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“Not Only Defended But Also Applied”: The Perceived Absurdity
of Bayesian Inference

Andrew GELMAN and Christian P. ROBERT

The missionary zeal of many Bayesians of old has been

matched, in the other direction, by an attitude among some

theoreticians that Bayesian methods were absurd—not merely

misguided but obviously wrong in principle. We consider sev-

eral examples, beginning with Feller’s classic text on probability

theory and continuing with more recent cases such as the per-

ceived Bayesian nature of the so-called doomsday argument. We

analyze in this note the intellectual background behind various

misconceptions about Bayesian statistics, without aiming at a

complete historical coverage of the reasons for this dismissal.
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1. A VIEW FROM 1950

Younger readers of this journal may not be fully aware of

the passionate battles over Bayesian inference among statisti-

cians in the last half of the twentieth century. During this pe-

riod, the missionary zeal of many Bayesians was matched, in

the other direction, by a view among some theoreticians that

Bayesian methods are absurd—not merely misguided but obvi-

ously wrong in principle. Such anti-Bayesianism could hardly

be maintained in the present era, given the many recent practical

successes of Bayesian methods. But by examining the historical

background of these beliefs, we may gain some insight into the

statistical debates of today.

Andrew Gelman, Departments of Statistics and Political Science, Columbia Uni-

versity, New York, NY 10027 (E-mail: gelman@stat.columbia.edu). Christian
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We begin with a Note on Bayes’ rule that appeared in William

Feller’s classic probability text:

Unfortunately Bayes’ rule has been somewhat discredited

by metaphysical applications of the type described above. In

routine practice, this kind of argument can be dangerous. A

quality control engineer is concerned with one particular ma-

chine and not with an infinite population of machines from

which one was chosen at random. He has been advised to

use Bayes’ rule on the grounds that it is logically acceptable

and corresponds to our way of thinking. Plato used this type

of argument to prove the existence of Atlantis, and philoso-

phers used it to prove the absurdity of Newton’s mechanics.

In our case it overlooks the circumstance that the engineer

desires success and that he will do better by estimating and

minimizing the sources of various types of errors in predict-

ing and guessing. The modern method of statistical tests and

estimation is less intuitive but more realistic. It may be not

only defended but also applied. W. Feller, 1950 (pp. 124–125

of the 1970 edition)

Feller believed that Bayesian inference could be defended

(i.e., supported via theoretical argument) but not applied to

give reliable answers to problems in science or engineering,

a claim that seems quaint in the modern context of Bayesian

methods being used in problems from genetics, toxicology, and

astronomy to economic forecasting and political science. As we

discuss below, what struck us about Feller’s statement was not

so much his stance as his apparent certainty.

One might argue that, whatever the merits of Feller’s state-

ment today, it might have been true back in 1950. Such a claim,

however, would have to ignore, for example, the success of

Bayesian methods by Turing and others in code breaking dur-

ing the Second World War, followed up by expositions such as

Good (1950), as well as Jeffreys’s Theory of Probability, which

came out in 1939. Consider this recollection from physicist and

Bayesian E. T. Jaynes:

When, as a student in 1946, I decided that I ought to learn

some probability theory, it was pure chance which led me to

take the book Theory of Probability by Jeffreys, from the li-

brary shelf. In reading it, I was puzzled by something which,

I am afraid, will also puzzle many who read the present book.

Why was he so much on the defensive? It seemed to me that

Jeffreys’ viewpoint and most of his statements were the most

obvious common sense, I could not imagine any sane person

disputing them. Why, then, did he feel it necessary to insert
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so many interludes of argumentation vigorously defending

his viewpoint? Wasn’t he belaboring a straw man? This sus-

picion disappeared quickly a few years later when I consulted

another well-known book on probability (Feller, 1950) and

began to realize what a fantastic situation exists in this field.

The whole approach of Jeffreys was summarily rejected as

metaphysical nonsense [emphasis added], without even a de-

scription. The author assured us that Jeffreys’ methods of

estimation, which seemed to me so simple and satisfactory,

were completely erroneous, and wrote in glowing terms about

the success of a “modern theory,” which had abolished all

these mistakes. Naturally, I was eager to learn what was

wrong with Jeffreys’ methods, why such glaring errors had

escaped me, and what the new, improved methods were. But

when I tried to find the new methods for handling estimation

problems (which Jeffreys could formulate in two or three

lines of the most elementary mathematics), I found that the

new book did not contain them. E. T. Jaynes (1974, pp. iv–v).

To return to Feller’s perceptions in 1950, it would be ac-

curate, we believe, to refer to Bayesian inference as being an

undeveloped subfield in statistics at that time, with Feller being

one of many academics who were aware of some of the weaker

Bayesian ideas but not of the good stuff. This goes even without

mentioning Wald’s complete class results of the 1940s. (Wald’s

Statistical Decision Functions was published in 1950.)

It is in that spirit that we consider Feller’s notorious dis-

missal of Bayesian statistics, which is exceptional not in its

recommendation—after all, as of 1950 (when the first edition

of his wonderful book came out) or even 1970 (the year of his

death), Bayesian methods were indeed out of the mainstream

of American statistics, both in theory and in application—but

rather in its intensity. Feller combined a perhaps-understandable

skepticism of the wilder claims of Bayesians with a naı̈ve (in ret-

rospect) faith in the classical Neyman–Pearson theory to solve

practical problems in statistics.

To say this again, Feller’s real error was not his anti-

Bayesianism (an excusable position, given that many

researchers at that time were apparently unaware of modern ap-

plied Bayesian work) but rather his casual, implicit, unthinking

belief that classical methods could solve whatever statistical

problems might come up. In short, Feller was defining Bayesian

statistics by its limitations while crediting the Neyman–Pearson

theory with the 1950 equivalent of vaporware: the unstated

conviction that, having solved problems such as inference from

the Gaussian, Poisson, binomial, etc., distributions, it would

be no problem to solve all sorts of applied problems in the

future. Indeed, we take Feller’s statement about “estimating

and minimizing the sources of various types of errors” to be a

reference to the Type I and Type II errors of Neyman–Pearson

theory, given that he immediately follows with an allusion

to “the modern method of statistical tests and estimation.” In

retrospect, Feller was wildly optimistic that the principle of

“estimating and minimizing the sources of various types of

errors” would continue to be the best approach to solving en-

gineering problems. (Feller’s appreciation of what a statistical

problem is seems rather moderate: the two examples Feller

concedes to the Bayesian team are (i) finding the probability a

family has one child given that it has no girl and (ii) urn models

for stratification/spurious contagion, problems that are purely

probabilistic, no statistics being involved.) Or, to put it another

way, even within the context of prediction and minimizing er-

rors, why be so sure that Bayesian methods cannot apply? Feller

perhaps leapt from the existence of philosophical justification

of Bayesian inference to an assumption that philosophical

arguments were the only justification of Bayesian methods.

Where was this coming from, historically? With Stephen

Stigler out of the room, we are reduced to speculation (or, maybe

we should say, we are free to speculate). We doubt that Feller

came to his own considered judgment about the relevance of

Bayesian inference to the goals of quality control engineers.

Rather, we suspect that it was from discussions with one or

more statistician colleagues that he drew his strong opinions

about the relative merits of different statistical philosophies. In

that sense, Feller is an interesting case in that he was a lead-

ing mathematician of his area, a person who one might have

expected would be well informed about statistics, and the quo-

tation reveals the unexamined assumptions of his colleagues. It

is doubtful that even the most rabid anti-Bayesian of 2010 would

claim that Bayesian inference cannot apply. [We would further

argue that the “modern methods of statistics” Feller refers to

have to be understood in historical context as eliminating older

approaches by Bayes, Laplace, and other 19th century authors,

in a spirit akin to Keynes (1921). Modernity starts with the

great anti-Bayesian Ronald Fisher who, along with Richard von

Mises, is mentioned on page 6 by Feller as the originator of

“the statistical attitude towards probability;” von Mises (1957)

may have been strong in mathematics and other fields, but when

it came to a simple comparison of binomial variances, he did

not know how to check for statistical significance (see Gelman

2011). He rejected not only “persistent subjectivists” (p. 94)

such as John Maynard Keynes and Harold Jeffreys, but also

Fisher’s likelihood theory (p. 158).]

2. THE LINK BETWEEN BAYES AND BOGOSITY

Non-Bayesians still occasionally dredge up Feller’s quota-

tion as a pithy reminder of the perils of philosophy unchained

by empiricism (see, e.g., Ryder 1976; DiNardo 2008). In a re-

cent probability text, Stirzaker (1999) reviewed some familiar

probability paradoxes (e.g., the Monty Hall problem) and draws

the following lesson:

In any experiment, the procedures and rules that define the

sample space and all the probabilities must be explicit and

fixed before you begin. This predetermined structure is called

a protocol. Embarking on experiments without a complete

protocol has proved to be an extremely convenient method

of faking results over the years. And will no doubt continue

to be so. (p. 86)

Stirzaker follows up with a portion of the Feller quote and

writes “despite all this experience, the popular press and even,

sometimes, learned journals continue to print a variety of these

bogus arguments in one form or another.” We are not quite sure

why he attributes these problems to Bayes, rather than, say,

to Kolmogorov—after all, these error-ridden arguments can be

viewed as misapplications of probability theory that might never

have been made if people were to work with absolute frequencies
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rather than fractional probabilities (von Mises 1957; Gigerenzer

2002).

In any case, no serious scientist can be interested in bogus

arguments (except, perhaps, as a teaching tool or as a way to

understand how intelligent and well-informed people can make

evident mistakes, as discussed in chapter 3 of Gelman et al.

2008). What is perhaps more interesting is the presumed as-

sociation between Bayes and bogosity. We suspect that it is

Bayesians’ openness to making assumptions that makes their

work a particular target, along with (some) Bayesians’ intem-

perate rhetoric about optimality. Somehow classical terms such

as “uniformly most powerful test” do not seem so upsetting.

Perhaps what has bothered mathematicians such as Feller and

Stirzaker is that Bayesians actually seem to believe their as-

sumptions rather than merely treating them as counters in a

mathematical game. In the first quote, the interpretation of the

prior distribution as a reasoning based on an “infinite popula-

tion of machines” certainly indicates that Feller takes the prior

at face value! As shown by the recent foray of Burdzy (2009)

into the philosophy of Bayesian foundations and in particular of

deFinetti’s, this interpretation may be common among proba-

bilists, whereas we see applied statisticians as considering both

prior and data models as assumptions to be valued for their use

in the construction of effective statistical inferences.

In applied Bayesian inference, it is not necessary for us to

believe our assumptions, any more than biostatisticians believe

in the truth of their logistic regressions and proportional hazards

models. Rather, we make strong assumptions and use subjective

knowledge to make inferences and predictions that can be tested

by comparing with observed and new data (see Gelman and

Shalizi 2013 or Mayo 1996 for a similar attitude coming from a

non-Bayesian direction). Unfortunately, we doubt that Stirzaker

was aware of this perspective when writing his book—nor was

Feller, working years before either of the present authors were

born.

Recall the following principle, to which we (admitted

Bayesians) subscribe:

Everyone uses Bayesian inference when it is clearly appro-

priate. A Bayesian is someone who uses Bayesian inference

even when it might seem inappropriate.

What does this mean? Mathematical modelers from R. A.

Fisher on down have used and will use probability to model

physical or algorithmic processes that seem well approximated

by randomness, from rolling of dice to scattering of atomic par-

ticles to mixing of genes in a cell to random-digit dialing. To be

honest, most statisticians are pretty comfortable with probability

models even for processes that are not so clearly probabilistic,

for example, fitting logistic regressions to purchasing decisions

or survey responses or connections in a social network. (As dis-

cussed in Robert 2011, Keynes’ Treatise on Probability is an

exception in that Keynes even questions the sampling models.)

Bayesians will go the next step and assign a probability distribu-

tion to a parameter that one could not possibly imagine to have

been generated by a random process, parameters such as the

coefficient of party identification in a regression on vote choice

or the overdispersion in a network model or Hubble’s constant

in cosmology. There is no inconsistency in this opposition once

one realizes that priors are not reflections of a hidden “truth”

but rather evaluations of the modeler’s uncertainty about the pa-

rameter. Using distributions on a fixed but unknown parameter

extends to non-Bayesians like Efron (1986) and Fraser (2011).

As noted above, it is our impression that the assumptions

of the likelihood are generally more crucial—and often less

carefully examined—than the assumptions in the prior. Still, we

recognize that Bayesians take this extra step of mathematical

modeling. In some ways, the role of Bayesians compared

with other statisticians is similar to the position of economists

compared with other social scientists, in both cases making ad-

ditional assumptions that are clearly wrong (in the economists’

case, models of rational behavior) to get stronger predictions.

With great power comes great responsibility, and Bayesians and

economists alike have the corresponding duty to check their

predictions and abandon or extend their models as necessary.

To return briefly to Stirzaker’s quote, we believe he is

wrong—or, at least, does not give any good evidence—in his

claim that “in any experiment, the procedures and rules that de-

fine the sample space and all the probabilities must be explicit

and fixed before you begin,” (p. 86). Setting a protocol is fine if

it is practical, but as discussed by Rubin (1976), what is really

important from a statistical perspective is that all the information

used in the procedure be based on known and measured vari-

ables. This is similar to the idea in survey sampling that clean

inference can be obtained from probability sampling—that is,

rules under which all items have nonzero probabilities of being

selected, with these probabilities being known (or, realistically,

modeled in a reasonable way).

It is unfortunate that certain Bayesians have published mis-

leading and oversimplified expositions of the Monty Hall prob-

lem (even when fully explicated, the puzzle is not trivial, as the

resolution requires a full specification of a probability distribu-

tion for Monty’s possible actions under various states of nature,

see, e.g., Rosenthal 2010); nonetheless, this should not be a rea-

son for statisticians to abandon decades of successful theory and

practice on adaptive designs of experiments and surveys, not to

mention the use of probability models for nonexperimental data

(for which there is no “protocol” at all).

3. THE SUN’LL COME OUT TOMORROW

The prequel to Feller’s quotation above is the notorious argu-

ment, attributed to Laplace, that uses a flat prior distribution on a

binomial probability to estimate the probability the sun will rise

tomorrow. The idea is that the sun has risen n out of n successive

days in the past, implying a posterior mean of (n + 1)/(n + 2)

of the probability p of the sun rising on any future day. [Gor-

roochurn (2011) gave a recent coverage of the many criticisms

that ridiculed Laplace’s “mistake.”]

To his credit, Feller immediately recognized the silliness of

that argument. For one thing, we do not have direct information

on the sun having risen on any particular day, thousands of years

ago, and cannot predict what will occur the next morning. So

the analysis is conditioning on data that do not exist, in the sense

that the assumed model is not supported by the actual evidence.

More than that, though, the big, big problem with the

Pr(sunrise tomorrow | sunrise in the past) argument is not in
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the prior but in the likelihood, which assumes a constant proba-

bility and independent events. Why should anyone believe that?

Why does it make sense to model a series of astronomical events

as though they were spins of a roulette wheel in Vegas? Why

does stationarity apply to this series? That’s not frequentist, it

is not Bayesian, it’s just dumb. Or, to put it more charitably, it

is a plain vanilla default model that we should use only if we

are ready to abandon it on the slightest pretext. The Laplace law

of succession has been discussed ad nauseam in relation to the

Humean debate about inference (see, e.g., Sober 2008). Further-

more, Berger, Bernardo, and Sun (2009) discussed other prior

distributions for the model. Here, however, we are focusing on

the likelihood function, which, despite its extreme inappropri-

ateness for this problem, is typically accepted without question.

It is no surprise that when this model fails, it is the likelihood

rather than the prior that is causing the problem. In the bino-

mial model under consideration here, the prior comes into the

posterior distribution only once and the likelihood comes in n

times. It is perhaps merely an accident of history that skeptics

and subjectivists alike strain on the gnat of the prior distribution

while swallowing the camel that is the likelihood. In any case,

it is instructive that Feller saw this example as an indictment of

Bayes (or at least of the uniform prior as a prior for “no advance

knowledge”) rather than of the binomial distribution.

4. THE “DOOMSDAY ARGUMENT” AND CONFUSION

BETWEEN FREQUENTIST AND BAYESIAN IDEAS

Bayesian inference has such a hegemonic position in philo-

sophical discussions that, at this point, statistical arguments get

interpreted as Bayesian even when they are not.

An example is the so-called doomsday argument (Carter and

McCrea 1983), which holds that there is a high probability

that humanity will be extinct (or will drastically reduced in

population) soon, because if this were not true—if, for example,

humanity were to continue with 10 billion people or so for the

next few thousand years—then each of us would be among the

first people to exist, and that’s highly unlikely. To put it slightly

more formally, the “data” here are the number of people, n,

who have lived on Earth up to this point and the “hypothesis”

corresponds to the total number of people, N, who will ever

live. The statistical argument is that N is almost certainly within

two orders of magnitude of n, otherwise the observed n would

be highly improbable. And if N cannot be much more than n,

this implies that civilization cannot exist in its current form for

millennia to come.

For our purposes here, the (sociologically) interesting thing

about this argument is that it is presented as Bayesian (see,

e.g., Dieks 1992) but it is not a Bayesian analysis at all! The

“doomsday argument” is actually a classical frequentist confi-

dence interval. Averaging over all members of the group under

consideration, 95% of these confidence intervals will contain

the true value. Thus, if we go back and apply the doomsday

argument to thousands of past datasets, its 95% intervals should

indeed have 95% coverage. In 95% of populations examined

at a randomly observed rank, n will be between 0.025N and

0.975N . This is the essence of Neyman–Pearson theory, that it

makes claims about averages, not about particular cases.

However, this does not mean that there is a 95% chance that

any particular interval will contain the true value. Especially

not in this situation, where we have additional subject-matter

knowledge. That is where Bayesian statistics (or, short of that,

some humility about applying classical confidence statements

to particular cases) comes in. The doomsday argument seems

silly to us, and we see it as fundamentally not Bayesian. Some

Bayesian versions of the doomsday argument have been con-

structed, but, from our perspective, these are just unsuccessful

attempts to take what is fundamentally a frequentist idea and

adapt it to make statements about particular cases. See Dieks

(1992) and Neal (2006) for detailed critiques of the assumptions

underlying Bayesian formulations of the doomsday argument.

The doomsday argument sounds Bayesian, though, having

three familiar features that are (unfortunately) sometimes asso-

ciated with traditional Bayesian reasoning:

(i) It sounds more like philosophy than science.

(ii) It is a probabilistic statement about a particular future

event.

(iii) It is wacky, in an overconfident, “you gotta believe this

counterintuitive finding, it’s supported by airtight logical

reasoning,” sort of way.

Really, though, it is a classical confidence interval, tricked up

with enough philosophical mystery and invocation of Bayes

that people think that the 95% interval applies to every indi-

vidual case. Or, to put it another way, the doomsday argument

is the ultimate triumph of the idea, beloved among Bayesian

educators, that our students and clients do not really understand

Neyman–Pearson confidence intervals and inevitably give them

the intuitive Bayesian interpretation.

Misunderstandings of the unconditional nature of frequentist

probability statements are hardly new. Consider Feller’s state-

ment, “A quality control engineer is concerned with one partic-

ular machine and not with an infinite population of machines

from which one was chosen at random,” (p. 124). It sounds as

if Feller is objecting to the prior distribution or “infinite pop-

ulation,” p(θ ), and saying that he only wants inference for a

particular value of θ . This misunderstanding is rather surprising

when issued by a probabilist, but it shows a confusion between

data and parameter: as mentioned above, the engineer wants to

condition upon the data at hand (with a specific if unknown

value of θ lurking in the background). Again, this relates to

Feller holding a second-hand opinion on the topic and backing

it with a cooked-up story. It does not help that many Bayesians

over the years have muddied the waters by describing param-

eters as random rather than fixed. Once again, for Bayesians

as much as for any other statistician, parameters are (typically)

fixed but unknown. It is the knowledge about these unknowns

that Bayesians model as random.

In any case, we suspect that many quality control engineers

do take measurements on multiple machines, maybe even pop-

ulations of machines, but to us, Feller’s sentence noted above

has the interesting feature that it is actually the opposite of the

usual demarcation: typically it is the Bayesian who makes the

claim for inference in a particular instance and the frequentist

who restricts claims to infinite populations of replications.
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5. CONCLUSIONS

Why write an article picking on 60 years of confusion? We

are not seeking to malign the reputation of Feller, a brilliant

mathematician and an author of arguably the most innovative

and intellectually stimulating book ever written on probability

theory (Feller 1970; 1971). Rather, it is Feller’s brilliance and

eminence that makes his attitude that much more interesting: that

this centrally located figure in probability theory could make a

statement that could seem so silly in retrospect (and even not

so long ago in retrospect, as indicated by the memoir of Jaynes

quoted above).

Misunderstandings of Bayesian statistics can have practical

consequences in the present era as well. We could well imagine

a reader of Stirzaker’s generally excellent probability text taking

home the message that all probabilities “must be explicit and

fixed before you begin,” thus missing out on some of the most

exciting and important work being done in statistics today.

In the last half of the twentieth century, Bayesians had the

reputation (perhaps deserved) of being philosophers who were

all too willing to make broad claims about rationality, with op-

timality theorems that were ultimately built upon questionable

assumptions of subjective probability, in a denial of the garbage-

in-garbage-out principle, thus defying all common sense. In

opposition to this nonsense, Feller (and others of his time) fa-

vored a mixture of Fisher’s rugged empiricism and the rigorous

Neyman–Pearson theory, which “may be not only defended but

also applied.” And, indeed, if the classical theory of hypoth-

esis testing had lived up to the promise it seemed to have in

1950 (fresh after solving important operations-research prob-

lems in the Second World War), then indeed maybe we could

have stopped right there.

But, as the recent history of statistics makes so clear, no single

paradigm—Bayesian or otherwise—comes close to solving all

our statistical problems (see the recent reflections of Senn 2011)

and there are huge limitations to the Type I error and Type II error

framework, which seemed so definitive to Feller’s colleagues

at the time. At the very least, we hope Feller’s example will

make us wary of relying on the advice of colleagues to criticize

ideas we do not fully understand. New ideas by their nature

are often expressed awkwardly and with mistakes—but finding

such mistakes can be an occasion for modifying and improving

these ideas rather than rejecting them.

[Received October 2011. Revised June 2012.]
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