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0. Introduction and Summary

The largest and the smallest value in a sample, and otherstatistics

related to them are generally named extremestatistics. Their sampling

distributions, especially the limit distributions, have been studied by

many authors, and principal results are summarized in the recent Gum-

bel’s book [1].

The author extends here the notion of extreme statistics into bivariate

distributions and considers the joint distributions of maxima of compo-

nents in sample vectors. This Part I treats asymptotic properties of

the joint distributions.

In the univariate case the limit distributions of the sample maximum

were limited to only three types. In the bivariate case, however, types

of the limit joint distributions are various: Theorem 5 in Chapter 2 shows

that infinitely many types of limit distributions may exist. For a wide

class of distributions, two maxima are asymptotically independent or

degenerate on a curve. Theorems 2 and 4 give the attraction domains

‘for such limits. In bivariate normal case, two maxima are asympto-

tically independent unless the correlation coefficient is equal to one.

Throughout these arguments we remark only the dependence between

marginal distributions, whose behaviours are well established. For this

purpose a fundamental notion of ‘‘dependence function’”’ is introduced

and discussed in Section 1.

A practical application will be considered in the subsequent paper.

The author is very grateful to Messrs. M. Motoo, K. Isii and K.

Takeuchi for their suggestions and discussions, by which theorems in

Section 2 are considerably improved.

1. Dependence function

Let (X,, Y,)(« =1, +++, ”) be a sample from the population with the

distribution function F(x, y). The maxima of the components, X,,, and

Yuax; have the joint distribution function

195



196 _ MASSAKI SIBUYA

Pr(Xiax <2, Yr < y) = F(x, y) . (1.1)

We write the marginal distributions of F(x, y) as

G(x)=F(x, ~),

Hy)=F(o, y). (1.2)

The distribution functions of X,,.;, G(x), and of Y,,,., H"(y), are marginal

distributions of F(x, y).

Weintroduce the function 0*(z, y) defined by

F(z, yy=O*(a, yG(x)My).
From the relation

F(e, yy=O7*"(e, y)G"(x)H(y) ;

the asymptotic dependence between X,,.x and Y,,.x is clarified from the

behaviour of 0*"(z,y) when n—o. To simplify the argument, we

redefine this function as follows:

Definition 1. The dependence function Q(G, H), 0<G<1, 0<AHs1

of the distribution F(x, y) (or of the r.v. (X, Y)) is the function that

satisfies :

F(a, y)=Q(G(%), H(y))G(x)AY). (1.3)

For G=0 or H=0, Q(G, H) may be defined if the limit

(0, H)=lim 29)
a(2+0 G(x)Hy) ”

or
F )nova, . (x,yQ(G, 0)=lim 24) , 1.G, 0) limeA) “

exists.

Remark 1. Although G(xz)=G, and H(x)=H, (G,, H, are constants)

do not determine a point (x,y) uniquely, the value of F(x,y) is the

same for any (x, y)¢ {(a, y); G(#)=G,, H(x)=H,}. Therefore, O(G, H)

is a one-valued function defined for all possible values of G and H.

Remark 2. Clearly O(G, H)=1, if and only if X and

Y

are inde-

pendent. From the definition

Pr(X<a, Y<y)
Pr (X<«x) Pr(Y<y)’
 QG, H)=
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O(G, H)>1(<1) corresponds to the positive (negative) association between

the events (X<2) and (Y<~y).

Remark 3. O(G,H) is ordinally invariant. That is, if g(x) and

wr(y) are monotone non-decreasing functions, the dependence function of

(p(X), WY)) is also that of (X, Y), because F(¢(%), de(y)) =O(G(P(2)),

H(b(y))G(p(2))HOb(y)). The domains of two dependence functions are

not always the same, unless both v(x) and wy) are strictly increasing.

Remark 4. Considering the r.¥. (G(X), H(Y)) we see that; a
necessary and sufficient condition for Q(G, H) to be a dependence func-

tion, is that Q(G, H)GH is a distribution function defined on 0<G,HS 1,

whose marginal distributions are uniform.

THEOREM 1.

L(G, H)<sa(G, H)SU(G, H), 0<G,Hs1, (1.5)

where

1UG, H)=min (, =) (1.6)

L(G, H)=max (0, vie). (1.7)

The right hand equality holds when the distribution F(a, y) degener-

ates on a non-decreasing curve on the x-y plane, and the left hand

equality on a non-increasing curve.

Proor. The right hand inequality:

F(a, y)SF(a, ©)=G(2) ,

F(a, y)SF(~, y)=Hy).

Therefore,

F(a, y)=Q(G(«), H(y))G(@)H(y)S min (G(x), H(y)) -

The equality holds, if. and only if F(x, y)= min(G@), A(y)), which mean

the above mentioned condition.

The left hand inequality:

G(x)+ Hy)—A(G(«), Hy))G(®)Hy)=1— Pr {X>a, Y>y} sl.

Therefore,
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G+H-1OG, H)=>—__—_—_. .
( = GH

O(G, H) is apparently not negative. The equality holds if and only if

Pr(X>2, Y>y)=0 for G(x)+A(y)=1.

See Fig. 1.

Example 1. Consider the probability density function defined by
\

 

Ke, n={9 otherwise.

As

F(x, y) (@ty—ty O<e#<l1, 0<y<1, lS2+y,
x, =

0, 0O<a#<1, 0SyX1, 1>2r+y,
and

G(x)=2", Hy)=y’,
we have

cn V@4VH1
GH , ="?

Q(G, H)= 1.8
0, otherwise . (1.8)

O(G, H)S1, because VG +VH-1S5VGH. Xand Y have the negative
association.

Example 2. Let Z, (i=1, +++, k) be a sample from the population
with the continuous distribution function K(x), and put Ziuin=X and

Zmax=Y. We consider the distribution of (X, Y).

F(e, y)=K*(y)—(K(y)—K(a))*,  x<y,

G(x)=1—(1—K(2))*¥, K(x)=1-(1—G)""*,

Hy)=K*y), K(y)=H",

 

 

H-(H"*+(1—G)"*—-1f¥ ge
Q(G, H)= GH meee! (1.9)

0, otherwise . |

As H**+(1—G)"*—-1<H*(1—G)"*, we have

H—H(1-G)
OIG, H)= =1, GsH.( )2 CH <

Zin and Zp have the positive association.
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40, Hof(t.0(3) 

which is a well-known result.

Example 3. Consider a bivariate normal distribution.

1pl _ 24 yeH(%, Y;=P| xia)” +y 2oxy)}

o(e, v3 p)=\"_\" ou, ») dude .
As |

dQ 1 d® 1wee==fh>0 1.10
do GHdo GH (1.10)

(see Appendix) and Q=1 when o=0, we have Q>1, <1 corresponding

to e>0, <0.

The value Q(G, 0) and (0, H) were defined as the limits. When

F(x, y) has the probability density function f(x,y), the limit (say)

Q(0, A) is:
v

f(a, y)dy
a0, H)= tim2D— him "2 —1 im H(y|2), (1.11)

GOO) =Hay) fle, yy A
 

 

 

        
broken line p=0

Solid line p=08
broken line p=-l0

Solid line p=-08

Fig. 1. Q(G, H) for bivariate normal distributions.
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where H(y|x) is the conditional distribution function of Y given X=z2.

Like the bivariate normal distribution, if X has the positive density in

a semi-infinite interval (—o, 6), and if the conditional distribution

of Y given X=~2hasthefinite dispersion, monotone increase or decrease

of the regression curve corresponds to lim H(y|x)=1 or 0, that is to

Q(0, H)=H- or 0, which is the same as the value of U(0,H) or

L(0, H). O(G, H) for norma! distributions are shown in Fig. 1.

2. Asymptotic property

From the previously mentioned relation

F(a, yy=O(G(x), M(y))G"(x)H"(y) ; (2.1)

the dependence function of maxima (Xwmax, Ymax) in sample of size n is

OG", HH"). In this section the asymptotic behaviour of

0,,(G, H)=2(G"", H*") (2.2)

for (n—oo) is studied. We assume the continuity of F(x, y) or of Q(G, A).

If G(x) and/or H(y) have a positive jump at the point where G(x)=1 or

H(y)=1, then the limit distribution is trivial. If the distribution has

infinitely many points with positive probability, slight modifications in

the following arguments are necessary. At first, we examine the ex-

amples in Section 1.

 

 

 

Example 1.

(VG+VH—1) ~14/F

0, otherwise .

QO, G, H _ (G294Am_1)n

( ) GH

_ i log G+log H 1 \\*
———_( ] + 1/2n 1/20 >=a( +2Eet +0(—)) , GiMS

Therefore,

lim 0,(G, H) = aa exp {log G-tlog H}=1, G,H>0.

The convergence is uniform for G, H=>e>0, where ¢ is any constant.

This is true throughout the following convergence statements.

Example 2

ee .
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H-—(Hu+(1—G)v*—1)*
Q(G, H)= CH 0<GsH, 

0,,(G, H)=— nih——fHW"——(HU"* +. (1 —Guns_1)*|"

—daft_[eHs(2E8)"To(2)p
—1 (n—0o~), 0<G<sH.

 

Example 3

Q(G, H)=L(G, A),

0,G, H)=@°+H7|
GH

—1 (n—-~), 0<G, A.

Put

Pr {X>a, Y>y}=P(G(«), Ay)

or denote it simply by P, which satisfies

 aa,y=- (2.3)

The above examples suggest that, if P(G, H) converges quickly to zero

as G, H—1, Xx and Y,. will be asymptotically independent. In fact:

THEOREM 2. If the convergence P(G, H)—0 is of such order as

P(i—s, 1s) = o(s), (2.4)

Xmnax ANE Yur are asymptotically independent, and vice versa.

PROOF.

0,,(G, H)=—aontHe1+P(G", H""))"

— exp {lim nP(G, mn") (n—0).

Then, 0,(G, H)—1 (nx, G, H>0) isequivalent to

iin prun)— p(y—B A) yk 1\\_,(1+). ¢PG@*, H")=P(i—£ +0(4), 1-= +0(=))=0(=-), (2.5)

where g=1—G, h=1-—dH. As
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P(min ([, m), min(l, m))<P(l, m)SP(max (l, m), max (l, m)) (2.6)

(2.5) proves the theorem.

Remark. As

P=(1-—G)1—A)—-(1-Q)GH ,

if O(G, H)S1 in the neighbour of (G, H)=(1, 1), Xmax and Ya are

asymptotically independent.

As an application of Theorem 2 we have:

THEOREM 3. For a bivariate normal distribution with the correla-

tion coefficient 0<1, Xmx and Yr are asymptotically independent.

PROOF. Without loss of generality we assume the means to be zero

and the variances to be 1, and let ®-(S) be the inverse function of the

cumulative distribution function ®(s) of the standard normal distribution.

P(S, S)=Pr {X>®-\S), Y>@-\S)}
<Pr {X+ Y>20-\S)}

As the distribution of X+ Y is N(O, 2(1+ )),

P(S, S)S1—®(a®d-(S))

where a=V2(1+p) >1. Write

1—S=s, P(1—s, 1—s)=p(s) ,

and

b-(1—s)=0""(1—n(s))/a=z,
to obtain

s=1—6(z)=— e*"{1-440(4)| ,

 

V2n z

p(s)=1—B(a2)==a{1-+0(=)} .

From these,

p(s) =te-*e-r1-(142)4+069| —0 (s—0).
8 a ae

On the contrary to the case of Theorem 2, if P(1—s, 1—s) is

near its maximum value s, the distribution of (X..., Ymax) degenerates

to one on a curve.
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THEOREM 4. If

P(i—s, 1—s)=s—O(s) , (2.7)

0,,(G, H) converges to U(G, H) and vice versa.

PROOF.

0,(G, H)-U(G, H) (n>@~)

is expressed as

(GU°4HA"_14P(G™", H"))" —

Putting 1—G=g and 1—H=h, we see

fr-thsrags0(h), -Aeo(Z))Tfish ost
or equivalently

I+), g>h,

robs) -Reo(S)oIn
n

3

)> g>h,

s
l
r

which, with the inequality (2.6), proves the theorem.

Between these two extremes, there may exist other limit dependence

functions. To study general ones we consider the limit of 0,(G, H)

when G—1 along the curve C,: H=G*, 0<a<o. Notice that, if the

point (G, H) is on C,, the point (G’”, H™”) is also on C,.

If the limit exists, |

lim OGY", G*'") —exp a logAG" Gn) |
 

7%00 NMco 1
ose,

nt

=exp|Slog QG’, Gy

oo {9QG, G*)  aQXG, G*) ]cder
If, further, the distribution F(z, y) has the probability density

function,



204 MASAAKI SIBUYA

———ee

wr=(4 OF a)s

0G\HaG G

_ OXG, G*)_y. OF4 _). P _
inGG t=hmH(y(G*)|a(G))—1,

where “(G) and y(H) are the inverse functions of G(x) and H(y), re-

spectively. The same relation, also holds for 60/0H and

lim 2°(G"", GI") =exp |log G + lim {H(y(G*) | x(G))
G~—1-0N00

+aG(a(@)\y(G"))—(1-+a)} |
=Gr, (2.8)

where

Y(a) =lim{H(y(G*) | (G))+aG(eG) |yG*)}-At+a). 2.9)
The limit distribution thus obtained is stable in the following sense.

Definition 2. The distribution of (Xiax, Ymax) i8 said to be stable

with respect to dependence, if for all n

OG", H")=a(G, H). (2.10)

Evidently, when X and are independent, and when the correlation

between X and Y is one, (Xmax, Ymax) is stable.

THEOREM 5. The distribution of (Xmaxy Ymax) 18 stable with respect

to dependence, if and only if the dependence function has the form

OQ(G, H) = Gxos Bios 4) (2.11)

where 7(a), DSa<o, 1s a continuous convex function which satisfies

max(—a, —1)<y(a)<0. (2.12)

Before the proof of the theorem we prove:

LEMMA. Let 2%,, %,, Ax,, Ax, be any such numbers as 0<4, <2,

Av,=ex, and Axv,=ex, (0<é), or 4,=2,=0 and 0<Az,<Az,. Then

PH,+AL)—P(%1) — P(%,+AG)—-P(H2) (2.13)
Ax, 7 AX,
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is necessary and sufficient for the continuous bounded function p(x) to

be convex in 0OSU< 0.

PrRooF. (2.18) is necessary. Because, if g(#) is convex, for any

O<u,<u,<U3, we have

P(Us) —Ps) <Pls)—P(t) —<PCs)=PMs) (2.14)
U,— Uz Uz— Uy, U3— Us,

By definition, 2,+Az,<%,+Az,. In the case v,+Axz,=2,, the relation is

equivalent to (2.14), and if 7,+Az,+z2,,

P(4,+Ax,)— P(%,) < P(x,+Ax,)— P(x) < P(x, +AxX,)— P(X) .

Aa, ~ (t,+tAx)—7, ~ An,
 

Conversely, if (2.18) is true, putting 2,+Az,=#, and 7,+Az,=%2;,

P(H2)—P(H1) — P(s)— P(%s)
Ly— Hy L— Ly

holds true for any 0<2,<2, and their geometric mean 7,=V%,2;,. Apply-

ing the inequality successively to the points (%, t—Wo.0, 2), (ta, “P=

VBeMigyUe); (Hy, OPHVBH, HY); (OP, @P=VaMEr,, He), (a, LP=Vwe”, wh”),

(2, e?=Vaes, x); and so on, we see that at the geometric means

the function ¢(x) is below or on the cord joining (x,, p(x,)) and (a, P(#;)).

As the series of geometric means is dense in (%,, #,) and (x) is con-

tinuous, ~(x), %,<"“<2%,, is below or on the cord. 0<2%,<4; is arbitrary

and v(x) is continuous at «=0, so p(x) is convex in 0Sa%<om.

Now we give the proof of the theorem.

Proor. At first we prove that QO(G, H) must have the above form.

Put

E=logG, n=lgH, 028, 7>--, (2.15)

w(E, 7)=log Oe, e”), | (2.16)

then the stability condition may be expressed as

wé, =o(=, 2).

That is, w(E, 7) is Euler’s homogeneous function of 1st order, and must

have the form (see for example [2])

wl, n=60() ;
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which is the same as (2.11).

For

Q(G, H)=G*s Hflog G)

to be a dependence function, 0GH must be a distribution with uniform

marginal distributions. We transform G and H into é and 7 by (2.15).

In other words, we consider the distributions with marginal distributions

exp € and exp 7. Then

FE, 1)=exn{e(x(2)+1)+y|

=exp {u(E, 7)} . (2.17)

The conditions F(é, 0)=exp é and F(0, 7)=exp 7 pose therestriction

x(0)=0, X(a)=o0(a) (A>) (2.18)

ALPE, N=FE, 0)—F(E—AE, 0) —F(E, n—An)+F(E—AE, N—AN)

=FE, n)[1—exp(—A,e(E, 7))—exp(—A,H(E, 7))

+exp(t(é—AE, 7—An)—WE, 7))]

=£(E, nyexp(—A.(E, 7)—A,HE, 7)) |

x [{exp(Acu(E, 7))—1} {exp(A,(€, 7))—1}
+exp(Az,“(6, 7))—1]

=F(E, nexp(—A-(E, 7)—A,UE, 7)

x [AM(E, 7) - AME, 7) - exp(O,(E, 7))
+ Az,HE, 7) - exp(6.(, 7))] , (2.19)

where 6,(&,7) and 0,(&,7) are functions of the value of factors before

a1)

exponential functions.

acme, =ex7)+1)-€-a0(x(
=€-40(x(7)-Aag)

If €40 and 7+0, putting

  

Yag UD- 7. AE _pngso,
e ' & EAE EE-AD

we have

 Awe, n)=—a- agHaaAa)—Hast), (2.20)

aeoe - - Fo eee ee _ a “ern ce seni eatae ee mee Be ee wee ee Free pe noperenee np teen ee cere secrete wee me cee eee eeanppgmgees ge eee . _ cece eee ne hee ee teee
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Acp(0, n=ae(x(=2)+1) . (2.21)

From the condition

or

 

AE, n)20 ,

we have

Ma)s—-1, (2.22)

and

Xa)—YaAa) <1(@)+1 | (2.28)
AQ a

According to the restriction (2.18), the right hand of the above inequality

diminishes when @—oo.

até, 1)=8(x(2)—x(92)+09=a7AEROMO+1) (2.24) 

for €<0, where

From the condition

ALF(E, N=F(E, 1)—-EE, 7—An)20 ,

or

 

 

A,LE, N)=0,

we have

¥(a+Aa)— x(a) >-1. (2.25)
AQ |

aneté, =|&[x(L)—x(P4}+an—|—a8){x(=e)

_anY(,+Aa,)—7X04) (AaAas)—ua) )
AQ, AQ,
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=AEAn a, — 1 ( Xa,+AqQ,) ~_ x(a) _ x(a, +Aa,) ~_ x(a) ),

—& a,—a,\ Aa, AQ,
(2.26)

for +0, where

a,=L ’ Aa,=AZ ; a,=—1 , Aa,=—_A”_ .
E —€é E—AE —(E—Aé)

a,— a, =——AS=0 .

E(E— AE)

If €=0,

ALLO, n=ablx(SP)—1(AZ). (2.27)

Considering (2.19) with (2.20), (2.24) and (2.26), in order to have

ALL(E, 7)20

for any small £, Az,4é, 7) must not be negative, or

(a, +AaQ,)— 4(a,) > X(a,+Aa,)— x(a)

Aa, 7 Aa,

for any 0<a,<a,, Aa,=ea, and Aa,=ea,, or for Q,=a,=0 and any

0<Aa,<Aq@,. Then, according to the Lemma, 7(a@) must be convex in
0<a<o,

In the case £=7=0, Aj,4(0, 0) must also not be negative, and from

(2.27) we have

x(a@)Sx(0)=0, 0<a<cc (2.28)

Summarizing the above results we can conclude the necessity of

the theorem. Conversely, if (2.12) is satisfied, ALL(E, 7)20, and

F(é, 7) is a distribution function.

Example 4. Let us define

—ka=—Kt  Ock<1,y49) ita <KS

 

_ —k log G log H

OG, H)=exp| log G+log H b

Transforming (G, H) to (&, 7), we get
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Fé, pymexpEAE 0 =f, 7>—0

where c=2—k(1Sc<2), and

OF(E, | 2(c—2)En , (E+267+(c—DP\M(e—werent7) |
0E0n (E+7)° (€+7)*

x F(E, 7) >0.

rE Lane.
Example 5. Let us define

y¥(a)= max (—ka, —k), 0<k<l,

AG, H)=min(Z, 2),

GH'*, GsH,

FG D=\gay) G>H.
The p.d.f. is

or ={O-BIE? G<H,

GOH \(1—k)/G* , G>H,

and the one-dimensional density on H=G=tis

Kyf(t)= 5°

APPENDIX

The relation

AD(%, y; 0) _ .dp P(x, y; )

seems to be well known for table computers of P(x, y; 0) (see, for ex-

ample [8], the equation (3.6)), but we prove it for completeness:

As is well known,

Or

   

 P(x, Y; P)=eral = )o(y) =aotV1-~* Vi V1- VE  
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‘where ¢(t) is the p.d.f. of the standard normal, and therefore

 o(«, v5 p)=\_. (Faetee(u) du.

Using them, we get

OLwaletegl
—¢ey) 1 3f y—eu

Tre—@J-- YV1—-p? V1—-¢ ioar)o(u) du

(u—ox) 1 o(Yaeyey
“VYi-eelVi-e Vi-e \Vi-B )o(u) de
_ 1=eFSwae, v5 0)

 

 

  

 

 

For general N(t,, {4y; 0%, 02; 0), by the same procedure we have d®/do=

0,0.

THE INSTUTE OF STATISTICAL MATHEMATICS
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