked

to reduce toil once they realized that it was overburdening the

team.

Toil in 2012
In 2012, the SRE team responsible for operating Bigtable, a

Google high performance data storage system, and Colossus,

the distributed file system upon which Bigtable was built, was

suffering from a high rate of operational load.

Early in the year, pages had reached an unsustainable level

(five incidents per standard 12hour shift; Google purposefully

designs many of its SRE teams to be split across two sites/time

zones to provide optimal coverage without overtaxing oncall

engineers with 24hour shifts), and the team began an effort

to eliminate unnecessary alerts and address true root causes

of pages. With concentrated effort, the team brought the pager

load down to a more sustainable level (around two incidents

per shift). However, incident response was only one component

of the team’s true operational load. User requests for quota

changes, configuration changes, performance debugging, and

other operational tasks were accumulating at an everincreasing

rate. What began as a sustainable support model when Bigtable

SRE was responsible for just a few cells and a handful of cus

tomers had snowballed into an unpleasant amount of unreward

ing toil.

The team wasn’t performing all of its daily operations “by hand,”

as SREs had created partial automation to assist with a number

of tasks. However, this automation stagnated while both the

size of Google’s fleet and the number of services that depend on

Bigtable grew significantly. On any given day, multiple engineers

were involved in handling the toildriven work that resulted

from oncall incidents and customer requests, which meant

that these SREs couldn’t focus on engineering and project work.

In fact, an entire subteam was dedicated to the repetitive but

obligatory task of handling requests for increases and decreases

in Bigtable capacity. To make matters worse, the team was so

overburdened with operational load that they didn’t have time to

adequately root cause many of the incidents that triggered pages.

The inability to resolve these foundational problems created a

vicious cycle of everincreasing operational load.

Turning Point
Acknowledging that its operational trajectory was unsustain

able, the entire Bigtable and Colossus SRE team assembled

to discuss its roadmap and future. While team members were

nearly universally unhappy with the level of operational load,

they also felt a strong responsibility to both support their users

and to make Google’s storage system easy to use. They needed a

solution that would benefit all parties involved in the long run,

even if this solution meant making some difficult decisions

about how to proceed in the short term.

After much discussion, Bigtable SRE agreed that continuing

to sacrifice themselves to achieve the shortterm goals of their

customers was actually counterproductive, not only the team,

but also to their customers. While fulfilling customer requests

on an asneeded basis might have been temporarily gratifying, it

was not a sustainable strategy. In the long run, customers value

a reliable, predictable interface offered by a healthy team more

than they value a request queue that processes any and every

request, be it standard or an unconventional oneoff, in an inde

terminate amount of time.

46  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSADMIN
Invent More, Toil Less

Tactics
The team realized that in order to get their operational work

under control and improve the Bigtable service for their users,

they would have to say “no” to some portion of customer requests

for a period of time. The team, supported by management,

decided that it was important (and ultimately better for Bigtable

users) to respect their colleagues and themselves by pushing

back on complex customer requests, performance investiga

tions for customers who were within Bigtable’s promised SLO,

and other routine work that yielded nominal value. The team’s

management understood that the longterm health of both the

team and the service could be substantially improved by making

carefully considered shortterm sacrifices in service quality.

Additionally, they decided to split the team into two shards: one

focused on Bigtable, and one focused on Colossus. This split had

two advantages: it allowed engineers to specialize technically on

a single product, and it allowed the leads of each shard to focus

on improving the operational state of a single service.

In addition to temporarily impacting how, and how quickly, they

processed user requests, the team recognized that their new

focus on reducing operational load would also impact their work

in a couple of other key areas: their ability to complete project

work and their relationship with partner developer teams. For

the time being, SREs would have less bandwidth to collaborate

with the core Bigtable development team in designing, qualify

ing, and deploying new features. Fortunately, the Bigtable devel

opers anticipated that reducing operational load would result

in a better, more stable product, and went so far as to allocate

some of their engineers to this effort. Assisting the SRE team

in improving service automation would ultimately benefit both

teams if developers could shorten the window of slowed feature

velocity.

The Turnaround Begins: Incremental Progress
Equipped with a narrowed scope and a clear mandate to focus

on reducing toil, the Bigtable SRE Team began making progress

in clearing their operational backlog. They first turned an eye to

routine user requests. The overwhelming majority of requests

fell into three buckets:

 ◆ Increases and decreases in quota

 ◆ Turnups and turndowns of Bigtable footprints

 ◆ Turnups and turndowns of datacenters

Rather than trying to engineer an allencompassing bigbang

solution, the team made an important decision: to deliver incre

mental progress.

Bigtable SRE first focused on fully automating the various

footprint and quotarelated requests. While this step didn’t

eliminate tickets, it greatly simplified the ticket queue and

reduced the amount of time it took to complete requests. The

team could now fulfill each request by simply starting automa

tion to complete the task, eliminating the several manual steps

previously necessary.

Next, the team focused on wrapping automation into selfservice

tools. Initially, they simply added quota to an existing footprint,

which was both the most common request and the easiest

request to transition to selfservice. SREs then began adding

selfservice coverage for more operations, prioritizing accord

ing to complexity and frequency. They tackled common and less

complex tasks first, moving from quota reductions, to footprint

turnups, to footprint turndowns.

Bigtable SRE’s iterative approach was twofold: in addition to

tackling lowerhanging fruit first, they approached each self

service task starting from the basics. Rather than trying to

create fully robust solutions from the getgo, they launched basic

functionality, upon which they incrementally improved. For

example, the initial version of the selfservice software for quota

reductions and footprint turndowns couldn’t handle all possible

configurations. Once users were equipped with this basic func

tionality, the engineers incrementally expanded the selfservice

coverage to a growing fraction of the request catalog.

End Game
By breaking up the toil problem into smaller surmountable

pieces that could deliver incremental value, Bigtable SRE was

able to create a snowball of work reduction: each incremental

reduction of toil created more engineering time to work on future

toil reduction. As shown in Figure 1, by 2014, the team was in a

much improved place operationally—they reduced user requests

from a peak of more than 2200 requests per quarter in early 2013

to fewer than 400 requests per quarter.

Figure 1: Bigtable SRE customer requests per quarter

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 47

SYSADMIN
Invent More, Toil Less

Looking Forward
While Bigtable SRE significantly improved its handle on toil, the

war against toil is never over. As Bigtable continues to add new

features, and its number of customers and datacenters continues

to grow, Bigtable SRE is constantly on the offensive in combat

ting creeping levels of toil. Perhaps the most significant change

Bigtable SRE underwent in this process was a shift in culture.

Before the turnaround, the team viewed operational work as an

unpleasant but necessary task that they didn’t have the power

to refuse or delay. Since the turnaround, the team is extremely

skeptical of any feature or process that will add operational

work. As team members challenge and hold each other account

able for the level of operational load on the team, they aim to

never regress to similarly undesirable levels of toil.

Best Practices for Reducing Toil
Now that we’ve seen how one particular SRE team at Google

tackled toil, what lessons and best practices can you glean from

a massivescale operation like Google that apply to your own

company or organization?

As they’re tasked with running the entire gamut of services that

make up Google production, SRE teams at Google are necessar

ily varied, as are their approaches to toil reduction. While some

of the particular approaches taken by a team like Bigtable SRE

might not be relevant across the board, we’ve boiled down SRE’s

diverse approaches to reducing toil into some essential best

practices. These recommendations hold regardless of whether

you’re approaching service management from scratch or looking

to help a team already burdened by excessive toil.

Buy-in Is Key
As demonstrated by the Bigtable SRE case study, you can’t tackle

toil in a meaningful way without managerial support behind the

idea that toil reduction is a worthwhile goal. Sometimes long

term wins come with the tradeoff of shortterm compromises,

and securing managerial buyin for temporarily pushing back on

routine but important work is likely easier said than done. The

key here is for management to consider what measures will enable

a team to be significantly more effective in the long run. For

example, Bigtable SRE was only able to rein in the toil overwhelm

ing their team by deprioritizing feature development and manual

and timeconsuming customer requests in the short term.

Bigtable SRE also found that breaking down toil reduction

efforts into a series of small projects was key for a few reasons.

Perhaps most obviously, this incremental approach gives the

team a sense of momentum early on as it meets goals. It also

enables managers to evaluate a project’s direction and provide

course corrections. Finally, it makes progress easily visible,

increasing buyin from external stakeholders and leadership.

Minimize Unique Requirements
Using the “pets vs. cattle” analogy discussed in a 2013 UK

Register article [2], your systems should be automated, easily

interchangeable, replaceable, and lowmaintenance (cattle); they

should not have unique requirements for human care and atten

tion (pets). Should disaster strike, you’ll be in a much better posi

tion if you’ve created systems that can be recreated easily from

scratch. Tempting as it might be to manually cater to individual

users or customers, such a model is not scalable.

Similarly, understand the difference between parts of the system

that require individual care and attention from a human versus

parts that are unremarkable and just need to selfheal or be

replaced automatically. Depending on your scale, these com

ponents might be hosts, racks of hosts, network links, or even

entire clusters.

Be thoughtful about how you handle configuration manage

ment. By using a centrally controlled tool like Puppet, you gain

scalability, consistency, reliability, reproducibility, and change

management control over your entire system, allowing you to

spin up new instances on demand or push changes en masse.

While many people and teams recognize that building oneoff

solutions is suboptimal, it’s still often tempting to build such

systems. Actually steering away from creating special cases for

shortterm efficacy and insisting on standardized, homogeneous

solutions requires focus and periodic review by team leads and

managers.

Invest in Build/Test/Release Infrastructure Early
Instituting standardization and automation might be a hard sell

early on in a service’s life cycle, but it will pay off many times

over down the road. Implementing this infrastructure is much

harder later on, both technically and organizationally.

That said, there’s a balance between insisting on this approach

wholesale, thus hurting velocity, versus postponing infrastructure

development until suboptimally late in the development cycle. Try

to plan accordingly—once you’re beyond the rapid launchand

iterate phase and relatively certain that the system will have the

longevity to warrant this kind of investment, put sufficient time

and effort into developing build, test, and release infrastructure.

Audit Your Monitoring Regularly
Establish a regular feedback loop to evaluate signal versus noise

in your monitoring setup. Be thorough and ruthless in eliminat

ing noisy and nonactionable alerts. Otherwise, important alerts

that you should be paying attention to are drowned out in the

noise. For each realtime alert, repeat the mantra, “What does a

human being need to do, right this second?” The Site Reli-

ability Engineering chapter “Monitoring Distributed Systems”

covers this topic in depth.

48  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSADMIN
Invent More, Toil Less

Conduct Postmortems
The need for postmortems may not surface in the course of

everyday work, but consistently undertaking them massively

contributes to the stability of a system or service. Instead of just

scrambling to get the system back up and running every time

an incident occurs, take the time to identify and triage the root

cause after the immediate crisis is resolved. As detailed in the

SRE chapter “Postmortem Culture: Learning from Failure,”

these collaborative postmortem documents should be both

blameless and actionable. Avoid onesizefitsall approaches:

this exercise should be lightweight for small and simple inci

dents but much more indepth for large and complex outages.

No Haunted Graveyards
Even when it comes to companies and teams that consider

themselves fastmoving and open to risk, parts of produc

tion or the codebase are sometimes considered “too risky” to

change—either very few people understand these components

or they were designed in such a way that there’s a risk assigned

to changing or touching them. Our goal is to control trouble, not

to avoid it at all costs. In such cases of perceived risk, smoke out

risk rather than leaving it to fester.

Conclusion
Any team tasked with operational work will necessarily be

burdened with some degree of toil. While toil can never be com

pletely eliminated, it can and should be thoughtfully mitigated in

order to ensure the longterm health of the team responsible for

this work. When operational work is left unchecked, it naturally

grows over time to consume 100% of a team’s resources. Engi

neers and teams performing an SRE or DevOps role owe it to

themselves to focus relentlessly on reducing toil—not as a luxury,

but as a necessity for survival.

The type of engineering work generated by toil reduction proj

ects is much more interesting and fulfilling than operational

work, and it leads to career growth and healthier team dynam

ics. Google SRE teams have found that working from the set of

best practices above, in addition to constantly reassessing our

workload and strategies, has equipped us to continually scale up

the creative challenges, business impact, and technical sophisti

cation of the SRE job.

Acknowledgments
Special thanks to the following for helping with background for

this article: Olivier Ansaldi, Brent Chapman, Neil Crellin, Sandy

Jensen, Jeremy Katz, Thomas Labatte, Lisa Lund, and Nir Tarcic.

References
[1] B. Beyer, C. Jones, J. Petoff, and N. Murphy, eds., Site Reli-

ability Engineering (O’Reilly Media, 2016).

[2] S. Sharwood, “Are Your Servers Cattle or Pets?” The Regis-

ter, March 18, 2013: http://www.theregister.co.uk/2013/03/18

/servers_pets_or_cattle_cern/.

