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Abstract. Statistical methods of inference typically require the likelihood function
to be computable in a reasonable amount of time. The class of “likelihood-free”
methods termed Approximate Bayesian Computation (ABC) is able to eliminate
this requirement, replacing the evaluation of the likelihood with simulation from
it. Likelihood-free methods have gained in efficiency and popularity in the past
few years, following their integration with Markov Chain Monte Carlo (MCMC)
and Sequential Monte Carlo (SMC) in order to better explore the parameter space.
They have been applied primarily to estimating the parameters of a given model,
but can also be used to compare models.

Here we present novel likelihood-free approaches to model comparison, based
upon the independent estimation of the evidence of each model under study. Key
advantages of these approaches over previous techniques are that they allow the
exploitation of MCMC or SMC algorithms for exploring the parameter space, and
that they do not require a sampler able to mix between models. We validate
the proposed methods using a simple exponential family problem before providing
a realistic problem from human population genetics: the comparison of different
demographic models based upon genetic data from the Y chromosome.
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1 Introduction

Let xobs denote some observed data. If a model M has parameter θ, with p(θ|M)
denoting the prior and p(xobs|M, θ) the likelihood, then the model evidence (also
termed marginal likelihood or integrated likelihood) is defined as:

p(xobs|M) =

∫

p(xobs|M, θ)p(θ|M)dθ (1)

To compare two models M1 and M2 one may compute the ratio of evidence of
two models, called the Bayes Factor (Kass and Raftery 1995; Robert 2001):

B1,2 =
p(xobs|M1)

p(xobs|M2)
(2)

In particular, if we assign equal prior probabilities to the two models M1 and
M2, then their posterior odds ratio is equal to the Bayes Factor:

p(M1|xobs)

p(M2|xobs)
=

p(xobs|M1)

p(xobs|M2)

p(M1)

p(M2)
=

p(xobs|M1)

p(xobs|M2)
(3)

Jeffreys (1961) gave the following qualitative interpretation of a Bayes Factor:
1 to 3 is barely worth a mention, 3 to 10 is substantial, 10 to 30 is strong, 30

to 100 is very strong and over a 100 is decisive evidence in favor of model M1.

Values below 1 take the inverted interpretation in favor of model M2.

The many approaches to estimating Bayes Factors can be divided into two
classes: those that estimate a Bayes Factor without computing each evidence
independently and those that do involve such an explicit calculation. Without
exhaustively enumerating these approaches, it is useful to mention those which
are of particular relevance in the present context. In the first category we find
the reversible jump technique of Green (1995), as well as the methods of Stephens
(2000) and Dellaportas et al. (2002). In the second category we find the harmonic
mean estimator of Newton and Raftery (1994) and its variations, the method of
Chib (1995), the annealed importance sampling estimator of Neal (2001) and the
power posteriors technique of Friel and Pettitt (2008).

Here we present a method for estimating the evidence of a model when the like-
lihood p(xobs|M, θ) is not available in the sense that it either cannot be evaluated
or such evaluation is prohibitively expensive. This difficulty arises frequently in a
wide range of applications, for example in population genetics (Beaumont et al.
2002) or epidemiology (Luciani et al. 2009).

2 Background

2.1 Approximate Bayesian Computation for Parameter Es-

timation

Approximate Bayesian Computation is the name given to techniques which avoid
evaluation of the likelihood by simulation of data from the associated model. The
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main focus of ABC has been the estimation of model parameters and we begin with
a survey of the basis of these methods and the various computational algorithms
which have been developed for their implementation.

Basic ABC algorithm

When dealing with posterior distributions that are sufficiently complex that cal-
culations cannot be performed analytically, it has become common place to invoke
Monte Carlo approaches: drawing samples which can be used to approximate the
posterior distribution and using that sample approximation to calculate quantities
of interest. One of the simplest methods of sampling from a posterior distribution
p(θ|xobs) is to use rejection sampling, drawing samples from the prior distribution
and accepting them with probability proportional to their likelihood. This, how-
ever, requires the explicit evaluation of the likelihood p(xobs|θ) for every simulated
parameter value. Representing the likelihood as a degenerate integral:

p(xobs|θ) =

∫

p(x|θ)δxobs
(dx)

suggests that it could be approximated by replacing the singular mass at xobs with
a continuous distribution (or a less concentrated discrete distribution in the case
of discrete observations) to obtain the approximation:

p̂(xobs|θ) =

∫

p(x|θ)πǫ(x|xobs)dx (4)

where πǫ(x|xobs) is a normalized kernel (i.e. a probability density with respect to
the same measure as p(x|θ)) centered on xobs and with a degree of concentration
determined by ǫ.

The approximation in Equation 4 admits a Monte Carlo approximation that
is unbiased (in the sense that no further bias is introduced by the use of this
additional step). If X ∼ p(x|θ) then the expectation of πǫ(X|xobs) is exactly
p̂(xobs|θ). One can view this approximation in the following intuitive way:

EX∼p(x|θ)(πǫ(X|xobs)) =

∫

πǫ(x|xobs)p(x|θ)dx

= EX∼πǫ(x|xobs)(p(X|θ))

≈ p(xobs|θ) when ǫ is small. (5)

This approximate equality holds in the sense that under weak regularity con-
ditions, for sufficiently-small, positive ǫ the error due to the approximation is a
small and monotonically decreasing function of ǫ which converges as ǫ ↓ 0. Using
this approximation in place of the likelihood in the rejection sampling algorithm
above results in the basic Approximate Bayesian Computation (ABC) algorithm:
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Algorithm 1.

1. Generate θ∗ ∼ p(θ)

2. Simulate x∗ ∼ p(x|θ∗)

3. Accept θ∗ with probability proportional to πǫ(x
∗|xobs)

otherwise return to step 1

The ABC algorithm was first described in this exact form by Pritchard et al.
(1999) although similar approaches were previously discussed by (Tavaré et al.
1997; Fu and Li 1997; Weiss and von Haeseler 1998). Here and below we assume
that the full data xobs is used in the inference. It is usually necessary in real
inference problems to make use of summary statistics (Pritchard et al. 1999) which
we discuss in Section 3.2 in a model comparison context.

If πǫ(x|xobs)dx places probability 1 on {xobs} then the algorithm is exact, but
the acceptance probability is zero unless the data is discrete. Indeed, the above
representation of the ABC procedure only admits the exact case as a limit when
dealing with continuous data (the Dirac measure admits no Lebesgue density).
Any other choice of kernel results in an algorithm producing samples from an
approximation of the posterior distribution p(θ|xobs). For example, Pritchard et al.
(1999) and many later applications used a locally uniform density

πǫ(x|xobs) ∝

{

1 if D(x, xobs) < ǫ
0 otherwise.

(6)

where D(·, ·) is some metric and ǫ is a (small) tolerance value. Other choices for
πǫ(x|xobs) are discussed in Beaumont et al. (2002). It is interesting to note that the
use of such an approximate kernel πǫ in the ABC algorithm can be interpreted as
exact sampling under a model where uniform additive error terms exist (Wilkinson
2008).

ABC-MCMC

Markov Chain Monte Carlo (MCMC, Gilks and Spiegelhalter 1996; Robert and
Casella 2004) methods are a family of simulation algorithms intended to provide
sequences of dependent samples which are marginally distributed according to a
distribution of interest. Application of ergodic theory and central limit theorems
justifies the use of these sample sequences to approximate integrals with respect to
that distribution. MCMC is often considered in situations in which more elemen-
tary Monte Carlo techniques, such as rejection sampling, are unable to provide
sufficiently efficient simulation. In the ABC context, if the likelihood is sharply
peaked relative to the prior, then the rejection sampling algorithm described previ-
ously is likely to suffer from an extremely low acceptance rate. MCMC algorithms
intended to improve the efficiency of ABC-based approximations have been de-
veloped. In particular, Marjoram et al. (2003) proposed the incorporation of the
ABC approximation of Equation 4 into an MCMC algorithm.
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This algorithm, like any standard Metropolis-Hastings algorithm, requires a
mutation kernel Q to propose new values of the parameters given the current
values and accepts them with appropriate probability to ensure that the invariant
distribution of the Markov chain is preserved. This algorithm can be interpreted
as a standard Metropolis-Hastings algorithm on an extended space. It involves
simulating a Markov chain over the space of both parameters and data, (θ, x),
with an invariant distribution proportional to p(θ)p(x|θ)ID(xobs,x)<ǫ in the usual
way. At stationarity, the marginal distribution of θ is proportional to p(θ)p̂(xobs|θ)
in the notation of Equations 4 and 6. Marjoram et al. (2003) demonstrated that
the stationary distribution of this MCMC algorithm converges in an appropriate
sense to the posterior distribution p(θ|xobs) as ǫ ↓ 0.

ABC-SMC

The Sequential Monte Carlo sampler (SMC sampler, Del Moral et al. 2006) is
another Monte Carlo technique which can be employed to sample from complex
distributions. It can provide an alternative to MCMC in some settings. It employs
importance sampling and resampling techniques in order to efficiently produce a
(weighted) sample from a distribution or sequence of distributions of interest. It is
particularly well suited to situations in which successive members of the sequence
of distributions are increasingly concentrated.

In the ABC context, it is natural to consider the use of SMC techniques applied
to the joint distribution of (θ, x) in the same way as the ABC-MCMC algorithm. A
natural sequence of distributions is obtained by considering a decreasing sequence
of values of ǫ. Although such an approach may seem computationally costly, it
does not require a successful global exploration of the final distribution in order
to characterize it well and hence may outperform MCMC in situations in which
it is rather difficult to design fast-mixing transition kernels. However, the need to
resimulate data sets from the prior during each iteration reduces the benefit which
can be obtained in the ABC setting.

Sisson et al. (2007) proposed the integration of the ABC approximation of
Section 2.1 within an SMC sampler in the following manner:
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Algorithm 2.

1. Set t = 1. For i = 1, . . . , N, sample θi1 ∼ p(θ) and set

wi
1 = 1/N.

2. Increment t = t+ 1. For i = 1, . . . , N

(a) Generate θit ∼ Qt(θ|θ
i
t−1),

(b) Simulate x∗ ∼ p(x|θit)

(c) Compute

wi
t =

p(θit)πǫt(x
∗|xobs)

∑N

j=1
Qt(θit|θ

j
t−1)

(7)

3. If t < T, resample the particles in population t and

return to step 2.

Unlike standard SMC algorithms this approach employs a Monte Carlo esti-
mate of an importance weight defined on only the marginal space at the current
iteration. Such strategies (which can be justified via Slutzky’s lemma, the delta
method and appropriate conditioning arguments — see, for example, Shao 1999)
have been previously employed in particle filtering (Klass et al. 2005) and come at
the cost of increasing the computational complexity from O(N) to O(N2).

There is no fundamental need to employ such a marginalization and a more
standard SMC algorithm could also be considered — this point was made explicitly
by Del Moral et al. (2008) who proposed an O(N) approach and also developed
adaptive versions of the algorithm.

These algorithms can be understood in the framework of Del Moral et al.
(2006), with appropriate choices of auxiliary kernel. In the case of algorithm 2, the
auxiliary kernel is the sample approximation of the optimal kernel first proposed
by Peters (2005). In the case of the algorithm of Del Moral et al. (2008), this is
the time reversal kernel associated with the MCMC kernel, with the selection and
mutation steps exchanged because the importance weight at time t depends only
upon the sample at time t− 1 when this approximation is employed.

2.2 Existing methods for likelihood-free model selection

The ABC techniques described so far were designed to infer the parameters of a
given model. Methods to test the fit of a model without explicit comparison to
other models (i.e. Bayesian model criticism) have been proposed by Thornton and
Andolfatto (2006) who computed posterior predictive p-values (Meng 1994), and
by Ratmann et al. (2009) who extended a model with additional error terms, the
posterior distributions of which indicate how good the fit is. Model criticism and
assessment of goodness-of-fit are important in their own right, but there are situ-
ations in which explicit comparison of the models using Bayes Factors is desirable
(Robert et al. 2010) and the idea of using ABC in this context dates back to at
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least Wilkinson (2007).

When the two models that we wish to compare are nested, the basic ABC
algorithm and its MCMC and SMC extensions can be used directly to estimate a
Bayes Factor. This is achieved by performing inference under the larger model, but
placing half of the prior weight on the subspace of the full parameter space which
corresponds to the simpler model. This technique was first used by Pritchard et al.
(1999) to compare a population genetics model in which the population size grows
exponentially at rate r > 0 with the model with r = 0.

In order to compute the Bayes Factor of two models M1 and M2 with param-
eters θ1 and θ2, Grelaud et al. (2009) considered the model M with parameters
(m,θ1, θ2) where m is a priori uniformly distributed in {1, 2}, θ1 = 0 when m = 2
and θ2 = 0 when m = 1. In this way, both models M1 and M2 are nested within
model M and each has equal prior weight 0.5 in model M .

Algorithm 3.

1. Set M∗ = M1 with probability 0.5, otherwise set M∗ =
M2

2. Generate θ∗ ∼ p(θ|M∗)

3. Simulate x∗ ∼ p(x|θ∗,M∗)

4. Accept (M∗, θ∗) if D(x, xobs) < ǫ otherwise return to

step 1

The ratio of the number of accepted samples for which M = M1 to those for
which M = M2 when the above algorithm is run many times is an estimator of the
Bayes Factor between models M1 and M2. One drawback of this algorithm is that
it is based on the ABC rejection sampling algorithm and does not take advantage
of the improved exploration of the parameter space available in the ABC-MCMC
or ABC-SMC algorithms. Toni et al. (2009) proposed an ABC-SMC algorithm
to compute the Bayes Factor of models once again by considering a metamodel
in which all models of interest are nested. Here we propose a different approach
which is to estimate the evidence of each model separately.

3 Methodology

This section presents an approach to the direct approximation of model evidence,
and thus Bayes Factors, within the ABC framework. It is first shown that the
standard ABC approach can provide a natural estimate of the normalizing constant
that corresponds to the evidence of each model, and then algorithms based around
the strengths of MCMC and SMC implementation are presented. The choice of
summary statistics when applying ABC-based algorithms to the problem of model
selection is then discussed.
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3.1 Estimation of model evidence

Just as in the standard parameter estimation problem, the following ABC approach
to the estimation of model evidence is based around a simple approximation. This
approximation can be dealt with directly via a rejection sampling argument which
subject to certain additional constraints leads to the approach advocated by Gre-
laud et al. (2009). Considering a slightly more general framework and casting the
problem as that of estimating an appropriate normalizing constant allows the use
of other sampling methods based around the same distributions.

Basic ABC setting

When the likelihood is available, the model evidence can be estimated using im-
portance sampling. Let q(θ) be a distribution of known density over the parameter
θ which dominates the prior distribution and from which it is possible to sample
efficiently. Using the standard importance sampling identity, the evidence can be
rewritten as follows:

p(xobs) =

∫

p(xobs|θ)p(θ)dθ =

∫

p(xobs|θ)p(θ)

q(θ)
q(θ)dθ

≈
1

N

N
∑

i=1

p(xobs|θi)p(θi)

q(θi)
with θi ∼ q(θ) (8)

where w(θi) = p(xobs|θi)p(θi)
q(θi)

is termed the weight of θi and Equation 8 shows
that the evidence can be estimated by the empirical mean of the weights obtained
by drawing a collection of samples from q. This approach provides an unbiased
estimate of the evidence but requires the evaluation of the importance weights
including the values of the likelihood.

When the likelihood is not available, we can use the ABC approximation of
Equation 4 in place of the likelihood in Equation 8 to obtain the following algo-
rithm:

Algorithm 4.

1. For i = 1, . . . , N

(a) Generate θi ∼ q(θ)

(b) Simulate xi ∼ p(x|θi)

(c) Compute wi =
πǫ(xi|xobs)p(θi)

q(θi)

2. Return 1
N

∑N

i=1
wi

The average of the importance weights is an unbiased estimator of the normal-
ising constant associated with the ABC approximation to the posterior; it is shown
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in the appendix that this converges as ǫ ↓ 0 to the marginal likelihood under mild
continuity conditions. In principle, the algorithm above can be used with any pro-
posal distribution which dominates the true distribution; in order to control the
variance of the importance weights it is desirable that the proposal should have
tails at least as heavy as those of the target. One possibility is to use the prior p(θ)
as proposal distribution. In this case, the algorithm above becomes similar to the
ABC rejection sampling algorithm and the weights simplify into wi = πǫ(xi|xobs).
If πǫ(x|xobs) is taken to be an indicator function as in Equation 6, then the result
of the algorithm above is simply equal to the proportion of accepted values times
the normalizing constant of πǫ. If this algorithm is applied to two models M1 and
M2, then the Bayes Factor B1,2 is approximated by the ratio of the number of
accepted values under each model which is equivalent to algorithm 3.

This approach suffers from the usual problem of importance sampling from a
posterior using proposals generated according to a prior distribution (Kass and
Raftery 1995). If the posterior is concentrated relative to the prior, most of the
weights will be very small. In the ABC context this phenomenon exhibits itself in
a particular form: the θi will have small probabilities of generating an xi similar
to xobs and therefore most of the weights wi will be small. Thus the estimate will
be dominated by a few larger weights where θi happened to be simulated from a
region of higher posterior value, and therefore the estimate of the evidence will
have a large variance. Such a problem is well known when performing importance
sampling generally (Liu 2001). In the scenario in which the likelihood is known
this problem can be dealt with by employing an approximation of the optimal
proposal distribution (see, for example, Robert and Casella 2004). Unfortunately,
it is not straightforward to do so in the ABC context. To avoid this issue, we show
how the algorithm above can be applied to take advantage of the improvements in
parameter space exploration introduced by ABC-MCMC and ABC-SMC.

Working with an approximate posterior sample

Let θ1, . . . , θN denote a sample approximately drawn from p(θ|xobs,M), for exam-
ple the output from the ABC-MCMC algorithm. Let Q denote a mutation kernel,
let θ∗i be the result of applying Q to θi and let q(θ) denote the resulting distri-
bution of the θ∗i . Then a Monte Carlo approximation of the unknown marginal
proposal distribution, q(θ), is given by:

q(θ) ≈
1

N

N
∑

j=1

Q(θ|θj) (9)

Using this proposal distribution q(θ) in algorithm 4 together with the estimate
above for its density leads to the following algorithm to produce an estimate of
the evidence p(xobs|M) from the output of the ABC-MCMC algorithm:
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Algorithm 5.

1. For i = 1, . . . , N

(a) Generate θ∗i ∼ Q(θ|θi)

(b) Simulate x∗
i ∼ p(x|θ∗i )

(c) Compute

wi =
p(θ∗i )πǫ(x

∗
i |xobs)

1
N

∑N

j=1
Q(θ∗i |θj)

(10)

2. Return 1
N

∑N

i=1
wi

Equation 10 provides a consistent estimate of the exact importance weight.
Therefore algorithm 5 is valid in the sense that under standard regularity condi-
tions, it provides a consistent estimate of the ABC approximation of the evidence
discussed in the previous section. The kernel Q should be chosen to have heavy
tails in order to have heavy tails in the proposal distribution q and thus avoid the
variance of the weights to become infinite. Note that algorithm 5 is of complexity
O(N2). We did not find this to be an issue in our applications. In situations where
this is too computationally expensive an alternative would be to choose the pro-
posal distribution q(θ) to be a standard distribution with parameters determined
by the moments of the sample θ1, . . . , θN . However, this becomes equivalent to an
importance sampler with a fine-tuned proposal distribution, which might perform
badly in general.

ABC-SMC setting

The ABC-SMC algorithm produces weighted samples suitable for approximating
the posterior p(θ|xobs,M). These samples could be resampled and algorithm 5
applied to produce an estimate of the evidence. However, like any SMC sampler,
the ABC-SMC algorithm produces a natural estimate of the unknown normalizing
constant which in the present case is the quantity which we seek to estimate. An
indication of this is given by the fact that algorithm 5 takes a very similar form
to one step of the ABC-SMC algorithm.

In particular, the weights estimated in Equation 7 of the ABC-SMC algorithm
of Sisson et al. (2007) are of the exact same form as those calculated in Equation
10. It is therefore straightforward to obtain an estimate of the evidence (noting
that this differs from the MCMC version slightly in that in the SMC case the
distribution of the previous sample was intended to target πǫt−1

rather than πǫt):

p(xobs|M) ≈
1

N

N
∑

i=1

wi
T (11)

In contrast, the ABC-SMC algorithm of Del Moral et al. (2008) allows for
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estimation of the normalizing constant via the standard estimator:

p(xobs|M) ≈

T
∏

t=1

1

N

N
∑

i=1

wi
t (12)

Notice that the estimator in Equation 12 employs all of the samples generated
within the SMC process, not just those obtained in the final iteration as does
Equation 11. That SMC algorithms can produce unbiased estimates of unknown
normalizing constants has been noted before (Del Moral 2004; Del Moral et al.
2006).

3.2 Working with summary statistics

Summary statistics in ABC

The ABC algorithms described in Section 2.1 were written as though the full data
xobs was being used and compared to simulated data using πǫ. In practice this is
not often possible because most data is of high dimensionality, and consequently
any simulated data is, with high probability, in some respect different from that
which is observed. To deal with this difficulty some summary statistic, s(xobs),
is often used in place of the full data xobs in the algorithms of Section 2.1, and
compared to the corresponding statistics of the simulated data. A first example
of this is found in Pritchard et al. (1999).

Sufficient statistics are ubiquitous in statistics, but when considering model
comparison it is important to consider precisely what is meant by sufficiency. A
summary statistic s is said to be sufficient for the model parameters θ if the
distribution of the data is independent of the parameters when conditioned on the
statistic:

p(x|s(x), θ) = p(x|s(x)) (13)

If s is sufficient in this sense, then substituting s(x) for x in the algorithms of
Section 2.1 has no effect on the exactness of the ABC approximation (Marjoram
et al. 2003). It remains the case that the approximation error can be controlled to
any level by choosing sufficiently small ǫ. If the statistics are not sufficient then
it introduces an additional layer of approximation. A compromise is required: the
simpler and lower the dimension of s the better the performance of the simulation
algorithms (Beaumont et al. 2002) but the more severe the approximation.

Summary statistics in ABC for model choice

The algorithms in Section 3.1 intended for the calculation of Bayes Factors have
also been written assuming that the full data xobs is being used. For the same
reasons as above, this is not always practical and summary statistics often have to
be used. If a summary statistic s(xobs) is substituted for the full data xobs in the
algorithms of Section 3.1, the result is that they estimate p(s(xobs)|M) instead of
the evidence p(xobs|M).
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As s(xobs) is a deterministic function of xobs, the relationship between these
two quantities can be written as follows:

p(xobs|M) = p(xobs, s(xobs)|M) = p(s(xobs)|M)p(xobs|s(xobs),M) (14)

Unfortunately the last term in Equation 14 is not readily computable in most
models of interest. Here we consider the conditions under which this does not
affect the estimate of a Bayes Factor. In general, we have:

B1,2 =
p(xobs|M1)

p(xobs|M2)
=

p(s(xobs)|M1)

p(s(xobs)|M2)

p(xobs|s(xobs),M1)

p(xobs|s(xobs),M2)
(15)

We say that a summary statistic s is sufficient for comparing two models, M1

and M2, if and only if the last term in Equation 15 is equal to one, so that:

B1,2 =
p(s(xobs)|M1)

p(s(xobs)|M2)
(16)

This definition can be readily generalized to the comparison of more than two
models. When Equation 16 holds, the algorithms described in Section 3.1 can be
applied using s(xobs) in place of xobs for two models M1 and M2 to produce an
estimate of the Bayes Factor B1,2 without introducing any additional approxima-
tion.

As was noted by Grelaud et al. (2009), it is important to realize that suffi-
ciency for M1, M2 or both (as defined by Equation 13) does not guarantee suf-
ficiency for comparing them (as defined in Equation 16). For instance, consider
xobs = (x1, . . . , xn) where each component is independent and identically dis-
tributed. Grelaud et al. (2009) consider models M1 where xi ∼ Poisson(λ) and
M2 where xi ∼ Geom(µ). In this case s(x) =

∑n

i=1
xi is sufficient for both models

M1 and M2, yet p(xobs|s(xobs),M1) 6= p(xobs|s(xobs),M2) and it is apparent that
s(x) is not sufficient for comparing the two models.

Finding a summary statistic sufficient for model choice

A generally applicable method for finding a summary statistic s sufficient for com-
paring two models M1 and M2 is to consider a model M in which both M1 and M2

are nested. Then any summary statistic sufficient for M (as defined in Equation
13) is sufficient for comparing M1 and M2 (as defined in Equation 16):

p(x|M1) =

∫

p(x|θ,M1)p(θ|M1)dθ =

∫

p(x|θ,M)p(θ|M1)dθ

=

∫

p(x|s(x), θ,M)p(s(x)|θ,M)p(θ|M1)dθ

= p(x|s(x),M)

∫

p(s(x)|θ,M1)p(θ|M1)dθ

= p(x|s(x),M)p(s(x)|M1) (17)
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Similarly p(x|M2) = p(x|s(x),M)p(s(x)|M2) and therefore:

p(x|M1)

p(x|M2)
=

p(x|s(x),M)p(s(x)|M1)

p(x|s(x),M)p(s(x)|M2)
=

p(s(x)|M1)

p(s(x)|M2)
(18)

which means that Equation 16 holds and therefore s is sufficient for comparing M1

and M2.

Note that this approach exploits the fact that under these circumstances the
problem of model choice becomes one of parameter estimation, albeit in a context
in which the prior distributions take a particular form which may impede standard
approaches to computation. Of course, essentially any model comparison problem
can be cast in this form.

Summary statistics sufficient for comparing exponential family models

We now consider the case where comparison is made between two models that are
both members of the exponential family. In this case, the likelihood under each
model i = {1, 2} can be written as:

p(x|Mi, θi) ∝ exp(si(x)
T θi + ti(x)) (19)

where si is a vector of sufficient statistics (in the ordinary sense) for model i, θi
the associated vector of parameters and ti(x) captures any intrinsic relationship
between model i and its data which is not dependent upon its parameters. The
ti(x) terms are important when comparing members of the exponential family
which have different base measures: they capture the interaction between the data
and the base measure which is independent of the value of the parameters but
is important when comparing models. It is precisely this ti term which prevents
statistics sufficient for each model from being adequate for the comparison of the
two models.

Consider the extended model M with parameter (θ1, θ2, α1, α2), where θ1 and
θ2 are as before and αi ∈ {0, 1}, defined via:

p(x|M,θ1, θ2, α) ∝ exp
(

s1(x)
T θ1 + s2(x)

Tθ2 + α1t1(x) + α2t2(x)
)

∝ exp






[s1(x)

T , s2(x)
T , t1(x), t2(x)]







θ1
θ2
α1

α2












(20)

M reduces to M1 if we take θ2 = 0, α1 = 1, α2 = 0, and M reduces to M2 if
we take θ1 = 0 and α1 = 0, α2 = 1. Thus both M1 and M2 are nested within
M . It is furthermore clear that the model M is an exponential family model for
which S(x) = [s1(x), s2(x), t1(x), t2(x)] is sufficient. Following the argument of
Section 3.2, S(x) is a sufficient statistic for the model choice problem between
models M1 and M2 (as defined by Equation 16). A special case of this result is
that the combination of the sufficient statistics of two Gibbs Random Field models
is sufficient for comparing them, as previously noted by Grelaud et al. (2009).
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4 Applications

4.1 Toy Example

The problem

It is convenient to first consider a simple example in which it is possible to evaluate
the evidence analytically in order to validate and compare the performance of
the algorithms described. We turn to the example described by Grelaud et al.
(2009) in which the observations are assumed to be independent and identically
distributed according to a Poisson(λ) distribution in model M1 and a Geometric(µ)
distribution in model M2 (cf. Section 3.2). The canonical form of the two models
(as defined in Equation 19), with n observations, is:

p(x|θ1,M1) ∝ exp

(

n
∑

j=1

xjθ1 −

n
∑

j=1

log xj !

)

(21)

p(x|θ2,M2) ∝ exp

(

n
∑

j=1

xjθ2

)

(22)

where θ1 = log λ and θ2 = log(1− µ) under the usual parametrization. Hence, we
can incorporate both in a model of the form:

p(x|θ, α,M) ∝ exp

(

(θ1 + θ2)
∑

j

xj + α
∑

j

log xj !

)

(23)

In this particular case θ1 and θ2 can be merged as they both multiply the same
statistic. This leads to the conclusion that (s1, t1) = (

∑

j
xj ,
∑

j
log xj !) is suf-

ficient for comparing models M1 and M2. Here
∑

j
xj is a statistic sufficient

for parameter estimation in either model whilst
∑

j
log xj ! captures the differing

probabilities of the data under the base measure of the Poisson and geometric
distributions.

We assign equal prior probability to each of the two models and complete
their definition by assigning an Exponential(1) prior to λ in model M1 and a
Uniform([0,1]) prior to µ in model M2. These priors are conjugate to the likeli-
hood distribution in each model, so that it is possible to compute analytically the
evidence under each model:

p(x|M1) =
s1!

exp(t1)(n+ 1)s1+1
(24)

p(x|M2) =
n!s1!

(n+ s1 + 1)!
(25)

Comparison of algorithms

In order to test our approximate method of model choice in this context, we
generated datasets of size n = 100 made of independent and identically distributed
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Figure 1: Comparison of the exact and estimated values of the log- Bayes Factor for
each of the three estimation schemes for the example of Section 4.1.

random variables from Poisson(0.5). We generated (using rejection sampling) 1000

such datasets uniformly covering the range of p1 = p(x|M1)
p(x|M1)+p(x|M2)

from 0.01 to
0.99, to ensure that testing is performed in a wide range of scenarios. For each
dataset, we estimated the evidence of the two models M1 and M2 using three
different schemes:

1. The rejection algorithm 4 using the prior for proposal distribution, N =
30, 000 iterations and tolerance ǫ. This is equivalent to using the algorithm
of Grelaud et al. (2009).

2. The MCMC algorithm run for N = 15, 000 iterations with tolerance ǫ and
mutation kernel x → Norm(x, 0.1) followed by algorithm 5 to estimate the
evidence using kernel Q equal to Student’s t distribution with 4 degrees of
freedom.

3. The SMC algorithm 2 run with N = 10, 000 particles and the sequence of
tolerances {3ǫ, 2ǫ, ǫ}, followed by Equation 11 to estimate the evidence.

Note that each of these three schemes requires exactly 30,000 simulations of
datasets, so that if simulation was the most computationally expensive step (as is
ordinarily the case when complex models are considered) then each of the three
schemes would have the same computational cost. Furthermore, we used the same
tolerance ǫ = 0.05 in the three schemes so that they are equally approximate in the
sense of Equation 4. The main difference between these three schemes therefore
lies in how well they explore this approximate posterior, which directly affects the
precision of the evidence estimation.

Figure 1 compares the values of the log- Bayes Factor B1,2 = p(x|M1)
p(x|M2)

computed

exactly (using Equations 24 and 25) and estimated using each of the three schemes.
All three schemes perform best when the Bayes Factor is moderate in either direc-
tion. When one model is clearly preferable to the other, all three methods become
less accurate because the estimate of the evidence for the unlikely model becomes
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Figure 2: Boxplot of the log-ratio of the exact and estimated values of the Bayes Factor
for each of the three estimation schemes for the example of Section 4.1.

more approximate. However, as pointed out by Grelaud et al. (2009), precise es-
timation of the Bayes Factor is typically less important when one model is clearly
favored over the other since it does not affect the conclusion of which model is
“correct”. In cases where it is less clear which of the two models is correct (for
example where the log- Bayes Factor is between -2 and 2) the estimation of the
Bayes Factor is less accurate using the rejection scheme than using the MCMC or
SMC schemes.

Figure 2 shows the log-ratio of the exact and estimated values of the Bayes
Factor represented as a boxplot for each of the three estimation schemes. The
interquartile ranges are 0.33 for the rejection scheme, 0.24 for the MCMC scheme
and 0.23 for the SMC scheme. It is therefore clear that both the MCMC and SMC
schemes perform better at estimating the Bayes Factor than the rejection scheme.
This difference is explained by the fact that the MCMC and SMC schemes explore
the posterior distribution of parameter under each model more efficiently than the
rejection sampler, thus resulting in better estimates of the evidence of each param-
eter and therefore of the Bayes Factor. Because the example we considered here
is relatively simple, with only one parameter in each model, the rejection scheme
was still able to estimate Bayes Factors reasonably well (Figure 1). But for more
complex models where the prior distribution of parameters would be very diffuse
relative to their posterior distribution, the acceptance rate of a rejection scheme
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Figure 3: Boxplot of the log-ratio of the exact and estimated values of the Bayes Factor
in the SMC scheme with 4 different values of the final tolerance ǫ for the example of
Section 4.1.

would become very small for a reasonably small value of the tolerance ǫ (Marjo-
ram et al. 2003; Sisson et al. 2007). In such cases it becomes necessary to improve
the sampling of the posterior distribution using MCMC or SMC techniques. We
also implemented a scheme based on the algorithm of Del Moral et al. (2008) and
Equation 12 which resulted in an improvement over the rejection sampling scheme
but which did not perform as well as the other schemes considered. Due to the
different form of the estimator used by this algorithm it is not clear that this or-
dering would be preserved when considering more difficult problems. The question
of which sampling scheme provides the best estimates of evidence is highly depen-
dent on the problem and exact implementation details as it is when sampling of
parameters is the aim.

Choice of the tolerance ǫ

A key component of any Approximate Bayesian Computation algorithm is the
choice of the tolerance ǫ (e.g. Marjoram et al. 2003). If the tolerance is too small
then the acceptance rate is small so that either the posterior is estimated by only
a few points or the algorithm would need to be run for longer. On the other
hand if the tolerance is too large then the approximation in Equation 4 becomes
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inaccurate. We found that the choice of the tolerance is also paramount when the
aim is to estimate an evidence or a Bayes Factor. Figure 3 shows the log-ratio of
the exact and estimated values of the Bayes Factor for the SMC scheme described
above, using four different values of the final tolerance ǫ: 0.1, 0.075, 0.05 and
0.025 (similar results were obtained using the rejection and MCMC schemes). As
ǫ goes down from 0.1 to 0.05, the estimation of the Bayes Factor improves because
each evidence is calculated more accurately thanks to a more accurate sampling
of the posterior. However, estimating the Bayes Factor is less accurate when using
ǫ = 0.025 than ǫ = 0.05 because the number of particles accepted in each model
becomes too small for the approximation in Equation 8 to hold well.

It should be noted that all three techniques produce better estimates with
greater simulation effort. Figure 4 shows that ǫ = 0.05 performs best, but this is
only true for the number of simulation (30,000) that we allowed. Using a larger
number of simulations allows both the use of a smaller ǫ, reducing the bias of the
ABC approximation, and the use of a larger number of samples which reduces the
Monte Carlo error.

4.2 Application in population genetics

The problem

Pritchard et al. (1999) used an Approximate Bayesian Computation approach to
analyze microsatellite data from 8 loci on the Y chromosome and 445 human males
sampled around the world (Pérez-Lezaun et al. 1997; Seielstad et al. 1998). This
data was also later reanalyzed by Beaumont et al. (2002). The population model
assumed by both studies was the coalescent (Kingman 1982a,b,c) with mutations
happening at rate µ per locus per generation. A number of mutational models
were considered by Pritchard et al. (1999), but here we follow Beaumont et al.
(2002) in focusing on the single-step model (Ohta and Kimura 1973). Pritchard
et al. (1999) used a model of population size similar to that described by Weiss and
von Haeseler (1998), where an ancestral population of previously constant size NA

started to grow exponentially at time tg generations before the present and at a
rate r per generation. Let M1 denote this model of population size dynamics. Thus
if t denotes time in generations before the present, the population size N(t|M1) at
time t follows:

N(t|M1) =

{

NA if t > tg
NAexp(r(tg − t)) if t ≤ tg

(26)

Pritchard et al. (1999) also considered a model where the population size is
constant at NA. This can be obtained by setting tg = 0 in Equation 26. The
constant population size model is therefore nested in the above model, which allows
to perform model comparison between them directly as described in Section 2.2 by
performing inference under the larger model with half of the prior weight placed on
the smaller model, i.e. tg = 0. Pritchard et al. (1999) used this method and found
strong support for the exponential growth model, with a posterior probability for
the constant model < 1%.
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Algorithmic framework

Here we propose to reproduce and extend those results by considering other popu-
lation size models which are not necessarily nested into one another. Simulation of
data under the coalescent with any population size dynamics can be achieved by
first simulating a coalescent tree under a constant population size model (Kingman
1982a) and then rescaling time according to the function N(t) of the population
size in the past as described by Griffiths and Tavaré (1994); Hein et al. (2005).

We summarize the data using the same three statistics as Pritchard et al.
(1999), namely the number of distinct haplotypes n, the mean (across loci) of the
variance in repeat numbers V̄ and the mean effective heterozygosity H̄ . For the
observed data, we find that n = 316, V̄ = 1.1488 and H̄ = 0.6358. Beaumont
et al. (2002) supplemented these with a number of additional summary statistics
but found little improvement. Note that the summary statistics we use are not
sufficient either for estimating the parameters of a given model (i.e. in the sense
of Equation 13) or for the comparison of two models (i.e. in the sense of Equation
16). We will return to this difficulty in the discussion. We also use the same
definition of πǫ as Pritchard et al. (1999), namely an indicator function (Equation
6) with a Chebyshev distance.

µ (×10−4) r (×10−4) tg NA (×103)

Prior Γ(10,8·10−5) Exp(0.005) Exp(1000) Log-N (8.5,2)
8 [4;14] 50 [1.3;180] 1000 [25;3700] 36 [0.1;250]

Pritchard et al. (1999) 7 [4;12] 75 [22;209] 900 [300;2150] 1.5 [0.1;4.9]
Beaumont et al. (2002) 7.2 [3.5;12] 75 [23;210] 900 [320;2100] 1.5 [0.14;4.4]

This study 7.4 [3.6;12] 76 [22;215] 920 [310;2300] 1.4 [0.08;4.4]

Table 1: Means and 95% credibility intervals for the estimates of the parameters of the
model M1 used by Pritchard et al. (1999) and defined by Equation 26.

Pritchard et al. (1999) used the rejection ABC algorithm to sample from the
parameters (µ, r, tg, NA) of their model (Equation 26) assuming the priors shown
in Table 1. Beaumont et al. (2002) repeated this approach, and found that they
get ∼ 1600 acceptable simulation when performing 106 simulations with ǫ = 0.1.
We repeated this approach once again and found that it took ∼600000 simulations
to get 1000 acceptances, which is in accordance with the acceptance rate reported
by Beaumont et al. (2002). To generate this number of simulations took ∼ 12
hours on a modern computer.

To reduce this computational cost, we implemented an ABC-SMC algorithm
with the sequence of tolerances {ǫ1 = 0.8, ǫ2 = 0.4, ǫ3 = 0.2, ǫ4 = 0.1}, and a
requirement of 1000 accepted particles for each generation. The final generation
therefore contained 1000 accepted particles for the tolerance ǫ = 0.1, making it
comparable to the sample produced by the rejection algorithm, with the difference
that it only required ∼5% of the number of simulations needed by the rejection
algorithm. The results of this analysis are shown in Table 1 and are in agreement
with those of Pritchard et al. (1999) and Beaumont et al. (2002).
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Other models

As an alternative to the model M1 used by Pritchard et al. (1999), we consider
the model denoted M2 of pure exponential growth as used for example by Slatkin
and Hudson (1991):

N(t|M2) = N0exp(−rt) (27)

This model has three parameters: the mutation rate µ, the current effective
population size N0 and the rate of growth r. We assume the same priors for µ and
r as in the model M1 of Pritchard et al. (1999), and for N0 use the same diffuse
prior as for NA in M1.

As a third alternative, we consider the model of sudden expansion (Rogers
and Harpending 1992) denoted M3 where tg generations back in time the effective
population size suddenly increased to its current size:

N(t|M3) =

{

N0 if t < tg
N0 · s if t ≥ tg

(28)

This model M3 has four parameters: the mutation rate µ, the current popu-
lation size N0, the time tg when the size suddenly increased and the factor s by
which it used to be smaller. The priors for µ, N0 and tg were as defined previously
for models M1 and M2, and for s we followed Thornton and Andolfatto (2006) in
using a Uniform([0,1]) prior.

Finally we consider a bottleneck model M4 as described by Tajima (1989)
where the effective population size was reduced by a factor s between time tg and
tg + tb before the present:

N(t|M4) =

{

N0 if t < tg
N0 · s if tg ≤ t < tg + tb
N0 if t ≥ tg + tb

(29)

This model has five parameters: the mutation rate µ, the current population
size N0, the time tg when the bottleneck finished, its duration tb and its severity
s.

Comparison of models and consequences

For each of the 4 models described above, we computed the evidence using Equa-
tion 11 (excluding the multiplicative constant πǫ which is the same for all evidences
since the same tolerance and summary statistics were used). The Bayes Factors
for the comparison of the 4 models are shown in Table 2. According to the scale
of Jeffreys (1961) (cf. Introduction), we have equivalently good fit to the data of
models M1 and M2, substantial ground to reject model M3 and very strong evi-
dence to reject model M4. The fact that models M1 and M2 have a Bayes Factor
close to 1 means that there is no evidence to support a period during which the
effective population size was constant (as assumed in the model of Pritchard et al.
1999) before it started its exponential growth.
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M1 M2 M3 M4

M1 (Pritchard et al. 1999) 1.00 0.96 8.54 33.32
M2 (pure exponential growth) 1.04 1.00 8.92 34.80
M3 (sudden increase) 0.12 0.11 1.00 3.90
M4 (bottleneck) 0.03 0.03 0.26 1.00

Table 2: Bayes Factors for the comparison between models M1, M2, M3 and M4. The
value reported on the i-th row and the j-th column is the Bayes Factor Bi,j between
models Mi and Mj.

We estimated the time to the most recent common ancestor (TMRCA) of the
human male population by recording for each model the TMRCAs of each simula-
tion accepted in the last SMC generation. In spite of the fact that they fit equally
well to the data, the models M1 and M2 produce fairly different estimates of the
TMRCA of the human male population (Figure 4). The pure exponential growth
model results in a point TMRCA estimate of 1600 generations which is almost half
of the model of Pritchard et al. (1999) with an estimate of 3000 generations. The
TMRCA estimate under the pure exponential model is in better agreement with
the results based on different datasets of Tavaré et al. (1997) and Thomson et al.
(2000).

5 Discussion

We have presented a novel likelihood-free approach to model comparison, based on
the independent estimation of the evidence of each model. This has the advantage
that it can easily be incorporated within an MCMC or SMC framework, which
can greatly improve the exploration of a large parameter space, and consequently
results in more accurate estimates of evidence and Bayes Factor for a given compu-
tational cost. We also proposed a general method for finding a summary statistic
sufficient for comparing two models, and showed how this could be applied in par-
ticular to models of the exponential family. Following this method ensures that
the only approximation being made comes from the use of the tolerance ǫ, and
the advanced sampling techniques that we use allow to reach low values of the
tolerance in much less time than would be needed using rejection sampling. We il-
lustrated this point on a toy example where marginal likelihoods can be computed
analytically and sufficient statistics are available.

However, for more complex models such as the ones we considered in our popu-
lation genetics application, sufficient statistics of reasonably low dimensionality (as
required for ABC to be efficient) are not available. In such situation one must rely
on statistic that are thought to be informative about the model comparison prob-
lem. This is analogous to the necessity to use non-sufficient statistic in standard
ABC (where sampling of parameters is the aim) when complex model and data
are involved (Beaumont et al. 2002; Marjoram et al. 2003). Joyce and Marjoram
(2008) have described a method to help find summary statistics that are close to
sufficiency in this setting, and given the relationship that we established between
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Figure 4: Plots of the posterior densities for the TMRCA under model M1 (black)
and model M2 (gray). The mean of each distribution is indicated by an arrow of the
corresponding color.

sufficiency for model comparison and sufficient for parameter estimation (cf. Sec-
tion 3.2), these should prove useful also in the likelihood-free model comparison
context. A number of sophisticated methodological techniques have been described
in recent years and could be directly applied in the model selection context (Peters
et al. 2008; Del Moral et al. 2008; Fearnhead and Prangle 2010).

Although the proposed method inherits all of the difficulties of both ABC and
Bayesian model comparison based upon a finite collection of candidate models,
the results of Section 4 suggest that when these difficulties (particularly the inter-
pretation of the procedure, the selection of appropriate statistics and the choice
of prior distributions for the model parameters) can be adequately resolved good
results can be obtained by these methods.
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Appendix: Convergence of the Evidence Approxi-

mation

Our strategy involves two steps:

1. Approximate the joint density of a phantom x and θ under a given model
with:

p̂(x, θ) =
p(θ)p(x|θ)πǫ(x|xobs)

Zǫ

where πǫ is a probability density with respect to the same dominating mea-
sure as p(x|θ).

2. Estimate Zǫ numerically for each model using Monte Carlo methods.

Here we demonstrate that the Zǫ of the first step approximates the normalising
constant of interest, Z =

∫

p(xobs, θ)dθ = p(xobs). The approximation techniques
used in the second step are essentially standard and their convergence follows by
standard arguments.

Proposition 1. If p(x|θ) is continuous for almost every θ (with respect to the
prior measure over θ) and either:

1. supp (πǫ(·|xobs)) ⊂ Bǫ(xobs) = {x : |x− xobs| < ǫ}, or,

2. For p(θ)p(x|θ)dxdθ-almost every (θ, x): p(xobs|θ) ≤ M < ∞ and πǫ(·|xobs)
becomes increasingly and arbitrarily concentrated around xobs for sufficiently
small ǫ in the sense that:

∀ǫ, α > 0 : ∃ε⋆α > 0 such that ∀γ ≤ ε⋆α :

∫

Bǫ(xobs)

πγ(x|xobs)dx > 1− α (30)

then:

lim
ǫ→0

Zǫ = p(xobs) = Z

Proof. Consider first the case in which condition (a) holds. For any δ > 0 there
exists ǫδ > 0 such that:

∀ǫ ≤ ǫδ,∀x ∈ Bǫ(xobs) : |p(x|θ)− p(xobs|θ)| < δ.

For given δ, consider Zǫ − Z for ǫ ≤ ǫδ :

|Zǫ − Z| =

∣

∣

∣

∣

∫

p(θ)

∫

p(x|θ)πǫ(x|xobs)dxdθ −

∫

p(θ)p(xobs|θ)dθ

∣

∣

∣

∣

≤

∫

p(θ)

∫

|p(x|θ)− p(xobs|θ)|πǫ(x|xobs)dxdθ

≤

∫

p(θ)δdθ = δ

as this holds for arbitrary δ, limǫ→0 Zǫ → Z.
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The second case, with general πǫ, uses similar logic: For any δ > 0, there exists
ǫ′δ > 0 such that:

∀ǫ ≤ ǫ′δ ,∀x ∈ Bǫ(xobs) : |p(x|θ)− p(xobs|θ)| < δ/2.

Furthermore, for any δ, ǫ > 0, we can find ε′(δ, ǫ) > 0 such that:

∀γ < ε′(δ, ǫ) :

∫

Bǫ(x|xobs)

πγ(x|xobs)dx > 1− δ/2M

For any given δ > 0, for any ε < ε′(δ, ǫ′δ) ∧ ǫ′δ :

|Zǫ − Z| =

∣

∣

∣

∣

∫

p(θ)

∫

p(x|θ)πǫ(x|xobs)dxdθ −

∫

p(θ)p(xobs|θ)dθ

∣

∣

∣

∣

≤

∫

p(θ)







∫

B
ǫ′

δ

(xobs)

|p(x|θ)− p(xobs|θ)| πǫ(x|xobs)dx +

∫

B
ǫ′

δ

(xobs)

|p(x|θ)− p(xobs|θ)| πǫ(x|xobs)dx







dθ

≤ δ/2 +M · δ/2M = δ.

Where the first integral is bounded by a simple continuity argument and the second
by bounding the difference between a positive function evaluated at two points by
its supremum and noting that the integral of πǫ over Bǫ′

δ

(xobs) is at most δ/2M .
Again, this result holds for any δ > 0 and so Zǫ converges to Z as ǫ → 0.

Comments

Condition a holds for any sequence πǫi with compact support that contracts to a
point as ǫi ↓ 0 by simple relabelling.

Although the result is reassuring and holds under reasonably weak conditions,
verifying these assumptions will often be difficult in practice as ABC is generally
used for models which are not analytically well characterised.

Similar arguments would allow rates of convergence to be obtained with the
additional assumption of (local) Lipschitz continuity.

The proof in the case of discrete data spaces is direct: for ǫ smaller than some
threshold the approximation is exact.


