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SUMMARY 

Markov chain Monte Carlo (MCMC) integration methods enable the fitting of models 

of virtually unlimited complexity, and as such have revolutionized the practice of Bayesian 
data analysis. However, comparison across models may not proceed in a completely 

analogous fashion, owing to violations of the conditions sufficient to ensure convergence 
of the Markov chain. In this paper we present a framework for Bayesian model choice, 
along with an MCMC algorithm that does not suffer from convergence difficulties. Our 
algorithm applies equally well to problems where only one model is contemplated but 

its proper size is not known at the outset, such as problems involving integer-valued 
parameters, multiple changepoints or finite mixture distributions. We illustrate our 
approach with two published examples. 

Keywords: BAYES FACTOR; FINITE MIXTURE MODEL; GIBBS SAMPLER; INTEGER-VALUED 
PARAMETERS; MODELS OF VARYING SIZE; MULTIPLE CHANGEPOINT MODEL; 
NON-NESTED MODELS 

1. INTRODUCTION 

Practitioners are increasingly turning to Bayesian methods for the analysis of 
complicated statistical models. This move seems due in large part to the advent of 
inexpensive high speed computers and the simultaneous rapid development of 
stochastic integration methodology, especially Markov chain Monte Carlo (MCMC) 
approaches such as the Gibbs sampler (Gelfand and Smith, 1990). As the diversity 
of the recent applied Bayesian references attests, the MCMC approach is so 
generally applicable and easy to use that the class of candidate models for a given 
data set now appears limited only by the user’s imagination. However, with this 
generality has come the temptation to fit models so large that their parameters are 
unidentified, or nearly so. In extremely complicated hierarchical and random effects 
settings, this lack of identifiability may be subtle and requires insightful reparam- 
eterization of the model (see for example Vines et al. (1994) and Gelfand ef al. 
(1995)). In even less standard modelling scenarios, the problem may only become — 
apparent through multichain diagnostic methods (Gelman and Rubin, 1992). 

Models for which the Markov chain convergence conditions are not satisfied 
present another problem raised by the apparent broadness of the class of candidate 
Bayesian models. For example, models of varying size (i.e. having dimension that 
is not fixed at the outset by the analyst) fall into this category, since at the gth 
MCMC iteration a parameter may be forced out of the model, creating an absorbing 
state in the algorithm and thus violating a condition necessary for convergence 
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(Tierney, 1994). MCMC methods have been used in several recent Bayesian analyses 
of models of varying size, involving for example integer-valued parameters (West, 
1993), multiple changepoints (McCulloch and Tsay, 1994) and finite mixtures 
(Diebolt and Robert, 1994; Escobar and West, 1995). Although standard MCMC 
theory does not apply when the dimension of the parameter space is not fixed, some 
researchers have developed specialized MCMC algorithms for this. For example, 
Green (1994) offers a ‘reversible jump’ Metropolis—Hastings algorithm for handling 
an unknown number of changepoints in a Poisson process, and Grenander and 
Miller (1994) used a similar approach in comparing competing hypotheses in pattern 

theory. 
In fact, this same convergence issue arises in applying the MCMC technology to 

any problem involving a choice between K competing Bayesian model specifications 
—even if the candidates are simple and/or nested. To see this, note that we could 
let M be an integer-valued parameter which indexes the model collection. Since the 
issue of model selection arises in virtually every Bayesian data analysis, we adopt 
this framework in what follows and show how Gibbs sampling methodology may 
be suitably modified to handle choice (or averaging) across a finite collection of 
models without destroying convergence. Section 2 presents our algorithm and gives 
advice on its proper tuning to speed convergence. Section 3 illustrates our approach 
with two data examples, the first involving a choice between two non-nested 
regression models, and the second fitting a finite mixture model in a case where 
the proper number of components is unknown. 

2. BAYES FACTORS AND SAMPLING-BASED METHODS 

Consider the problem of choosing between K models for an observed data vector 
y. The models need not be nested, and hence we assume that corresponding to each 
is a distinct parameter vector 0;, j = 1,..., K. As suggested in Section 1, let M be 
an integer-valued parameter that indexes the model. Our interest lies in p(M = /|y), 
j=1,..., K, the posterior probabilities of each of the K models, and perhaps also 
in p(6;|y), j = 1,..., K, the posterior distributions of the parameter vectors under 
the respective models. 

Many researchers have suggested the use of MCMC methods to simplify the tasks 
of assessing model adequacy and selecting the model that is best supported by 
the data. Gelfand et al. (1992) created diagnostics based on the cross-validation 
predictive distribution p(y,|y)), where y,, is the data vector with the rth point 
deleted. This approach is consistent with the predictive purposes to which the chosen 
model is often put and has the advantage of remaining feasible where the posterior 
distributions p(@;|y) are proper but the prior distributions p(@;) are not. Still, a 
choice between two Bayesian models, say M = 1 and M = 2, is most commonly 

based on the Bayes factor, which is the ratio of posterior to prior odds in favour 
of model 2. By Bayes’s theorem, this is computable as 

By, = p(y|M = 2)/p(y|M = 1), 

the ratio of the observed marginal densities for the two models. Newton and Raftery 
(1994) showed how MCMC samples from the posterior distribution may be used 
to obtain estimates of these two marginal densities. Although the directness of this 
solution is attractive, in our limited experience we have found that these estimates
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can be somewhat unstable (Albert and Chib, 1993). For a comprehensive review 
of Bayes factors, their computation and their usage in Bayesian hypothesis testing, 
see Kass and Raftery (1995). 

Alternatively, Carlin and Polson (1991) added the model indicator M into 
the sampling scheme, so that at convergence the resulting Gibbs iterates {M®), 
g=1,..., G} form a sample from the marginal posterior distribution for M, 
p(M|y). This solution is in keeping with the ‘data augmentation’ spirit of many 
MCMC algorithms but suffers from the aforementioned violations of the con- 
vergence condition unless each model can use the same parameterization (e.g. in 
the case of choosing between competing distributional specifications). George 
and McCulloch (1993) used a similar approach for selecting an appropriate set 
of explanatory variables in a regression setting, but again the need to ensure 
convergence leads to a method that never actually eliminates a regressor from the 
full model, but only forces it -to be close to 0 with high probability. 

2.1. Technical Development 
We circumvent these difficulties by viewing the prior distributions p(@,), 

j=1,..., K, as part of the Bayesian model specification, and also allowing these 
distributions to depend on the model indicator M. Suppose that corresponding to 
model j we have a likelihood f(y|0;, M =) and a prior p(6;|M =). Since we 
are assuming that M merely provides an indicator about which particular 6; is 
relevant to y, we have that y is independent of {6,,,;} given that M = j. In addi- 
tion, since our primary goal is the computation of Bayes factors, we assume 
that each prior p(0;|M = /) is proper (though possibly quite vague). For simplicity 
we assume complete independence among the various 0; given the model indicator 
M, and thus we may complete the Bayesian model specification by choosing proper 
‘pseudopriors’ p(0;|M #/). From our conditional independence assumptions, 

piy|M=j)= | role, M = j) p(@|M = j)d@ = | ror, M = j)p(0;|M = j) d6,, 

and so the form given to p(0;|M #/) is irrelevant. Thus, as the name suggests, a 
pseudoprior is not really a prior but only a conveniently chosen linking density, 
required to define completely the joint model specification. (We defer the specifics 
of pseudoprior selection until Section 2.2.) Then given prior model probabilities 
a; = P(M = j) such that £4, x; = 1, and writing 0 = {0,,..., 0x} the joint distri- 
bution of y and 6 when M = / is 

K 

Diy, 0, M=/) = f(y|6,, M=A)\TIp@iM =x, 
i=1 

Now, to implement the Gibbs sampler, we need the full conditional distributions 
of each 0; and M. The former is given by 

f(y|9;, M = j)p@;|M =), M = j, 

i.e. when M = / we generate from the usual model / full conditional; when M # / 
we generate from the linking density (we shall use the terms ‘pseudoprior’ and
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‘linking density’ interchangeably). In cases where p(0;|M =) is taken to be 
conjugate with its likelihood, both of these generations are straightforward. 

For M we have 

K 

fy |9,;, M=)|TIp@lm=slx, 
Pp(M = j|@, y) == ar :; 

du S(y|0,, M= | p(0;,|M = ln 
=] 1 j= 

(2)   

Since M is a discrete finite parameter, its generation is routine as well. Hence all 
the required full conditional distributions are well defined, and under the usual 
regularity conditions (Roberts and Smith, 1993) the algorithm will produce samples 
from the correct joint posterior distribution. In particular, the ratio 

_ number of M® = ;j 
total number of M®’ 
  D(M = jly) J=1,..., K, (3) 

provides simple estimates that may be used to compute the Bayes factor between 
any two of the models. Standard errors for these estimates are easy to obtain even 
if the M® output stream exhibits autocorrelation, through the use of batching 
or perhaps more sophisticated spectral decomposition techniques (Ripley (1987), 
chapter 6). We illustrate such computations in the examples of Section 3. 

2.2. Implementational Notes 
Notice that, in contrast with equation (3), summarization of the collection of 

9 samples is not useful. This is because what is of interest in this case is not the 
marginal posterior densities p(6;|y), but rather the conditional posterior densities 
p(6;|M =, y). However, suppose that in addition to @ we have a vector of 
nuisance parameters, say 4, common to all models. Then the fully marginal 
posterior density of 7, p(y|y), may be of some interest. We would not need to create 
a pseudoprior for 7, since the data are informative about 7 regardless of the value 
of M. But in this case great caution must be taken to ensure that 7 has the same 
interpretation in both models. For example, suppose that we wish to choose between 
the two nested regression models 

M=1: y,=at6é, e;~ NO, 02), i=1,..., 7, 

and 

M =2: yi= at Bx; + €;, «~ NO, 7), i= l,..., Nn, 

so that 6, = o, 0, = (6, 7) and » = a. But a is playing two different roles here: 
‘grand mean’ in model 1, and ‘intercept’ in model 2. The corresponding posteriors 
could be quite different if, for example, the observed y,-values were centred near 
0, while the observed x;-values were centred far from 0. The resulting bimodal 
shape for p(a|y) could wreak great havoc with convergence of the Gibbs algorithm, 
making jumps between M = 1 and M = 2 extremely unlikely. 

Poor choices of the linking densities p(0;|M # /') can have a similar deleterious 
effect on convergence. Good choices will produce 0)-values that are consistent 
with the data, so that p(M = /|0, y) will still be reasonably large at the next M
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update step. Failure to generate competitive pseudoprior values will again result in 
intolerably high autocorrelations in the M®-chain: hence slow convergence. To 
avoid this, we recommend obtaining preliminary estimates of the model-specific 
posterior distributions p(0;|M =, y), perhaps by using first-order (normal) 
approximations, or other parametric forms designed to mimic the output from K 
individual MCMC runs. Matching the linking densities as nearly as possible to the 
true model-specific posteriors should produce a reasonably well mixing final 
algorithm. Note that we are not using the data to help to select the prior, but only 
the pseudoprior. More specific guidance on pseudoprior selection is provided in the 
context of our Section 3 examples. 

Finally, if for a particular data set one of the p(M = jy) is extremely large, the 
realized chain will exhibit slow convergence due to the resulting nearly absorbing 
state in the algorithm. In this case, the 2; may be adjusted to correct the imbal- 
ance; the final value of B,; will still reflect the true odds in favour of M=jJ/ 
suggested by the data. This adjustment may be done adaptively during the early 
stages of the algorithm, before samples are retained for Bayes factor estimation. 

It is tempting to skip the generation of actual pseudoprior values and instead 
simply to keep 0 at its current value when M® #j. But, although seemingly 
reasonable, such an algorithm is clearly not a Gibbs sampler in the strict sense, since 
the nodes visited are determined by the current values in the realized Markov chain. 
We might instead attempt to portray this non-visitation as a Metropolis—Hastings 
rejection step, but then we arrive at a chain with a transition kernel that depends 
on the particular M“)-values generated. Gelfand and Sahu (1994) gave a simple 
example of such a chain that does not converge to the proper stationary distribution. 
Hence the convergence properties of this simplified algorithm are unclear. In any 
case, we cannot dispense with the linking densities entirely, since they are required 
for the M update step in equation (2). 

3. DATA EXAMPLES 

3.1. Non-nested Regression Models 
Efron (1984) considered fitting two plausible straight line models to the data set 

of Williams (1959), displayed in Table 1. For n = 42 specimens of radiata pine, the 
maximum compressive strength parallel to the grain y,; was measured, along with 
the specimen’s density, x;, and its density adjusted for resin content, z; (resin 
contributes much to the density but little to the strength of the wood). It is desired 
to compare the two models M = 1 and M = 2 where 

M=1: y,=a+ Bx; +6, e;~ NO, 07), i=1,..., n, 

and 

M=2: y,=7 + 6z,+ &, es~ NO, 77), i=1,..., 7. 

Hence 0, = (a, 6, o) and 0, = (7, 6, 7). After centring the x; and z; at their means, 
we place N((3000, 185), diag(10°, 10*)) priors on (a, 8)! and (7, 6)!, and inverse 
gamma priors on o? and 7”, both having mean and standard deviation equal to 
3007. Each of these priors is roughly centred on the appropriate least squares 
parameter estimate but is extremely vague (though still proper). The inverse gamma
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TABLE 1 

Radiata pine compressive strength data 

Case (i) Ji Xj Zi Case (i) Ji Xj Zi 

1 3040 29.2 25.4 22 3840 30.7 30.7 

2 2470 24.7 22.2 23 3800 32.7 32.6 

3 3610 32.3 32.2 24 4600 32.6 32.5 

4 3480 31.3 31.0 25 1900 22.1 20.8 

5 3810 31.5 30.9 26 2530 25.3 23.1 

6 2330 24.5 23.9 27 2920 30.8 29.8 

7 1800 19.9 19.2 28 4990 38.9 38.1 

8 3110 27.3 27.2 29 1670 22.1 21.3 

9 3160 27.1 26.3 30 3310 29.2 28.5 

10 2310 24.0 23.9 31 3450 30.1 29.2 

11 4360 33.8 33.2 32 3600 31.4 31.4 

12 1880 21.5 21.0 33 2850 26.7 25.9 

13 3670 32.2 29.0 34 1590 22.1 21.4 

14 1740 22.5 22.0 35 3770 30.3 29.8 

15 2250 27.5 23.8 36 3850 32.0 30.6 

16 2650 25.6 25.3 37 2480 23.2 22.6 

17 4970 34.5 34.2 38 3570 30.3 30.3 

18 2620 26.2 25.7 39 2620 29.9 23.8 

19 2900 26.7 26.4 40 1890 20.8 18.4 

20 1670 21.1 20.0 41 3030 33.2 29.4 

21 2540 24.1 23.9 42 3030 28.2 28.2       
priors for o? and 7? also double as the linking densities (pseudopriors) for these 
parameters, whereas for the remaining components we use independent univariate 
normal linking densities that roughly equal the corresponding first-order approxi- 
mation to the posterior. More specifically, we let a|(M = 2) ~ N(3000, 527), 
B|(M = 2) ~ N(185, 127), y|(M = 1) ~ N(3000, 437) and 5|(M = 1) ~ N(185, 97). 
(An alternative would be to transform o7? and 7” to the log-scale and to use 
trivariate normal approximations to the posterior densities for 0, and 6, as our 
pseudopriors. Although this more-involved approach would account for the 
dependence within 0, and @,, our simple method appears adequate in this example, 
as'we show below.) 

Using wz, = 7, = 0.5 for an initial run of five parallel Gibbs chains for 5000 
iterations each, we observed only eight instances where the generated M® equalled 
1. To correct this imbalance, we settled on 7, = 0.9995 and az, = 0.0005, and 
performed our production run of five parallel Gibbs chains for 50000 iterations 
each. We started the five chains at disparate points in the sample space and, after 
considering plots of the realized chains, sample autocorrelations and the monitoring 
statistic of Gelman and Rubin (1992), were satisfied with the convergence of our 
algorithm. The resulting point estimates from equation (3) are p(M = 1|y) = 0.3114 
and p(M = 2|y) = 0.6886, so that an estimated standard deviation for these esti- 
mates (assuming independent samples) is given by V(0.3114 x 0.6886/250000) = 
0.00093. However, the realized M“-chains exhibited significant positive auto- 
correlation through lag 4, so we batched the output into 2500 groups of length 
100 to obtain the somewhat larger (and presumably more accurate) estimate 

sd {6(M = 2|y)} = 0.00166. Hence an approximate 95% confidence interval for
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the posterior probability that M = 2 is given by (0.6853, 0.6918). Converting to 

Bayes factors, we have a point estimate of 4420 for B,,, with (4353, 4487) as the 

corresponding 95% confidence interval— overwhelming evidence in favour of the 

adjusted density model. This is consistent with (though apparently more precise 

than) the frequentist result reported by Efron (1984), namely a two-sided signifi- 

cance level of less than 0.10. 
Our prescription of matching the pseudopriors to the model-specific posteriors 

provides a systematic approach to producing a well mixing algorithm. To investigate 

the degradation in performance resulting from a poorly matched pseudoprior, we 

doubled the standard deviations in our normal pseudopriors for a, B, y and 6. We 

found that, whereas the estimated Bayes factor remained roughly the same, the 

M®)-chains now exhibited significant positive autocorrelation through lag 10, and 

our batched standard deviation estimate sd {5(M = 2|y)} increased from 0.00166 

to 0.00231. Similarly, quadrupling these pseudoprior standard deviations led to 

significant positive autocorrelation through lag 40, and a further increase in 

sd {f(M = 2|y)} to 0.00413. 

3.2. Mixture Model with Unknown Number of Components 

Another important illustration of our ideas is possible in the context of finite 

mixture models. Evans et al. (1992) used Monte Carlo Bayesian methods to analyse 

a two-component normal mixture model under a non-informative prior. In our 

case, we wish to compare a D,-component normal mixture with a mixture having 

D, components. To illustrate, consider the data set in Table 2 on velocities of 

82 galaxies from six well-separated conic sections of the corona borealis region, 

originally presented by Postman et al. (1986). A histogram of these data is shown 

in Fig. 1(a). An important issue with these data is whether they arise from a 

multimodal distribution, as would be implied by astronomical theories concerning 

the clustering of galaxies. A nonparametric kernel density estimate could be used 

to estimate the number of modes (i.e. the number of galactic clusters), but the 

answer to this important question would then be quite sensitive to the choice of 

TABLE 2 

Velocities (kilometres per second) for galaxies in the corona 
borealis region 

  

9172 9350 9483 9558 9775 10227 
10406 16084 16170 18419 18552 18600 
18927 19052 19070 19330 19343 19349 
19440 19473 19529 19541 19547 19663 
19846 19856 19863 19914 19918 19973 
19989 20166 20175 20179 20196 20215 
20221 20415 20629 20795 20821 20846 
20875 20986 21137 21492 21701 21814 
21921 21960 22185 22209 22242 22249 
22314 22374 22495 22746 22747 22888 
22914 23206 23241 23263 23484 23538 
23542 23666 23706 23711 24129 24285 
24289 24366 24717 24990 25633 26960 
26995 32065 32789 34279      
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Fig. 1. (a) Histogram of velocities ( x 10° km s~ ly and (b) estimated predictive densities, normal 
mixture models ( , four component; ------ , three component; — - — -, two component) for the 
galaxy data 

  

smoothing window width. Roeder (1990) developed a confidence set of plausible 
densities for these data that featured between three and seven modes. On the basis 
of this information and the appearance of the histogram, we compare a three- 
component normal mixture model with a mixture having four components by using 
our parametric Monte Carlo Bayesian approach. 

Suppose that the density function of the datum y; in the kth component of the 
jth model is given by $(y;|u,,, 07), where ¢( | , ) denotes the normal density 
function, and let q, denote the corresponding mixing probabilities for each com- 
ponent in the mixture. Then, given a vector of independent samples y = (y,,..., 
y,) the two models under consideration are given by 

3 

M= 1: FO%i| ms Ot; qi) = » Aix POii| Miz ot), 

k=1 

and 
4 

M=2: fOi|Mm, 03, qo) = >» Gx PO) | Hox 03), 
k=1 

where in obvious notation p, = (M15 Liz, Mi3)s G1 = (Qit> Giz, G13) and similarly for 

My and qp. 
As discussed in West (1992) and Diebolt and Robert (1994), Monte Carlo 

Bayesian inference for either model is facilitated by supplementing the parameters 
with latent observation-specific index variables: s;,€{1, 2, 3} for M = 1; s,,€ {1, 2, 
3, 4} for M = 2. These s, are distributed (independently over 7) according to q;
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and signify the component population from which each observation arose. Hence, 
for a given model, the complete conditional distributions required to implement the 
Gibbs sampler arise as follows. 

(a) Conditioned on s; = {s,;}, the observations are classified into three different 
populations for j = 1, and four different populations for j = 2. The com- 
plete conditional distributions of yj, and of are obtained easily provided 
that each component mean follows an independent normal prior and the o7 
follow inverse gamma priors. 

(b) Conditioned on y;, 07 and s,;, a Dirichlet prior on q; leads to a Dirichlet 
posterior as well, with parameters of the prior revised according to the 
number of observations assigned to each population. 

(c) Conditioned on y;, 07 and q;, the posterior probability mass function of s; 
is given by the expression Pr(s; = k|y, u2, 07) © jx O(;| Myx, 97), Where k 
runs from | to 3 if / = 1 and from 1 to 4 if 7 = 2. 

On the basis of a run of 30000 iterations for each model, we obtain the results 
summarized in Tables 3 and 4. The prior means and standard deviations listed are 
from the rather vague normal, Dirichlet and inverse gamma distributions chosen 
for wx, g; and o7 respectively. Also, ‘Num SE’ denotes the numerical standard 
error of the posterior mean, while ‘Corr’ gives the sample first-order autocorrelation 
of the simulated values. Table 4 reports high autocorrelations for p., 423, Go. and 
G>3, and posterior standard deviations for g2. and q,; that are slightly /arger than 
their prior values. These facts suggest that there is not enough information in the 
likelihood to estimate all four components and their mixing probabilities accurately 
in the larger model. A similar message is conveyed by Fig. 1(b), which for each 
model plots the estimated predictive distribution for a future observation yr, 
fOrly). (The predictive density for the poorly fitting two-component mixture 
model is also shown for comparison.) The substantial overlap of the second and 
third modes in the four-component model suggests almost no improvement in fit 
over the three-component model. 

For a more formal comparison of these two models, we use the approach of 
Section 2 in conjunction with the algorithm for sampling the parameters for a given 

TABLE 3 

Summary of the three-component normal mixture model for the galaxy data 

  

    

  

Parameter Prior Posterior 

Mean Standard Mean Num SE Standard Corr 
deviation deviation 

By 9.000 5.000 9.674 0.005 0.823 0.070 

Bip 18.000 5.000 21.337 0.002 0.273 0.040 

b3 30.000 5.000 31.922 0.009 1.258 0.237 

oa? 20.000 20.000 5.224 0.005 0.832 0.071 

Qiu 0.333 0.236 0.095 0.000 0.032 0.012 

Qin 0.333 0.236 0.854 0.000 0.039 0.047 

q13 0.333 0.236 0.051 0.000 0.025 0.087 
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TABLE 4 

Summary of the four-component normal mixture model for the galaxy data 

  

  
  

  

Parameter Prior Posterior 

Mean Standard Mean Num SE Standard Corr 

deviation deviation 

Hoy 9.000 5.000 9.669 0.004 0.764 0.054 

Ho» 18.000 5.000 20.838 0.019 0.872 0.811 

Po3 22.000 5.000 21.926 0.021 0.909 0.828 

Ho, 30.000 5.000 32.110 0.008 1.178 0.233 

o3 15.000 15.000 4.422 0.014 0.933 0.455 

Q> 0.136 0.100 0.092 0.000 0.030 0.008 

Qn 0.364 0.139 0.430 0.003 0.144 0.884 

Qo; 0.364 0.139 0.427 0.003 0.144 0.883 

, 0.136 0.100 0.051 0.000 0.023 0.060 

  

model described in (a)-(c) above, i.e. we sample over M, 0, = (4, 07, g,, {s;1}) 
and 0, = (2, 03, G2, {S;2}). Given the large dimension of the 9, it is important that 
the linking densities (pseudopriors) be carefully specified if frequent moves between 
models are to be realized. As such, we matched normal, Dirichlet and inverse 
gamma linking densities for the »,;, g; and o7 respectively with the appropriate 
posterior estimates in Tables 3 and 4. Note that the functional form of f(y|y,;, qj 
o7, M=/j) is available for use in equation (2) as a product of the terms in 
equation (4). Therefore, if samples for (u,, g;, 0 2) given M = j are obtained by 
resampling from the output of the model-specific preliminary runs, we may 
implement our algorithm in Section 2 without including the latent data in the 
sampling order. Alternatively, an acceptably accurate pseudoprior mass function 
for each s; can be determined by the observed {s‘?} relative frequencies in the 
model-specific preliminary runs. 

Using the latter approach, the same model-specific priors p(0;|M = /) as before 
and letting 7, = 0.35 and z, = 0.65, the combined sampler was run for G = 30000 
iterations. For model choice, it suffices to focus on the chain corresponding to M. 
Regardless of the initial starting model, the sampler is observed to move reasonably 
well between the two models. The point estimate (3) of p(M = 2|y) is found to be 
0.5153, with an estimated standard error of 0.0146 (the latter based on the means 
of 300 batches of length 100). This translates into a point estimate for B,, of 
0.572, and a 95% confidence interval of (0.511, 0.642). (By comparison, the 
estimated Bayes factor in favour of the three-component mixture over the two- 
component mixture is roughly 196000.) Hence the Bayes factor agrees with our 
earlier assessment of indifference between the three- and four-component models. 
However, it is important to note that, because of the aforementioned inability of 
the data to identify the four-component model fully, the Bayes factor can be made 
to prefer this larger model by altering the model-specific priors. For example, if 
we replace the Dirichlet(1, 1, 1) and Dirichlet(1.5, 4, 4, 1.5) priors on gq, and gq, 
with the more informative Dirichlet(3, 8, 3) and Dirichlet(3, 8, 3, 3) distributions 
respectively, the Bayes factor estimate increases to 284. This highlights the well-
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known sensitivity of Bayes factors to the prior inputs when the likelihood for one 
or both of the models does not convey much information. 
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