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0. Introduction and Summary

The largest and the smallest value in a sample, and other statistics
related to them are generally named extreme statistics. Their sampling
distributions, especially the limit distributions, have been studied by
many authors, and principal results are summarized in the recent Gum-
bel’s book [1].

The author extends here the notion of extreme statistics into bivariate
distributions and considers the joint distributions of maxima of compo-
nents in sample vectors. This Part I treats asymptotic properties of
the joint distributions.

In the univariate case the limit distributions of the sample maximum
were limited to only three types. In the bivariate case, however, types
of the limit joint distributions are various: Theorem 5 in Chapter 2 shows
that infinitely many types of limit distributions may exist. For a wide
class of distributions, two maxima are asymptotically independent or
degenerate on a curve. Theorems 2 and 4 give the attraction domains
‘for such limits. In bivariate normal case, two maxima are asympto-
tically independent unless the correlation coefficient is equal to one.

Throughout these arguments we remark only the dependence between
marginal distributions, whose behaviours are well established. For this
purpose a fundamental notion of ‘‘dependence function’’ is introduced
and discussed in Section 1.

A practical application will be considered in the subsequent paper.

The author is very grateful to Messrs. M. Motoo, K. Isii and K.
Takeuchi for their suggestions and discussions, by which theorems in
Section 2 are considerably improved.

1. Dependence function

Let (X,, Y)(i=1,---, n) be a sample from the population with the
distribution function F(z, y). The maxima of the components, X.x and
Y..x, have the joint distribution function
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Pr(Xpe < %, Yau <¥) = F*(z,9) . (1.1)
We write the marginal distributions of F(x, y) as
G(x)=F(z, =),
Hy)=F(, y) . (1.2)

The distribution functions of X,.., G*(x), and of Y., H"(y¥), are marginal
distributions of F™(x, y).
We introduce the function Q*(z, y) defined by

F(z, y)=0%(, y)G(x)H(y) .
From the relation
Fyz, y)=0*(z, y)G"(x)H"(¥) ,

the asymptotic dependence between X, and Y. is clarified from the
behaviour of Q**(x,y) when n—o. To simplify the argument, we
redefine this function as follows:

Definition 1. The dependence function Q(G, H), 0<G=<1, 0<H<1
of the distribution F(z,y) (or of the r.v. (X, Y)) is the function that
satisfies

F(z, y)=QG(x), HY)G(x)H(y) . (1.3)
For G=0 or H=0, Q(G, H) may be defined if the limit

Q0, H)=lim L& ¥)_

e(z)-',oG(a;)H(y) !
N Fz, 9)
e Q(G, 0=l Z, Y .
G 0= i e oHY (1.4)
exists.

Remark 1. Although G(z)=G, and H(x)=H, (G,, H, are constants)
do not determine a point (x,%) uniquely, the value of F(x,y) is the
same for any (x,y)e {(x,¥); G(x)=G,, H(x)=H,}. Therefore, Q(G, H)
is a one-valued function defined for all possible values of G and H.

Remark 2. Clearly Q(G, H)=1, if and only if X and Y are inde-
pendent. From the definition

Pr(X<z, Y<y)
Pr(X<z)Pr(Y<y)'

QG, H)=
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Q(G, H)>1(<1) corresponds to the positive (negative) association between
the events (X<z) and (Y <¥).

Remark 8. G, H) is ordinally invariant. That is, if ¢(x) and
Jr(y) are monotone non-decreasing functions, the dependence function of
(@(X), ¥(Y)) is also that of (X, Y), because F($(x), ¥(1))=UG(p(2)),
H(y(y))G(9(x))H(y(y)). The domains of two dependence functions are
not always the same, unless both @(x) and y(y) are strictly increasing.

Remark 4. Considering the r.‘l. (G(X), H(Y)) we see that; a
necessary and sufficient condition for Q(G, H) to be a dependence func-
tion, is that Q(G, H)GH is a distribution function defined on 0 <G, H=1,
whose marginal distributions are uniform.

THEOREM 1.
LG, H)<Q@G, H<UG, H), 0<G,H<1, (1.5)
where
U(G, H)=min (é Flf) (1.6)
L(G, H)=max (o, ‘—;%HH;I) 1.7

The right hand equality holds when the distribution F(z,y) degener-
ates on a mon-decreasing curve on the xz-y plane, and the left hand
equality on a mon-increasing curve.

ProOF. The right hand inequality:

F(z, y)<F(z, «)=G(®),
F(x, y)<F(, y)=H() .
Therefore,
F(z, y)=G(x), H(y))G(x)H(y)< min (G(x), H(y)) -
The equality holds, if and only if F(x, )= min (G(z), H(¥)), which mean

the above mentioned condition.
The left hand inequality:

G(x)+ H(y)— UG(x), Hy))G(x)H(y)=1— Pr {X>z, Y>y}=1.

Therefore,
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G+H-1
QG,Ht—=,
( )= GH

Q(G, H) is apparently not negative. The equality holds if and only if
Pr(X>2, Y>y)=0 for G(x)+H(y)=1.
See Fig. 1.

Ezample 1. Consider the probability density function defined by

2, 0<w<l, 0<y<l, 1<w+y,

f@, y)={0’ otherwise.
As
Fz, y)z{(wﬂ/—l)’, 0=z<1, 0=sy<1, 1=2+y,
0, 0=2<1, 0y, 1>2+y,
and
G(x)=2", H(y)=y",
we have
VOEHVH-I g ivEe,
e H)={ GH o (1.8)
0, otherwise .

(G, H)<1, because VG +VH —-1=<V'GH . Xand Y have the negative
association.

Example 2. Let Z, (i=1, ---, k) be a sample from the population
with the continuous distribution function K(x), and put Z,.=X and
Znex=Y. We consider the distribution of (X, Y).

F(z, 9)=K*(y)—(K@)—K@), z<y,
G(x)=1—(1—K(®))*, K@)=1—1—G)"*,
Hy)=K"y), K@y)=H",

H-(H* (=GP 1) o _p
G, H)= GH T (1.9)
0, otherwise . v
As H'(1-G)"*—1<H'™1—-G)", we have
H—H1—G) _
O s H 2___._1 M GSH .
G Hyz—FF =

Zm and Z,,, have the positive association.
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Q(G, H):.C%{.{H_ (1+log H+lzg 1-G) +O(l)>t}

k!
which is a well-known result.

Example 3. Consider a bivariate normal distribution.

LN 1 _ 1 2 2
¢(£D, yr p)—Zn'l/—l_—-— _pzexP{ (1—_‘02)(9; +’.U 2ny)} ’
Oz, y; p)=S:SL¢(u, v) dudv .
As

do _ 1 do 1

= = % =~ >0 1.10

do GHdp GH' (1.10)
(see Appendix) and Q=1 when p=0, we have 2>1, <1 corresponding
to p>0, <O0.

The value Q(G, 0) and Q(0, H) were defined as the limits. When
F(x, y) has the probability density function f(z,y), the limit (say)
Q(0, H) is: '

v o
0, H)= lim 2&Y)__ jim S—«»f(x vy =L iim Hy|z), 111
C@HY) =gy fwpdy H

Yo I G

bro'ken .“"9 p=0 broken line p=-10
Solid Line p=08 Solid line p=-08

Fig. 1. Q(G, H) for bivariate normal distributions.
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where H(y|x) is the conditional distribution function of Y given X=uz.
Like the bivariate normal distribution, if X has the positive density in
a semi-infinite interval (—o, b), and if the conditional distribution
of Y given X=u« has the finite dispersion, monotone increase or decrease
of the regression curve corresponds to lim H(y|xz)=1 or 0, that is to
Q0, Hy=H" or 0, which is the same as the value of U(0, H) or
L0, H). G, H) for normal distributions are shown in Fig. 1.

2. Asymptotic [Qroperty
From the previoﬁsly mentioned relation
F(z, y)=0"G(x), Hy))G"(x)H"(y) , (2.1)

the dependence function of maxima (X,.., Ym) in sample of size n is
o~G'™, H'"). In this section the asymptotic behaviour of

Q.(G, H)y="G"", H'™) (2.2)

for (n—oo) is studied. We assume the continuity of F(z, ) or of QG, H).
If G(x) and/or H(y) have a positive jump at the point where G(x)=1 or
H(y)=1, then the limit distribution is trivial. If the distribution has
infinitely many points with positive probability, slight modifications in
the following arguments are necessary. At first, we examine the ex-
amples in Section 1.

Example 1.
VG +V H-1) §ia
aG.m="— er & VErVH=L
0, otherwise .
Qn G, H fnd (G1/2”+H1/2”._.1)2”
( ) GH
_ 1/ log G+log H l " 1/2n 120~
(1B EHE H o( L) gz
Therefore,

lim 0,(G, H) = % exp {log G+log H} =1, G, H>0.

The convergence is uniform for G, H=¢>0, where ¢ is any constant.
This is true throughout the following convergence statements.

Ezxample 2
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G+H-1
QG Hz"—~=.,
( )z GH

Q(G, H) is apparently net negative. The equality helds if and enly if
Pr(X>z, Y>y)=0 fer G(x)+ H(y)=1.
See Fig. 1.

Example 1. Ceonsider the prebakbility density functien defined by
{
2, 0=zx<l1, 0<y<l1, 1<z+y,

f@, y):{.’ etherwise.
As
P, y)={(w+y—1)2, 0=x<1, 0<y<1, 124y,
o, 0=x<1, 0<y<1, 1>2+y,
and
G(x)=2*, Hy)=v",
we have

VG+VH-1 = Fo1

GH ’
oG, H =={
( ) 0, etherwise .

(1.8)

QG, H)<1, because VG +VH —1<VGH . Xand Y have the negative
asseciatien.

Ezample 2. Let Z, (i=1, .-+, k) be a sample frem the mpepulatien
with the centinueus distributien functien K'z), and wut Z,.,=X and
Zmx=Y. We censider the distributien of (X, Y).

F(z, ¥)=K*(y)—(K@y)— K@), =<y,
G(x)=1—(1—K(@)*, Kz)=1—1—G)*,
Hy)=K"y), K@)=H",

H-(H"+(1—G*—1) o _
Q@G, H)y= GH TooET L.9)
e, etherwise .
As H'*4+(1-G)'*—1<HY*(1—G)"*, we have
@G, H)y>H-H1-G) _, G<H.

GH ’

Zin and Z,,. have the pesitive asseciation.




198 MASAAKI SIBUYA

G+H-1
oG Hy="—=,
( )= GH

Q(G, H) is apparently net negative. The equality helds if and enly if
Pr(X>z, Y>y)=0 fer G(x)+H(y)=1.
See Fig. 1.

Exemple 1. Consider the prebability density functien defined by
|
2, 0=z<1, 0<y<l, 1<z+y,

H —_—
7@ v) {0, etherwise.
As
Fz, ) {(w+y—-1)’, 0<z<1, 0<y=1, 1<x+y,
x, =
v o, 0=x<1, 0=y=<1, 1>2z+y,
and
G(x)=2’, H(y)=y*,
we have
;(V G+V'H—1) VT +VE>1
GH ’ =
NG, H)= : 1.3
( ) 0, etherwise . (1.3)

Q(G, H)<1, because VG +VH —1</5H . Xand Y have the negative
asseciatien.

Ezample 2. Let Z, (i=1, ---, k) e a sample frem the wpepulation
with the centinueus distributien functien K(x), and put Z,.=X and
Zwx=Y. We censider the distributien ¢f (X, Y).

F(z, y)=K*(y)—(K@y)—K@)}* , z<y,
Gx)=1—(1—K@)*, K@)=1-1—-G)*,
Hy)=K%y), K(y)=H",

H—(H"+(1—-G)x—1)* G<H
Q@G, H)= GH o ET 1.9
| B etherwise . ,
As H'*+(1-G)"*—1< HY"*(1—G)'*, we hive
(G, H)gw_—_l , G=H.

GH

Zin and Z,,, have the pesitive asseciation.
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G+H-1
oG, Hz=""——.
( )= GH

Q(G, H) is apparently net negative. The equality helds if and enly if
Pr(X>z, Y>y)=0 fer G(x)+H(y)=1.
See Fig. 1.

Exemple 1. Ceonsider the prebability density functien defined by

|
2, 0=z<l, 0<y<l1, 1Zz+y,

S, y)={., etherwise.
As
7 )_{(w+y—1)2, 0<z<l1, 0=y=1, 1=<z+vy,
@ =1, 0<o<1, 0<y<l, 1>z4y,
and
G(z)=2*, Hy)=vy",
we have )
1(" CHVH-U' g vH 2t
GH ’ =
Q(G, H)= 1.8
( ) 0, etherwise . (1.8)

Q(G, H)<1, because VG +VH —1<VGH . Xand Y have the negative
asseciatien.

Example 2. Let Z, (i=1, .-+, k) e a sample frem the mpepulation
with the centinueus distributien functien K(x), and put Z,.--X and
Zpw:=Y. We censider the distribution of (X, V).

F(z, y)=K*"(y)—(K(y)—-K@=))*, z=<y,
G(z)=1—(1—K(@)*, K@)=1—1—-G)"*,
Hy)=K"y), K(y)=H",

Q@G, H)= GH (1.9)
e, etherwise .

As H'"™+(1-G)y*—1<H"*(1—-G)"*, we have

H—H(1-G) _
QG, Hyz———2/ =1, =H.
(G, H) GH 1 G=

Zin and Z,,. have the pesitive asseciatien.
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G+H—-1
oG, H)=9 i
&, H)=z GH
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18 necessary and sufficient for the continuous bounded function ¢(x) to
be convexr in 0=r<<oo.

ProOF. (2.13) is necessary. Because, if o(x) is convex, for any
0=<u,<u,<u;, we have

P(s) = P(h) - P(ths) —P(th) _ P(ts) = P() 2.14)
Uy—Uy Uy —Uy Us— Uy

By definition, »,4+Ax,<%,+Ax,. In the case z,+Ax,=, the relation is
equivalent to (2.14), and if x,+Ax,#x,

P@+AL) —P(@) PR +AZ) —P(@)  P(%+AZ) —P(F:)
Amx o (xl + Awl) — &, o sz

Conversely, if (2.13) is true, putting x,+Ax,=2, and 2,+Az,=x,,

P(%,) — p(,) < P(&5) — p(,)
Ly— 2, L3— Xy

holds true for any 0<,<x, and their geometric mean x,=1"zx,. Apply-
ing the inequality successively to the points (x;, 2" =1V'%,%,, *,), (%, 2P=
VT, %); (@, 8P =1 230, 20); (30, 2P =120, &,), (5, 257 =V 2,2, 1),
(x>, 2?=1"2Px, «,); and so on, we see that at the geometric means
the function @(x) is below or on the cord joining (x,, ®(,)) and (x,;, @(x;)).
As the series of geometric means is dense in (x,, 2;) and ¢(x) is con-
tinuous, @(x), x,<x<x; is below or on the cord. 0<z, <%, is arbitrary
and @(x) is continuous at =0, so @(x) is convex in 0=z <oo.
Now we give the proof of the theorem.

PRrROOF. At first we prove that Q(G, H) must have the above form.
Put

E=logG, n=logH, 02§ 7>—o, (2.15)
w(E, n)=log Q(¢, e), (2.16)

then the stability condition may be expressed as
—o(L, 1
o, P=0(£, 1).

That is, w(£, 7) is Euler’s homogeneous function of 1st order, and must
have the form (see for example [2])

o, N=£o(L).
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which is the same as (2.11).
For

Q(G, H)=Gx(log Hflog G)
to be a dependence function, QGH must be a distribution with uniform
marginal distributions. We transform G and H into £ and 7 by (2.15).

In other words, we consider the distributions with marginal distributions
exp £ and exp 7. Then

F(, 77)=exp{f(x(—§7’—)+1)+77}

=exp {u(¢, 1)} . (2.17)
The conditions F(£, 0)=exp & and F(0, 7)=exp 7 pose the restriction
x0)=0, a)=oa) (a—w) (2.18)

LF(E N)=F(&, 7)—F(E—AE, n)—F(E, 7n—An)+ F(E—AE, n—A7)

=F(&, 7)[1—exp(—AUE, 7)) —exp(—A,(E, 1))
+exp(p(E—AE, n—An)—uE, 1))

=F(E, n)exp(—AuE, 9)—A,ME, 7))
x [{exp(Agp(E, 1))—1} {exp(A, (£, 7)) —1}
+exp(A, (¢, 7)) —1]

=F(&, n)exp(— A&, 7)—A,UE, 1))
X [AdE, 1) - Ay &, 1) - exD(0,(E, 1))
+ALUE, 1) - exp(6:(E, 7)1 , (2.19)

where 0,(&,7) and 0,&, ) are functions of the value of factors before
exponential functions.

AcpH(E, 77)=E(x(——) +1)—-a8)(x(Z = )+1)
-e-20(i2)-sg) ).

If £€+0 and 7+0, putting

g D1 =DM _pasy
e~ % FTE_aE HE-ap %

we have

Aept, m)=—a - Ag(HO= /’i‘;‘ Ad)_ 7‘(“;“) (2.20)
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is necessary end suficient for the centinueus bounded function ®(x) te
be convexr in 0= <ee,

Preor. (2.13) is necessary. Because, if e(x) is cenvex, fer any
0=<u,<u,<u; we have

Pu) — () PU)—o(u) P(u) — () (2.14)
Uy — Uy Us— Uy Us— Uy

By definitien, z,+Ax,<%,+Ax,. In the case z,+Ax,=w, the relatien is
equivalent te (2.14), and if x4 Ax,#2x,,

o(r,+Az,)—o(x,) < o(r,+Az,)—o(x,) < o (2, 1+ Ar,) —o(,) .
Az, (x,+Ax)—2, Az,

Cenversely, if (2.18) is true, putting =,+Ax,=2, and 2,4 Ax,=x,,

o) —2(z,) _ (%) —#(x,)
Ty—%, By

helds true fer any 0<z,<z, and their geemetric mean x,=Vx,x,. Apply-
ing the inequality successively te the weints (&, "=V .3, 2,), (2, 2=
V@5, 15); (%, 2P =1 720, 2); (@2, 20 =120, %,), (¥ 27 =120, V),
(25?, z®P= 2Pz, «,); and se en, we see that at the geemetric means
the functien e(x) is below or on the cerd jeining (x,, ®(x,)) and (z;, #(x;)).
As the series of geemetric means is dense in (x,, %;) and e(x) is cen-
tinueus, ®(x), x,<x<x;, is below or on the cord. 0z, <z, is arbitrary
and e(x) is centinueus at =90, se e(x) is cenvex in 0=z <ee.
New we give the preef ef the theerem.

Preor. At first we preve that Q(G, H) must have the abeve form.
Put

E=log G, n=legH, 02§ 7>—e, (2.15)
(g, n)=leg Q(¢f. ¢7), (2.16)

then the stability cenditien may e expressed as

o, D=0(£, L).

n

That is, @(£, 7) is Euler’s hemegeneeus functien ef 1st erder, and must
have the ferm (see for exaraple [2])

ot, N=6o(L).
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which is the same as (2.11).
Fer

Q(G, H)=Gx(log Hjleg G)
te be a dependence functien, QG H must be a distributien with uniferm
marginal distributiens. We transferm G and H inte £ and 7 oy (2.15).

In ether werds, we censider the distrikutiens with margina! distributiens
exp £ and exp 7. Then

F&, 77)=exp{§(x(§)+1)+7/}

=exp {(§, 1)} . (2.17)
The cenditiens F(&, 0)=exp £ aad F(0, 7)=exp7) pose the restriction
XO=0, y(x)=e(@) (a—e) (2.18)

ALF(E N)=F(, 1)—F(E—AE, 1)—F( 17— An)+ F(E—AE, n—AY)

=F(&, N)[1—exp(— A (E, 7)) —exw(— A, (&, 7))
+exp(UE—AE, n—AN)—uE, 1))

=F(&, )exn(—ALAE, 7)— A, ME, 7))
N[{exm(Aedé, 1)) — 1] {exp(A, (£, 7)) —1}
+exw(A}, (¢, 7)—1]

=F(&, n)exn(— A LUE, 7)— AU, 7))
X [AUE, 1) - A, UE, 1) - exD(O,(E, 7))
+ALUE, 1) - exp(0(8, 1)) , (2.19)

where #,(§,7) and #0,&, 1) are functiens ef the value of facters lbefere
expenential functiens.
)+1)

acre, D=r(x(L)+1) - -0
=—a8(d(F) - g ) 1) -

If £+9 and 7n+0, putting

Do DN =T _aesy
£ " E E-at Ee-ap

we have

Mg, )= —a ag(HO-XEA®)_J@WEL) (509
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is necessary end suficient for the centinueus bounded function ®(x) te
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E=log G, n=legH, 02§ 7>—e, (2.15)
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then the stability cenditien may be expressed as
—ofE, 1
o P=0(, L).

That is, @(£, 7) is Euler’s hemegeneeus functien ef 1st erder, and must

have the ferm (see fer example [2])

o, N=6o(L).
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‘where ¢(t) is the p.d.f. of the standard normal, and therefore

(@, v; p=|" @(jl YL V() du .

Using them, we get

=l ¢<u>{¢(é’f_”}; Vs

g O WV
1/1 ) VI=p Vip' ( )"’(u)d"

—(u—pz) 1 u—py
1/1 -0 S-w Vi—pr Vip \Wi-p )d)(y)du
1

= T P =9t ; )

For general N(u., t,; 02, 63; ), by the same procedure we have d®/do=
G, 0,p.
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