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The Bayes factor is an intuitive and principled model selection tool from Bayesian statistics. The Bayes
factor quantifies the relative likelihood of the observed data under two competing models, and as such, it
measures the evidence that the data provides for one model versus the other. Unfortunately, computation
of the Bayes factor often requires sampling-based procedures that are not trivial to implement. In this
tutorial, we explain and illustrate the use of one such procedure, known as the product space method
(Carlin & Chib, 1995). This is a transdimensional Markov chain Monte Carlo method requiring the
construction of a “supermodel” encompassing the models under consideration. A model index measures
the proportion of times that either model is visited to account for the observed data. This proportion can
then be transformed to yield a Bayes factor. We discuss the theory behind the product space method
and illustrate, by means of applied examples from psychological research, how the method can be
implemented in practice.
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1. Introduction

A key to progress in psychology is the ability to evaluate
theoretical ideas quantitatively against empirical observations.
There are many formal and quantitative ways to compare and
choose between models. Frequentist hypothesis testing relies on
p-values, confidence intervals, and other devices developed within
the sampling distribution statistical approach. This approach
still remains the dominant one, despite well-known and well-
documented problems (see Wagenmakers, 2007, for a recent
overview). More recently, research in mathematical psychology
and psychometrics has followed the lead of modern statistics and
other empirical sciences in adopting Bayesian methods to evaluate
models (e.g., Lee, 2008; Pitt, Myung, & Zhang, 2002; Shiffrin,
Lee, Kim, & Wagenmakers, 2008). The Bayesian approach has the
advantage of being a conceptually simple, theoretically coherent,
and generally applicable way to make inferences about models
from data (see Lee & Wagenmakers, 2005).

In this paper, we focus on a well-established and well-known
Bayesian model selection tool, known as the Bayes factor (Jeffreys,
1961; Kass & Raftery, 1995). Intuitively, Bayes factors simply
measure the relative level of evidence data provide for one
model over another, in the form of a likelihood ratio. Bayes
factors automatically account for model complexity, rewarding
simple models and penalizing complicated ones. This property is
important to avoid choosing models that overfit data (Myung &
Pitt, 1997; Pitt et al., 2002).

The psychological literature has a number of recent applications
of the Bayes factor, including in general statistical settings
(e.g., Hoijtink, 2001; Rouder, Speckman, Sun, Morey, & Iverson,
2009; Wetzels, Raaijmakers, Jakab, & Wagenmakers, 2009), and
to specific psychological models (e.g., Gallistel, 2009; Kemp &
Tenenbaum, 2008; Lee, 2002, 2004; Pitt et al., 2002; Steyvers,
Lee, & Wagenmakers, 2009), but it could hardly be described as a
widely used approach. There are a few possible reasons for the lack
of application of Bayes factors. Most obviously, there is a strong
temptation to stay with known methods for analyzing data while
they remain acceptable practice, whatever the limitations those
methods impose.

More interestingly, even among those who accept the need to
use the Bayesian approach it is understood that it can be difficult to
calculate Bayes factors in practice. Sometimes, easily calculated but
theoretically limited approximations to the Bayes factor, such as
those based on the Bayesian Information Criterion (BIC), have been
used (e.g., Vickers, Lee, Dry, & Hughes, 2003). In practice, Bayesian
statistical methods have mainly been limited to the estimation of

model parameters, especially when models are relatively complex
(e.g., Kuss, Jdkel, & Wichmann, 2005; Lee, 2006, 2008; Rouder & Lu,
2005; Rouder, Lu, Morey, Sun, & Speckman, 2008; Rouder, Lu et al.,
2007), leaving Bayesian model selection as a future challenge.

The aim of this paper is to demonstrate a method for estimating
Bayes factors using the computational approach developed by
Carlin and Chib (1995). The method is general, in the sense that
it can be applied to compare any set of two or more models,
including non-nested and hierarchical models. Non-nested models
are not formed from incremental developments of the same theory,
but originate from very different theories. Bayesian hierarchical
models recently have been popular in various research domains
because of their flexibility and conceptual consistency (Lee, 2011).

We first provide a formal account of the Bayes factor, and
its estimation using the method developed by Carlin and Chib
(1995). Then, we focus on relevant implementational issues and
formulate guidelines for proper use of the method. Finally, we
demonstrate in three applications how Bayes factors are estimated
in psychological research, and conclude with a discussion about the
strengths, weaknesses, and niche of application for the method.

2. Understanding and estimating Bayes factors

2.1. Understanding Bayes factors

The Bayes factor compares two models by considering on
average how well each can fit the observed data, where the (prior
weighted) average is taken with respect to all of the possible values
of the parameters. It is this averaging that accounts for differences
in model complexity, because more complicated models (i.e., those
that can fit many data patterns by changing their parameter values)
often have lower average levels of fit than simple models.

Formally, if Model A (M,) with parameter vector 6, is being
compared to Model B (M) with parameter vector 6, using data D,
the Bayes factor is defined as

_PD[M) _ J (D |64, Mg)p (bs | Mg) db,
p(D|My)  [p(D|6y,My)p (6| M) dby’

Eq. (1) shows that the Bayes factor is the ratio of two marginal
likelihoods, p (D | M,) and p (D | My), representing how likely the
data are under each model, and that these likelihoods are found
by averaging or marginalizing the likelihood across the parameter
space of each model. For the marginal likelihood to be high, a model
must not only be able to fit the observed data well, but also must
not predict data different from those observed.

(1)

ab
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Table 1
Interpretation scheme for values of the Bayes factor, the logarithm of the Bayes
factor, and the corresponding posterior model probability, according to Raftery
(1995).

Interpretation Bap log(Bap) p(Mg | D)
Very strong support for M, <0.0067 <=5 <0.01
Strong support for M, 0.0067 to 0.05 —5to -3 0.01 to 0.05
Positive support for M, 0.05to 0.33 —3to—1 0.05 to 0.25
Weak support for M, 0.33to1 —1to0 0.25 to 0.50
No support for either model 1 0 0.50

Weak support for M, 1to3 Oto1 0.50 to 0.75
Positive support for M, 3t020 1to3 0.75 to 0.95
Strong support for M, 20 to 150 3to5 0.95 to 0.99
Very strong support for M, >150 >5 >0.99

An alternative interpretation of the Bayes factor is evident from
the following equation,

p (Mg | D) N p (My)
p My | D) p(Mp)’
which reads “Posterior model odds = B, x Prior model odds”.
This gives a second interpretation of the Bayes factor as the change
in the model odds resulting from observing the data. That is,
whatever the prior odds in favor of Model A, the Bayes factor By, is
the multiple that describes the increase or decrease in those odds
following from the new evidence provided by the data D. Since
the compared models may or may not have a nested structure,
the Bayes factor represents “the standard Bayesian solution to
the hypothesis testing and model selection problems” (Lewis &
Raftery, 1997, p. 648).

Raftery (1995) proposed a useful interpretation scheme for val-
ues of the Bayes factor, as presented in Table 1 (a similar scheme
was proposed by Jeffreys, 1961). This table includes a verbal ex-
pression of the strength of evidence, and corresponding ranges
for the Bayes factor By, itself, for its logarithmic rescaled version
log By, and for the posterior probability p(M, | D) (assuming equal
prior probabilities for the models). Expressing Bayes factors on the
logarithmic scale has the advantages of making zero the point of in-
difference between the two models being compared (i.e., the point
at which the Bayes factor is 1, and the data provide no more ev-
idence for one model than the other), and making equal incre-
ments correspond to equal changes in the relative probabilities
(i.e., log By, = +2 is the same level of evidence in favor of Model
A as logBg, = —2 is in favor of model B). The posterior proba-
bility is a convenient and easily interpreted value in cases where
the two models being compared are the only ones of theoretical
interest.

(2)

ab X

2.2. Estimating Bayes factors

For all but the simplest model comparisons, the integrations
required to calculate Bayes factors are analytically intractable.
Accordingly, a large number of methods have been developed
to approximate Bayes factors. The earliest methods focused on
analytic approximations to the required integration (see Kass &
Raftery, 1995, for a review). Many of these approaches continue
to be refined (e.g., Myung, Balasubramanian, & Pitt, 2000), and
remain useful and applicable methods for many simple statistical
and psychological models.

More recently, Bayes factor estimation has been approached
within a computational (i.e., sampling-based) framework for
inference, mirroring the shift in inferences about parameters from
analytic to computational methods. Within the computational
framework, there are at least two quite different approaches for
estimating Bayes factors. The first approach is based on estimating
the marginal model likelihoods for both models separately, as per
Eq. (1). This approach includes methods such as prior simulation

Prior Posterior

- o o e e o — ——

Fig. 1. Visualization of the framework of transdimensional MCMC for two models.
The model index M is able to jump between Model A and Model B. Each model has
a different constellation of model parameters, symbolized by the white nodes. Over
MCMC iterations, the activated model and its corresponding model parameters are
connected to the observed data D. The Bayes factor By, is quantified by the change
from prior model odds to posterior model odds, as illustrated at the top part of the
figure.

(Kass & Raftery, 1995), importance sampling (DiCiccio, Kass,
Raftery, & Wasserman, 1997; Geweke, 1989), candidate estimation
(Chib, 1995), and the Laplace (Tierney & Kadane, 1986) and
Laplace-Metropolis (Lewis & Raftery, 1997) methods.

The second computational approach to Bayes factor estimation
is rooted in transdimensional Markov chain Monte Carlo (MCMC)
methods. It involves estimating posterior model odds for chosen
prior model odds, as per Eq. (2). Reversible jump MCMC (Green,
1995) is one widely used transdimensional MCMC method. A less
popular method is one developed by Carlin and Chib (1995), known
as the product space method. Both methods are conceptually very
simple, and rely on combining the models to be compared within
one hierarchical “supermodel”.

Fig. 1 presents the basic framework of this approach graphically
for two models: Model A and Model B. The hierarchical combina-
tion of these models is achieved using a single binary model in-
dex variable M that controls which model generates the observed
data D. The prior of the model index corresponds to the prior model
odds. The posterior of the model index corresponds to the posterior
model odds, and can be estimated by MCMC posterior sampling
methods. Combining these two odds (the first exact, the second
estimated) according to Eq. (2) then gives an estimate of the Bayes
factor. In the schematic demonstration in Fig. 1, for example, both
models are equally likely in the prior, but Model B is about three



334 T. Lodewyckx et al. / Journal of Mathematical Psychology 55 (2011) 331-347

times more likely in the posterior. This change from prior to pos-
terior odds corresponds to a Bayes factor B, of about 1/3.

3. Theoretical background of the product space method

After this intuitive sketch of transdimensional MCMC method-
ology, comprising both the product space approach (Carlin & Chib,
1995) and reversible jump MCMC (Green, 1995), we now focus on
the theoretical background of the product space method (later, we
make a comparison to reversible jump MCMC). A clear understand-
ing of the method is crucial to deal with its practical aspects, which
are discussed in the next section.

3.1. The product space method as a mixture model

Suppose that Model A and B are two Bayesian models under
comparison. For instance, Model A is defined by a joint probability
distribution of data and model parameters:

p(D, 6q | Ma) = p(D | O, Ma)p(Oa | Ma).

To use the product space method, we set up a mixture model
in which the parameter vectors of the two models are combined in
one mixture parameter vector 6 = (6,, 6,), which takes any value
from the Cartesian product of the two models’ parameter spaces,
0 € O, x O,. The Model A part of the mixture model is defined by
the joint distribution,

p(D, 6 | Ma) = p(D | 6, Ma)p(® | Ma), (3)
= p(D | 6o, Ma)P(Oa | Ma)P(Op | Ma), (4)

provided that p(6, | M,) is a proper distribution that integrates
to 1. Writing Eq. (3) as Eq. (4) is allowed since 6, is not relevant
under M, and independent of 6,, and the Model B part is specified
similarly. The full mixture model is now written as

p(D, 0) = p(D, 6 | Ma)p(Mq) + p(D, 6 | Mp)p(Mp). (5)

The marginal likelihood for Model A under the mixture model
can now be written as follows:

p(D | My) = / p(D | 6, M)p(® | Ma)d6

= // p(D | 6, M)p(6y | Mg)
p@ | Mo) d0,d0y

= /p(D | 60, Ma)p(6a | Mg)
/ P | Mo) d6y 6,

_ f p(D | 60 Mo)p(Gs | Mo)d6. (6)

This means that given M,, the model defined in Eq. (4), even
with added parameters 6,, becomes essentially Model A with
respect to its marginal likelihood, and the same holds for Model
B. This ensures that the ratio of the two marginal likelihoods, p(D |
M,) and p(D | M), under this mixture model is the Bayes factor
we seek to obtain.

The prior distribution p(6, | M,), or likewise p(6, | Mp), is not
given by any of the two models under comparison, but needs to
be specified in order to define the mixture model with parameters
in a product space. For this reason, these priors may be called
pseudopriors or linking densities. Given that these pseudopriors
are integrated out, they have no influence on the Bayes factor and
can be arbitrarily chosen by the researcher (although we point out
in the next section that the choice is important for the sampling
efficiency of the procedure).

3.2. The Gibbs sampler

With a model set up as above, we need to devise a way to
generate samples from the joint posterior distribution for model
index and all model parameters. Particularly, we are interested
in samples from the marginal posterior distribution of the model
index M, which will be used to estimate the Bayes factor. Carlin
and Chib (1995) suggest using the Gibbs sampler. First, a Gibbs
step for sampling model parameters is based on the full conditional
distribution:

ifk=a

p(D | 64, Ma)p(Ba | Ma) (7)
ifk =b,

0q | Op, My, D
p(ﬂl by ks )O({p(ea“wb)

and p(6y | 64, M, D) is specified similarly. This means that a sam-
ple of 6, is generated from the posterior distribution of Model
k only when the model index takes the value k; otherwise, it is
generated from the corresponding pseudoprior. Next, to sample
the model index, we derive another conditional distribution from
Eq. (4) with prior model odds factored in:

p(My | 6,D)

p(D | 0{17 Ma)p(ea | Ma)p(gb | Ma)p(Ma)
p(D | 6y, Mp)p (6 | Mp)p(6a | Mb)p(Mp)

Generating values from this categorical distribution is straight-
forward, once the (normalized) full conditional probabilities for
M, and M, have been derived. This sampling scheme, iterating be-
tween the model parameter vector 6, and 6, and the model index
M, will produce samples from the correct joint posterior distribu-
tion under the regularity conditions for convergence (Roberts &
Smith, 1994). The posterior probability of each model is estimated
by the following Monte Carlo estimator:

for M,
for M. (8)

A Number of occurrences of M

P(My | D) = — : 9)
Total number of iterations

which will be translated to an estimated Bayes factor by factoring

out the prior model odds, as per Eq. (2).

3.3. Dimension matching and reversible jump MCMC

Any transdimensional sampling scheme for computing the
Bayes factor requires that the dimensionalities of all compared
models’ parameter spaces are matched in some way to form a
single mixture model as defined above. One valid way to do so
is to attach to each model the other model’s parameters in a
Cartesian product, as proposed by Carlin and Chib (1995) and
described above. These additional parameters are regarded as
pseudoparameters that are independent of data prediction.

This is not the only way, however. Sometimes, parameters have
a strong conceptual similarity (i.e., they are interpreted in the same
way) and statistical similarity (i.e., they have a similar marginal
posterior distribution) across models. These sorts of parameters
do not have to be taken as pseudoparameters for either model. In
this case, combining those with the rest of unique parameters in
a Cartesian product will form a parameter space that can apply to
either model (Carlin & Chib, 1995). This can improve the efficiency
of the sampling process because it decreases the dimensionality of
the space that needs to be sampled. In this sense, the product space
method does not always employ a purely product space when
some parameters are shared between the compared models. For
this reason, there is no precise conceptual boundary between the
product space method and reversible jump MCMC.

Nevertheless, the product space method and the reversible
jump MCMC method are generally regarded as two different
MCMC approaches to the problem of jumping between model
spaces of different dimensionalities. When proposed initially,
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Table 2

Observed field goals (y) and attempts (n) by Kobe Bryant during the NBA seasons of

1999 to 2006.
Year y n y/n
1999 554 1183 0.47
2000 701 1510 0.46
2001 749 1597 0.47
2002 868 1924 0.45
2003 516 1178 0.44
2004 573 1324 0.43
2005 978 2173 0.45
2006 399 845 0.47

the key difference between the two methods was that the
reversible jump MCMC method provided a general, theoretical
framework in which the number of parameters of the highest-
dimensional model becomes the dimension of a transdimensional
model, whereas the product space method focused more on
a simple, intuitive way to construct a transdimensional model
whose dimensionality is simply that of the product space of all
compared models. Another difference was that the reversible jump
MCMC method employed the more general Metropolis-Hastings
sampling algorithm, whereas the product space method relied on
Gibbs sampling.

These differences, however, turned out to be not fundamental,
as shown by subsequent studies. Besag (1997), Dellaportas, Forster,
and Ntzoufras (2002) and Godsill (2001) showed independently
that the generality of the reversible jump MCMC method with
regard to transdimensional model specification can also be
entertained with the product space method. Dellaportas et al.
(2002) and Godsill (2001) also demonstrated that the product
space method can be combined with the Metropolis-Hastings
algorithm. Conversely, the reversible jump MCMC method may be
used with the Gibbs sampler, as implemented by Lunn, Best, and
Whittaker (2009). This means that one approach can be viewed as
a special case of the other. It might be better to view these methods
as two slightly different representations of the same solution to the
problem of Bayesian model uncertainty.

4. Practical implementation of the product space method

Having reviewed the theoretical background of the product
space method, we now focus on its implementation. We do
this by providing details of the specific formulation of the
Bayesian transdimensional model in WinBUGS (Lunn, Thomas,
Best, & Spiegelhalter, 2000), and explaining several fine-tuning
techniques for improving the estimated Bayes factors.

4.1. WinBUGS implementation of the transdimensional model

To illustrate the implementation of the transdimensional
model, we build on the Kobe Bryant example presented by
Ntzoufras (2009, Section 11.4.1.). In particular, we show how this
analysis is programmed in WinBUGS, a user-friendly, accessible
and widely used software package for Bayesian analysis (Lunn
et al., 2000). In this example, two competing models are proposed
for the field goals by Kobe Bryant in the NBA. The observations
consist of the observed successes y = {y1gg99, - - -, Y2006} and the
number of attempts n = {njgg9, . . ., Nygos} for field goals by Kobe
Bryant during eight consecutive basketball seasons from 1999 to
2006. These data are listed in Table 2.

Ntzoufras (2009) calculated the Bayes factor to compare
two competing Binomial models, in order to learn about the
consistency of the success probabilities 7 = {999, . . ., 72006} IN
the eight basketball seasons. The null model M; assumes one fixed
probability %4 for all seasons, whereas the alternative model

M, assumes unique and independent success probabilities nifree for
each season:

My : y; ~ Binomial(z™®, n;) fori= 1999, ...,2006
M, : y; ~ Binomial(z[®, n;) fori = 1999, ..., 2006.

The parameters of M; (7™¢d) and M, (wie ... sliee) are
all assigned Beta(1, 1) priors, corresponding to a uniform prior
over the range [0, 1]. The Bayes factor Bj, quantifies the relative
evidence in favor of M; when compared to M, and has a closed form
solution, as the marginal model likelihoods P(M; | D) and P(M, |
D) can be calculated straight from the data. The analytic result for
the log Bayes factor log(B1,) is found to be equal to 18.79, providing
very strong support for the hypothesis that success probabilities
are equal over all seasons. Our product space implementation
estimated this log Bayes factor to be 18.80. The details of this
implementation are given by the following WinBUGS script:

modeld{

# 1) MODEL INDEX

Model index is 1 or 2.

Prior probabilities based on argument prioril.
Posterior probabilities obtained by averaging
over postrl and postr2.

M ~ dcat(pl[l)

pl1] <- prioril

pl2] <- 1-prioril

postrl <- 2-M

postr2 <- 1-postrl

HHHH

2

~

MODEL LIKELIHOOD
For each year, successes are Binomially distributed.
In M1, the success rate is fixed over years.
In M2, the success rate is year-specific.
for (i in 1:n.years){
successes[i] ~ dbin(pi[M,i], attempts[i])
pill,i] <- pi.fixed
pil2,i] <- pi.free[il
}

HHHEH

3

~

MODEL 1 (one single rate)

The fixed success rate is given a Beta prior and
pseudoprior.

# Whether it is a prior or pseudoprior depends on the
Model index.

pi.fixed ~ dbeta(alpha.fixed[M],beta.fixed[M])
alpha.fixed[1] <- alphal.prior

beta.fixed[1] <- betal.prior

alpha.fixed[2] <- alphal.pseudo

beta.fixed[2] <- betal.pseudo

H

# 4) MODEL 2 (multiple independent rates)

# The year-specific success rate is given a Beta prior
and pseudoprior.
# Whether it is a prior or pseudoprior depends on the

Model index.

for (i in 1:n.years){
pi.free[i] ~ dbeta(alpha.free[M,i],beta.free[M,i])
alpha.free[2,i] <- alpha2.prior
beta.free[2,i] <- beta2.prior
alpha.free[1,i] <- alpha2.pseudo[i]
beta.free[1,i] <- beta2.pseudol[i]

Four separate sections can be distinguished in the script: The
model index, the model likelihood and the prior and pseudoprior
specification of respectively M and M,. To clarify the interrelations
between the various components of the transdimensional model,
we will refer to Fig. 2.

4.1.1. The model index

The model index M has a categorical distribution over the
domain {M;, M,} with prior model probabilities determined by
the argument priorl. The function of the model index within
the transdimensional model is to connect model elements, as
visualized at three locations in Fig. 2. The MCMC average of postrl
is an estimate of P(M; | D) and, after factoring out the prior model
probabilities, this gives an estimate of the Bayes factor.
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[ Prior ] [Pseudoprior] [Pseudoprior] [ Prior ]

Fig. 2. Visualization of the general structure of priors and pseudopriors within a
transdimensional model for comparing two models. The model index M activates
one of two models, M; or M,, at each MCMC iteration. Model activation determines
how data, parameters and (pseudo)priors are connected to each other through a
selection mechanism that occurs at two levels. First, the parameter vector of the
activated model is given a prior distribution, while the parameter vector of the
non-activated model is given a pseudoprior (bottom of the figure). Second, only the
parameter vector of the activated model is connected to the observations (top of the
figure). This way, only the “connected” parameters are assigned a prior distribution,
while the “disconnected” parameters are assigned a pseudoprior distribution.

4.1.2. The model likelihood

In this part of the script, the common structure of both models
is represented. In the Kobe Bryant example, the common model
structure for each observation y; is a Binomial distribution with
success probability ; : y; ~ Binomial(s;, n;). The further spec-
ification of 7; is defined in the parameter vectors of the models.
The parameter vector 6; contains the overall success probability of
M1, whereas 6, contains the unique success probabilities that are
assumed under M;:

91 — {n,ﬁxed}

_ free free free free free free free free
02 = {71999: 2000 2001+ 72002 2003+ 72004 2005 712006} -

The parameter space of the transdimensional model now
consists of the model index and the parameter vectors: {M, 61, 6,}.
The behavior of the model index induces model activation: The
value of M determines which parameter vector is connected to the
likelihood, and thus which model is “active”. This is illustrated in
the upper part of Fig. 2.

4.1.3. The priors and pseudopriors

In the last two sections of the script, M is used to decide
for each parameter vector whether it should be assigned a prior
or pseudoprior distribution. For example, if M; is activated, the
corresponding parameter vector 6, is connected to the model
likelihood. This parameter vector is assigned a prior distribution
such that the parameter vector can be updated based on prior
and observed information. However, if M; is not activated, it
cannot update the parameters properly as it is disconnected
from the model likelihood. Therefore, it is assigned a pseudoprior
distribution such that sampling continues. A similar reasoning can
be formulated for the distribution of 6,.

This intuition is illustrated in the bottom part of Fig. 2. The pa-
rameters of the pseudoprior distributions are estimated by running
the models in separate runs and using the MCMC samples to esti-
mate distributions.! The script for the transdimensional model can

1 In the Kobe Bryant example, the prior distributions as well as the (estimated)
pseudopriors for the success probabilities are Beta distributions. Choosing the
same functional form for prior and pseudoprior simplifies the WinBUGS code,

be used for this action by setting the prior model probability for the
model that one wants to estimate equal to 1, since this is equivalent
to estimating the model without the transdimensional framework.
The goal of specifying the pseudopriors is to find good approxima-
tions of the true posterior distribution. This can be done, for exam-
ple, by comparing the histogram of MCMC values to the proposed
pseudopriors.

It is important that pseudopriors are chosen from a known
family of probability distributions. WinBUGS automatically derives
full conditional distributions, such as the one for the model index
(see Eq. (8)) that clearly depend on the pseudoprior distribution.
An alternative technique, which seems to be logical at first sight,
would be to include additional, independent runs of each model’s
posterior simulation of parameters within the same WinBUGS
script. One could then regard samples from these runs as if
they were from pseudopriors, and supply them to the main,
transdimensional routine simultaneously. However, this approach
does not work because the main purpose of using pseudopriors is
not to generate samples when the corresponding model is inactive,
but they are used for the conditional probabilities of model indexes
to be computed, as shown in Eq. (8). When provided with such a
script, WinBUGS considers those pseudoprior samples as constant
values, which eventually comes down to not using pseudopriors at
all.

4.2. Updating prior model probabilities with the bisection algorithm

With the transdimensional model formulated in WinBUGS, one
can obtain a posterior-simulated sample of the model index M,
and thus estimate posterior model probabilities for given prior
model probabilities. For some analyses, however, the available data
may provide strong evidence in favor of one of the models. In
practice, this will mean the less favored model is (almost) never
activated. Increasing the number of iterations is one possible way
of tackling this problem, but is not always feasible. For example, in
the Kobe Bryant analysis, By, is about equal to exp(18.79) ~ 144
million. This implies that, under assumption of equal prior model
probabilities, about 144 million Gibbs iterations are needed to have
at least one M, activation.

An efficient solution to this problem is to choose prior model
probabilities that make the number of posterior model activations
for both models approximately equal. For example, if the data favor
M; over M,, we should increase P(M;) such that their posterior
probabilities are more or less equal. This is conveniently done
using an automatic search algorithm. We have successfully used
the bisection algorithm, which was originally designed to find the
root of a continuous function within a region between a positive
and negative function value (Conte & De Boor, 1980). We use
the algorithm to find a difference in posterior model probabilities
which is close to zero. The bisection algorithm and its application
to update prior probabilities is explained in Appendix B.

4.3. Monitoring the sampling behavior of the model index

It is not just the choice of the prior model probabilities
that determines the quality of the Bayes factor estimates in the
transdimensional model: Autocorrelation in the chains can still
lead to inaccurate estimates after having obtained equal posterior
model activation. Consider the three following situations. Fig. 3(a)
shows the trace plot of the model index M under assumption of

as it involves choosing only between different parameters of the same type
of distributions, instead of choosing between different types of distributions.
Assuming agreement in distributional type when specifying pseudopriors for
different models may not always be desirable.
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Fig. 3. Trace plots of the model index M representing three typical situations, with (a) asymmetric model activation, (b) equal model activation with few model switches,
and (c) optimal sampling behavior with equal model activation and frequent model switches.

equal prior model probabilities. Clearly, M; is preferred strongly
over M,. The bisection algorithm is used to detect optimal prior
model probabilities. Fig. 3(b) shows the trace plot of M under the
assumption of optimal prior model probabilities after applying the
bisection algorithm. It can be seen that posterior model activation
is more or less equal, but there are only a few model switches. This
situation also leads to a low quality of the Bayes factor estimates.
The optimal situation is visualized in the trace plot in Fig. 3(c),
where both models are activated equally often and model switches
occur frequently.

Frequent model switching can be facilitated by considering two
key aspects of the problem. One is concerned with the efficiency
of posterior simulation of parameters within each model. Good
mixing or low autocorrelation within each model is a prerequisite
for a successful transdimensional simulation. Many useful tech-
niques, suggested so far, for improving standard MCMC chains can
be utilized for this purpose (e.g., Gelman, Carlin, Stern, & Rubin,
2004). The second approach deals directly with the transdimen-
sional scheme. This may include changing the prior model prob-
abilities, reparameterizing models for (more) parameters to be
shared between models, and improving pseudoprior estimation.
Once adequately efficient mixing within each model is confirmed,
problems in a transdimensional scheme can be diagnosed by mon-
itoring model switching behavior within a framework we call a
Markov approach. More details can be found in Appendix C.

4.4. Comparison of multiple models

The presented WinBUGS implementation compares two statis-
tical models with each other. The script can be easily extended to
the comparison of multiple models by allowing more than one (in-
teger) value for the model index M. For each model, a prior model
probability and necessary pseudopriors are formulated.

The bisection method, as explained above and in Appendix B,
is not generalizable to the situation of comparing more than two
models. Manual calibration of the prior model probabilities might
be very intensive or even impossible when one of the models
is supported strongly. One might change the multiple-model
comparison into several comparisons of two models, where the
bisection method can still be applied for each of the comparisons
separately. Even better would be to develop a general bisection
method for more than two models, but this requires more
sophisticated implementation.

As for the Markov approach explained above and in Appendix C,
the two-dimensional visualization is not generalizable. However,
we can still obtain the M x M transition matrix for the M models
under comparison and use it to make decisions to improve model
transitions.

5. Applications in psychology

In this section, we discuss three applications of the prod-
uct space method, handling research questions in psychology.

Each application focuses on a particular issue related to the product
space method. In the first application, we generalize the method
to comparison of more than two models. In the second applica-
tion, we illustrate how the bisection method calibrates prior model
probabilities. In the third application, we illustrate how the Markov
approach is applied to monitor the sampling behavior of the model
index.

Theresults are reported in terms of log Bayes factors (and poste-
rior model probabilities). The Savage-Dickey density ratio is used
as an alternative Bayes factor estimation method to validate our
findings. The Savage-Dickey method is a straightforward Bayes
factor estimation technique for null hypothesis testing on a partic-
ular parameter. The Bayes factor By; that compares the null model
My, with @ = c, to the full model M;, with @ given some prior
distribution p(«) that includes c, can be estimated with the ra-
tio of the prior density P(0@ = ¢ | M;) and posterior density
P(e¢ = c | My, D). More information on the Savage-Dickey den-
sity ratio can be found in Wagenmakers, Lodewyckx, Kuriyal, and
Grasman (2010) and Wetzels et al. (2009).

All analyses have been performed in R 2.11.1 (R Develop-
ment Core Team, 2010) and WinBUGS 1.4.3 (Lunn et al., 2000).
Appendix A contains the WinBUGS scripts of the transdimen-
sional models that are discussed in the applications. A file
containing all R and WinBUGS scripts can be downloaded at
http://ppw.kuleuven.be/okp/people/Tom_Lodewyckx/.

5.1. Application 1: Comparing multiple models of emotion dynamics

5.1.1. Emotion dynamics

People’s feelings and emotions show continuous changes and
fluctuations across time, reflecting the ups and downs of daily
life. Studying the dynamics of emotions offers a unique window
on how people emotionally respond to events and regulate
their emotions, and provides crucial information about their
psychological well being or maladjustment. Here we focus on two
processes underlying emotion dynamics.

First, Suls, Green, and Hillis (1998) introduced affective inertia
as a concept that describes how strong one’s affective state carries
over from one moment to the next. Kuppens, Allen, and Sheeber
(2010) elaborated on this concept and found that emotional
inertia, quantified as the first order autoregression effect of the
emotional process, was higher for depressed individuals than for
non-depressed individuals. This suggests that the fluctuations in
people’s emotions and moods is characterized by an autoregressive
component. Second, apart of autocorrelation, emotion dynamics
are also thought to be subjected to circadian rhythms. Various
studies indicate the existence of circadian rhythms for emotions
and their relevance in the explanation for psychological problems
(e.g., Boivin, 2006; Kahneman, Krueger, Schwartz, & Stone, 2004;
Peeters, Berkhof, Delespaul, Rottenberg, & Nicolson, 2006). The
goal of this application is to study the relative role of these two
processes in emotion dynamics using a time series of positive
affect. To this end, we will estimate a model that involves an
autocorrelation effect, a model that involves a circadian effect, and
a model that involves both.
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Fig. 4. Measurements of positive emotion during five consecutive days for one
participant. The gray rectangles correspond to the nights (from 12 to 8 am).

5.1.2. Experience sampling data

The observations were obtained in an experience sampling
study (Kuppens et al., 2010), in which participants’ emotions were
assessed for ten times a day over a period of about two weeks
during their daily life (for an introduction in experience sampling
methods, see Bolger, Davis, & Rafaeli, 2003). On semi-random
occasions within a day, the participant was alerted by a palmtop
computer and asked to answer a number of questions about their
current affective state.

We focus on a particular subset of observations, involving the
time evolution of positive emotion for one of the participants
during the first five days of the study, as visualized in Fig. 4. Positive
emotion is an average of four diary items (relaxed, satisfied, happy,
cheerful) and reflects the intensity of positive emotions on a 0 (no
intensity)to 100 (high intensity) scale. As can be seen in the figure,
mere visual inspection of the data does not allow to guess whether
an autoregressive or circadian process might be the underlying
mechanism.

5.1.3. Modeling emotion dynamics

We formulate four candidate models for the observed time
series described above, which we denote as y;, with t being an
index for discrete time (i.e., t = 1,2, ..., ignoring the fact that
the measurements were unequally spaced in time).

Mo : y; ~ Normal(u, %)

M 1y, ~ Normal(i + i1 [ye—1 — 1], 0°)

M, : y; ~ Normal(i + atime, + BtimeZ, o'2)

Ms 1y, ~ Normal (it + ¢y [Ve_1 — ] + atime, + Btime?, 02).

The null model My assumes that positive emotions fluctuate
around some average level p with error variance o2. In the
autoregressive model M,, the fixed effects part of the model is
extended with an autoregression coefficient ¢y,-1), modeling
the relation between the current value y, and the previous y;_;
(conditional on ). The index function I () in the subscript of ¢
acts as a selection mechanism: The estimate for the autoregression
coefficient ¢ only depends on observations that satisfy the
specified condition within I (-), or ¢ = 0 when the condition is not
satisfied. Since r; represents the within-day rank of the observation

2 To eliminate unwanted effects of day level of positive emotion, for each day,
the day average was changed to the same overall five-day average by adding or
subtracting a constant to all observations within that day.

1~
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Fig. 5. Optimal prior probabilities, observed posterior probabilities and corrected
posterior probabilities for the four emotion models, obtained with the product
space method.

(r = 1,2,3,... for the first, second, third,...observations within
a day), ¢y~ is interpreted as the autoregression coefficient for
all observations except for those observations preceded by a night.
The circadian model M, assumes a parabolic day pattern, in line
with findings from various studies that have found an inverted
U-shaped day rhythm for positive emotion (e.g., Boivin, 2006;
Peeters et al., 2006). This was modeled with a second degree
polynomial, with « the linear coefficient and 8 the quadratic
coefficient. In this model, time is represented with variable
time,, the time of the day expressed in hours, including minutes
and seconds rescaled to the decimal hour scale. Finally, in the
combined model M3, the autoregressive and the circadian models
are aggregated into a model containing all critical parameters ¢, o
and B. The prior distributions for the parameters are

o ~ Uniform(0, 100)
u ~ Normal(0, 100?)
¢ ~ Normal(0, 1?)

o, B ~ Normal(0, 10%).

5.1.4. Model selection

The product space method was implemented to estimate
posterior model probabilities and log Bayes factors for the four
candidate models in the light of the observed emotion data.?
Fig. 5 visualizes various aspects of the analysis for each of
the models. The left bars in black represent the chosen prior
model probabilities. The bisection method was not applicable since
more than two models are being compared, and hence the prior
model probabilities were updated manually (which took about
ten iterations). The obtained prior for the model index is strongly
asymmetric as almost all the prior mass is divided over M, and M.
The three middle bars in dark gray show the estimated posterior
model probabilities for the three Markov chains, using the optimal
prior model probabilities. We find that posterior probabilities
are estimated consistently, with small differences reflecting the

3 Three chains of 501000 iterations were obtained. The final sample size
was 10000, after removing a burn in of 1000 iterations and thinning each
chain with a factor 50. The log Bayes factor estimates were validated with the
Savage-Dickey method. WinBUGS code for the transdimensional model can be
found in Appendix A.1.
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probabilistic and autodependent nature of the Gibbs sampler.
Although equal posterior model activation is not obtained in
the strict sense (indicated with the dashed line), activation is
sufficient for all models to obtain stable estimates. To facilitate the
interpretation of these prior and posterior probabilities, the right
bars in light gray indicate the corrected posterior model probabilities:
These are the posterior probabilities we would have obtained in
case we had chosen a uniform prior for the model index.*

To explain the fluctuations of this participant’s positive
emotions during the observed five days, the null model seems to
be the dominant model with P(My | y) = 0.8330, whereas the
autoregressive model seems to be a less supported option with
P(M; | y) = 0.1649. The two models that contain the quadratic
trend seem to be poor candidates for explaining the data with
P(M, | y) = 0.0017 and P(M3 | y) = 0.0004.

By calculating the corresponding log Bayes factors, we quantify
the relative evidence between the models. For instance, there is
positive support in favor of the null model when compared to the
autoregressive model (log Bjp = —1.62), and very strong support
in favor of the null model when comparing it to the circadian
model and the combined model (respectively logB,; = —6.18
and logB3y = —7.66). Also, the autoregressive model is given
strong and very strong support when comparing it to the models
that contain the circadian pattern (respectively logB,; = —4.56
and logB3; = —6.04). When considering the circadian and the
combined model, there is positive support in favor of the circadian
model (log B3, = —1.47).

This example shows clearly how strong inferences based on
model selection may depend on the initial model choice. Imagine
the situation where only M, and M3 would have been considered.
In that case, we would conclude that the circadian model is
positively supported above the combined model (logBs; =
—1.47), leaving the impression that the circadian model is a good
model. However, when considering all four models, the circadian
model merely has a posterior probability of 0.0017.

Posterior inference for model parameters is possible with the
MCMC output of the transdimensional output, but should be
performed with caution. One should always consider the posterior
distribution conditional on the value of the model index, also when
a parameter is shared between models. In certain cases, however,
unconditional posterior distributions for shared parameters may
be of interest since one can incorporate model uncertainty into the
inference and resulting interpretation of those parameters.

5.2. Application 2: Testing for subliminality in the mass at chance
model

5.2.1. The assumption of subliminality

Priming studies have investigated the effect of consciously
undetectable stimuli on human behavior. This is known as the
subliminal priming effect (Lepore & Brown, 1997; Massar &
Buunk, 2010; Mikulincer, Hirschberger, Nachmias, & Gillath, 2001).
Although most studies concern visual priming, researchers have
also experimented in the auditory domain (Kouider & Dupoux,
2005), and even explored the neurological basis of subliminal
priming (Dehaene et al., 2001, 1998). However, these studies
have one common fundamental assumption, which is that it is
impossible to process the presented stimuli on a conscious level. To
test the validity of this assumption experimentally, participants are

41 theory, the ratio of posterior to prior model odds (the Bayes factor) does
not depend on prior model probabilities. Therefore, chosen prior and estimated
posterior model probabilities are easily transformed into corrected posterior model
probabilities.

Table 3

Observations and model selection results for the prime identification task, with the
number of successes K;, the number of attempts N;, the proportion of successes
Ki/N;, the estimated log Bayes factors with the product space method log Ef’s, and
the Savage-Dickey method log ﬁfd forindividualsi = 1, ..., 27. Negative values for
the log Bayes factors indicate support for the subliminal hypothesis, positive values
indicate support for the supraliminal hypothesis.

i K; N;i Ki/Ni lOg BFS log de
1 150 284 0.53 —1.60 —1.66
2 142 288 0.49 —2.82 —2.79
3 154 287 0.54 —-1.28 —-1.27
4 155 288 0.54 —-1.15 —-1.16
5 136 288 0.47 —3.21 —-3.19
6 138 288 0.48 —-3.12 —-3.10
7 211 288 0.73 30.39 28.61
8 140 288 0.49 —2.93 —2.96
9 148 285 0.52 —2.03 —2.01

10 159 287 0.55 —-0.31 —-0.27

11 164 288 0.57 0.85 0.87

12 150 288 0.52 —1.89 —-1.95

13 158 288 0.55 —0.64 —0.60

14 138 288 0.48 —3.12 —3.10

15 148 288 0.51 —2.18 —-2.19

16 146 288 0.51 —2.41 —2.39

17 163 288 0.57 0.64 0.56

18 145 288 0.50 —2.51 —2.52

19 180 288 0.62 7.18 6.96

20 155 288 0.54 —-1.15 —-1.16

21 148 287 0.52 —2.14 —2.12

22 147 287 0.51 —2.24 —2.24

23 134 288 0.47 —3.33 —3.33

24 134 286 0.47 —3.26 —3.26

25 167 288 0.58 1.76 1.72

26 149 288 0.52 —2.05 —-2.07

27 147 288 0.51 —2.25 —2.30

presented a stimulus repeatedly and asked to indicate whether or
not they perceived it. Rouder, Morey, Speckman, and Pratte (2007)
have criticized the analysis of these performances and illustrate
various problematic situations. Some procedures formulate an
arbitrary cut-off value for the detection performance, whereas
other analyses lack power or ignore individual differences by
aggregating the observations over individuals. The implications are
crucial: If stimuli are assumed to be undetectable while they are
actually weakly detectable, inferences about subliminal priming
effects are not valid.

5.2.2. The experimental setup

We discuss observations that were collected in an experiment
conducted by Rouder, Morey et al. (2007). Visual stimulus material
consisted of the set of numbers {2, 3, 4, 6, 7, 8}. In each trial, one
of these numbers was presented on the computer screen as a
22 ms prime stimulus, followed by a 66 ms mask “#####” and
another number from the same set as a 200 ms target stimulus.
The participant had to indicate whether the 22 ms prime stimulus
in the current trial was higher or lower than 5. The dependent
measure was the accuracy of the answer, such that the experiment
resulted in K; successes out of N; trials. All 27 participants were
presented 288 trials. Table 3 lists the observed individual successes
K; and attempts N;, and the corresponding proportion of successes
K;/N;.> Most individuals perform around chance level (K;/N; ~
0.50), suggesting that subliminality is plausible.

5.2.3. The mass at chance model

The Mass At Chance (MAC) model, introduced by Rouder,
Morey et al. (2007), offers a clever Bayesian approach for test-
ing the validity of the subliminality assumption for observed

5 For some of the participants, the data were incomplete such that N; < 288.
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Fig. 6. The MAC transformation function of the mass at chance model.

success counts. The model assumes that a Binomial rate param-
eter 0; underlies the generation of failures and successes, so that
Ki ~ (6;, N;). That Binomial rate is determined by an individual
latent detection ability ¢;. The MAC transformation function, visu-
alized in Fig. 6, quantifies the relation between 6; and ¢; and makes
an important difference between positive and negative ¢; values.
A participant with a negative ability is unable to detect the prime
stimulus consciously and his performance will be at chance level
(6; = 0.5).% On the other hand, a participant with a positive ability
is able to detect the prime stimulus consciously (0.5 < 6; < 1),
and, the more positive ¢;, the better the performance. The cumu-
lative standard normal density function serves as a continuously
increasing transformation function that maps i* — [0.5, 1[. We
can now say that ¢; = ®~1(6;) is the probit transformation of the
rate 6;, with @ () denoting the inverse cumulative standard nor-
mal density function.

Fig. 6 shows that only positive detection abilities ¢; can lead to
performance above chance level. It also explains “mass at chance”
since, after transformation, the mass over the negative domain
of ¢; is squeezed together on the value §; = 0.5. Whereas the
distribution of ¢; is fully continuous, the distribution of 6; is a
mix of discrete (for 6; = 0.5) and continuous (for 0.5 < 6; <
1) components. Therefore, an appropriate prior distribution for
the latent ability ¢; is the standard normal distribution, ¢; ~
N(0, 1). The corresponding prior distribution on the rate scale is
a (normalized) combination of a point mass probability P(6; =
0.50) = 0.50 and a uniform distribution over the range of 0.50 <
0; < 1 (see Rouder, Morey et al., 2007).

The MAC model is visualized in Fig. 7, using the notation
provided by graphical modeling. Graphical models are a stan-
dard language for representing probabilistic models, widely used
in statistics and machine learning (e.g., Gilks, Thomas, & Spiegel-
halter, 1994; Jordan, 2004; Koller, Friedman, Getoor, & Taskar,
2007), and recently gained popularity in psychological modeling
(e.g., Kemp, Shafto, Berke, & Tenenbaum, 2007; Lee, 2008; Shiffrin
et al., 2008). The graphical model presented in Fig. 7 uses the same
notation as Lee (2008). Nodes in the graph correspond to vari-
ables, and the graphical structure is used to indicate dependen-
cies between the variables, with child nodes depending on parent
nodes. Continuous variables are represented with circular nodes

6 Performance below chance level is unrealistic, since it would mean that one
knows the correct response, but gives the incorrect response on purpose.

¢; ~ N (0,1)
0;

9_:{ 5 if¢i <0
Y ‘ ®(¢s) if o >0
K;
0 K; ~ Bin(0;, N;)
N;

Fig. 7. Graphical model for the mass at chance model.

Myp = i ~ N (0 1)
Mgyp : i ~ N4 (0,1)

9, = { 5 if ¢; <0
' (i) if ;i >0
K;
1 K; ~ Bin(0;,N;)
N;

Fig. 8. Graphical model for the model comparison in the mass at chance model,
representing the subliminal model, Mgy, and the supraliminal model, Mgyp.

and discrete variables with square nodes. Observed variables (usu-
ally data) are shaded and unobserved variables (usually model pa-
rameters) are not shaded. Deterministic variables (variables that
are simply functions of other nodes, and included for conceptual
clarity) are shown as double-bordered nodes.

5.2.4. Model selection

Rouder, Morey et al. (2007) estimated posterior distributions
for the latent abilities for each of the 27 subjects using the MAC
model. It was concluded that perception was subliminal when 95%
of the posterior mass for ¢; was located below zero. Using this
criterion, they selected three out of the 27 subjects as subliminal
perceivers, and found marginal evidence for another two subjects.
For the remaining 22 subjects, they concluded that “Although
many of these participants may be truly at chance, we do not have
sufficient evidence from the data to conclude this”.

Another way of testing for subliminality in the MAC model is
by estimating a Bayes factor for each subject that compares the
models of subliminal (Msy, : ¢ < 0) and supraliminal (Mg, :
¢; > 0) perception. Both competing models are formally described
in Fig. 8. The notation is very similar to the one in Fig. 7, with the
difference that, in this figure, two models are presented in one
graphical model. This notation is practical for presenting models
with the same basic structure of parameters, but differences in
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Fig.9. Visualization of model selection results. (a) The log Bayes factor obtained with the product space method log B}’s is compared to proportion of correct answers K;/Nj.

(b) The log Bayes factor obtained with the product space method log fifs is compared to the log Bayes factor obtained with the Savage-Dickey method log Efd. Note that the
figures do not include subject 7, since the corresponding log Bayes factor estimate is an outlier.

prior assumptions about parameters. The order restrictions are
quantified by restricting the standard normal prior for ¢; to the
negative value domain (Mgyp, : ¢; ~ N_(0, 1)) or the positive value
domain (Msyp : ¢ ~ N4 (0, 1)).

We estimated the log Bayes factors in favor of the supraliminal
model using the product space method, denoted log B”.” Fig. 9(a)
shows the estimated log Bayes factors, obtained with the product
space method, as a function of the proportion of correct trials
K;/N;. As expected, the evidence in favor of the supraliminal model
increases with the proportion of correct responses. We might take
logB”® < —3, interpreted as “at least strong evidence in favor
of Myy,”, as a criterion to select subjects for subliminal priming
tasks. This leads us to the selection of five subjects. As already
suggested by Rouder, Morey et al. (2007), it might be plausible
that other subjects are at the subliminal level as well, but that
there is not enough evidence to make such an inference. Observing
the curve that is revealed by the individual points in Fig. 9(a),
we might formulate a cut-off value for the proportion correct,
such as K;/N; < 0.48, or fit a function that models the relation
between proportion correct and log Bayes factor (at least, under
the assumption of a fixed sample size N;).

In Fig. 9(b), the estimates obtained with the product space
method are compared to those obtained with the Savage-Dickey
density ratio. The estimates are as good as equal, which suggests
that log Bayes factors are estimated correctly with both methods.

To illustrate how the bisection method operates, Fig. 10
shows the iterative history of prior model probabilities for each
individual. An initial prior model probability is chosen at 0.5. If the
corresponding difference in posterior probabilities § = 7" —
7P is positive, Mo is dominant so its prior model probability
should be decreased (otherwise, if § is negative, 75 should be
increased). This step is repeated until § is within a reasonable
region of tolerance [—0.10, 0.10]. Each of the lines represent the
updating history for one of the individuals. It shows that even
in extreme situations, the bisection algorithm works: For one of
the individuals, 44 bisection iterations were necessary to find an
optimal prior model probability, resulting in a log Bayes factor

7 Three chains of 110000 iterations were obtained. The final sample size was
100000, after removing a burn in of 10000 iterations (without thinning). The log
Bayes factor estimates were validated with the Savage-Dickey method and denoted
as log ﬁfd. The Savage-Dickey method could be used for this non-nested model
selection problem by comparing both models to the same null model ¢; = 0 and
using the transitivity property. WinBUGS code for the transdimensional model can
be found in Appendix A.2.

Fig. 10. Visualization of the prior calibration process with the product space
method. Each connected line represents the subsequent values for the prior model
probability P(My) and the posterior difference P(My | y) — P(M; | y) for one of the
27 individuals, as obtained with the bisection method. The full vertical line connects
all the starting points at P(My) = 0.5.The gray area represent the acceptance region
[—0.10, 0.10] for the difference in posterior model activation.

of about 30. Without the automatic prior calibration, it would be
impossible to perform model selection for such extreme data.

5.3. Application 3: Testing visual discriminability in a hierarchical
model

5.3.1. The effect of enhanced discriminability

It is assumed that prior exposure to a stimulus - whether in
the real world, or priming in an experimental context - leads
to better processing of that stimulus in the future. This has
been investigated in various implicit memory tasks, such as the
picture identification paradigm (Reinitz & Alexander, 1996). In
this paradigm, studying a target stimulus in a preceding phase
increases the accuracy of identifying that stimulus when it is briefly
presented as a prime stimulus in a forced-choice task against a
foil with very similar characteristics. This effect is referred to as
enhanced discriminability.

There exist (at least) two competing theories that can account
for this facilitation effect. A first theory assumes that prior
exposure to a stimulus increases its encoding efficiency, as is
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Fig. 11. Example of a stimulus pair of visually similar objects (Zeelenberg et al.,
2002).

discussed in the perceptual representation system by Schacter
(1992). A second line of research interprets the facilitation effect
as a mere bias toward the exposed stimulus, as argued in Ratcliff
and McKoon (1995, 1996). Interestingly, these frameworks make
contradicting predictions when both target stimulus and foil
stimulus are previously studied. From the encoding efficiency
perspective, this situation would lead to enhanced discriminability
as the encoding of the target stimulus has become more efficient.
However, the bias perspective predicts no effect of enhanced
discriminability, since exposure to the foil stimulus eliminates the
bias effect toward the target stimulus. Zeelenberg, Wagenmakers,
and Raaijmakers (2002) investigated this prediction (and others)
in a series of three experiments, using both auditory and visual
stimulus modalities. We focus on experiment three, using the
picture identification task.

5.3.2. Picture identification task

Zeelenberg et al. (2002) conducted an experiment with 74
subjects, using 42 pairs of visually similar pictures, such as the
clothes peg and stapler shown in Fig. 11.In the study block, subjects
were familiarized with the pictures from 21 picture pairs, with
each stimulus being presented three times for 2 s. This within-
subjects manipulation assigned half of the picture pairs to the
“Study Both” (SB) condition and the other half to the “Study
Neither” (SN) condition. In each of the 42 trials in the test block,
one of the picture pairs was used as stimulus material. One of the
pictures was used as a target stimulus and briefly presented for
40 ms. Subjects were presented with both pictures from the picture
pair and had to identify which one was used as a prime in a two-
alternative forced-choice task. For each subject i, this resulted in
counts of correct identifications K® and KV, with corresponding
trial counts N® = NN = 21. Fig. 12 shows the relation between
proportions for all 74 subjects. Enhanced discriminability is
expressed as a higher proportion of correct identifications in the
SB condition when compared to the SN condition.

5.3.3. Model selection

Zeelenberg et al. (2002) found a significant effect of the within
subject manipulation, using a paired t-test. The proportion of
correct trials was higher in the Study Both condition, 74.7%, than in
the Study Neither condition, 71.5%, with t(73) = 2.19,p < 0.05.
This result was taken to support increased encoding efficiency.

We present an alternative strategy using Bayesian hierarchical
modeling, in which differences in proportions between the
experimental conditions are treated as random effects and the
hypothesis test is applied on the level of the hierarchical
distribution. In Fig. 13, the graphical model is presented. For both
experimental conditions, we assume that the counts of correct
identifications are Binomially distributed with success rates 6;°
and Gf’\’ . As in the analysis of the data by Rouder, Morey et al.
(2007), we work with probit transformations ¢® = @~1(6s) and
d)f” = &~ 1(Ogy). The crucial part of the analysis then concerns
the difference between the transformed success rates for the two

14

Proportion correct identifications
Study Neither condition

T
.75 1
Proportion correct identifications
Study Both condition

Fig. 12. Proportions of correct identifications of the 74 subjects in the Study Both
and Study Neither conditions. Jitter has been added to distinguish participants with
exactly the same proportions.

My:6=0
My : 6~ N4 (0,1)

O Oan®

fa =0 X 04

N
oo ~U(0,10)
fg ~ Ny ([)7 1)
@ oy~ U(0,10)
Qg ~ N(N(wu'(zy)
@ @ PN, ~ N(lhp«,(’i)
@sB,i = QSN +
SN (5B Osni = P(psn,i)
055, = P(PsB,:)
Ksn,i ~ Bin(0sn,i, Nsn.i)
NN N$B
Ksp,i ~ Bin(0sp,i, Nsp.,i)
\_ Participant i = 1,...,74)

Fig. 13. Graphical model for the hierarchical model for the Zeelenberg et al. (2002)
data.

conditions, formalized as the difference o; = ¢?® — @7 Positive
values of ¢; indicate an effect of enhanced discriminability for
individual i.

With the trial count in each condition for each subject being
as small as 21 but the total number of subjects being as large as
74, this model is an ideal candidate for a hierarchical extension.
By introducing a hierarchical structure, it becomes possible to
take evidence from other subjects’ responses and make more
accurate inferences about effects at individual level. The plate in
the graphical model in Fig. 13 is a common way for hierarchical
models to visualize that the model part within the plate is repeated
for all subjects. Hierarchical distributions are formulated for ¢ ~
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Fig. 14. Visualization of the Markov approach to monitor the sampling behavior of
the model index.

N (ig,0,) and for o; ~ N (i, 07). By running a posterior
simulation with this model and inspecting the distributions of
o;, we would be able to draw inferences about the enhanced
discriminability of each subject.

While the ability to make accurate inferences at the individual
level is very useful, particularly in a situation where half of the
subjects exhibit positive effects and the other half negative effects,
a test of a single hypothesis at the group level can be informative
as well. In this case, we are interested in § = /0y, which is
the standardized group effect of «;. We compare the “no effect
model” My, with § = 0, to the “effect model” M;, with § > 0.
The corresponding prior distribution for 6 under M; is a standard
normal prior that has been restricted to the positive real domain.

We applied the product space method to estimate the log Bayes
factor log EA?‘]’(S), comparing M to My, and obtained an estimate equal
to 1.45.8 With this result, we find positive evidence in favor of an
enhanced discriminability group effect. This is consistent with the
conclusion from Zeelenberg et al. (2002), although the evidence is
less strong than the p-value may suggest (Wetzels et al., 2011).

The Markov approach to monitor the sampling behavior of the
model index was applied and visualized in Fig. 14. The transition
probabilities between the models are crucial for the quality of
the log Bayes factor estimate and are optimized in a two step
approach. In a first step, the bisection method calibrates the
prior model probabilities to approximate equal posterior model
activation, using a minimal sample size of 10000 iterations, after
removing a burn in of 1000 samples. Four iterations are needed for
this step, represented with squares in the visualization. Although
posterior model activation is about equal, transition probabilities
are rather low (my, 721 =~ 0.06). In the second step, we
change MCMC settings to increase these transition probabilities,
while using the calibrated set of prior model probabilities. We
simultaneously increase the sample size (50 000, 100 000, 150 000,
200000, 250000) and the thinning factor (5, 10, 15, 20, 25) such
that the thinned sample size is always 10000. The circles with

8 Three chains of 251000 iterations were obtained. The final sample size was
10000, after removing a burn in of 1000 iterations and thinning each chain with
a factor of 25. The log Bayes factor estimate was validated with the Savage-Dickey
method and was equal to 1.43. WinBUGS code for the transdimensional model can
be found in Appendix A.3.

increasing diameter in the visualization represent these iterations
with increasing thinning factor, and it clearly shows that model
transitions are increased (the final transition probabilities are
12, T21 ~ 0.34). We should remark that increasing the sample
size and thinning is just one of the possibilities to increase model
transitions (more details are provided in Appendix C).

6. Discussion

In Bayesian statistics, the Bayes factor is one of the most im-
portant and widely used methods for the quantitative evaluation
of hypotheses and models. Bayes factors have an important role
to play in the psychological sciences, which regularly seeks to test
statistical hypotheses and substantive psychological models. We
have explained, demonstrated and validated a general computa-
tional method by Carlin and Chib (1995) for estimating Bayes fac-
tors. This method can be applied to any statistical hypothesis test
or model comparison, including comparison of multiple models,
non-nested models and hierarchical models.

An attractive feature of the method is its conceptual simplicity.
Like all transdimensional MCMC methods, the basic approach is to
estimate the posterior distribution of a model index that controls
which model generates predictions about the observations. This
index directly corresponds to our intuitions about model selection:
We start from a prior belief about the model probabilities and
use the observations to update our belief into posterior model
probabilities. The direction and strength of this update from
prior to posterior model probabilities is quantified by the Bayes
factor.

It is the case, however, that the product space method requires
some sophistication with regard to various implementational
issues. The WinBUGS implementation is based on a conceptual
understanding of the method. In addition, the quality of the
Bayes factor estimate depends on the choice of the prior model
probabilities and the sampling behavior of the model index. In
this paper, we tried to give some general guidelines and specific
examples to help with these implementational issues.

Overall, we believe that the product space method occupies a
useful niche between alternative approaches, based on a trade-
off between ease of implementation and generality of applica-
tion. Two alternative approaches for model selection that were
discussed in this paper are the Savage-Dickey density ratio and re-
versible jump MCMC. The Savage-Dickey method is relatively easy
to implement, but only applicable to a restricted class of nested
comparisons.® In addition, testing a null hypothesis for multiple
parameters simultaneously can bring about computational issues
of multidimensional density estimation. On the other hand, re-
versible jump MCMC (Green, 1995) is actually more similar to
the product space method than it appears from the model selec-
tion literature. However, seeking maximum sampling efficiency, its
implementation usually requires complex analytic derivation of a
mapping function and a Jacobian matrix. Achieving the same level
of efficiency with the product space approach amounts to finding
suitable reparameterizations of compared models and perform-
ing corresponding transformations of their posterior distributions,
which is not a routine procedure. Very often in the psychological
sciences, it suffices to compare only a few alternative formal mod-
els against available data, and the highest algorithm efficiency is
not a critical factor. In these circumstances, we believe the prod-
uct space method provides a relatively powerful and easily imple-
mented approach for quantifying the evidence the data provide for
and against the competing models in a general setting.

9 Non-nested models that can be connected with a common nested model, like
those in the second application, are an exception.
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Appendix A. WinBUGS code for applications

A.1. Application 1 (emotion dynamics)

model{

# MODEL INDEX
M ~ dcat(pll)
for(m in 1:4){p[m] <- prior([m]}

# MODEL LIKELIHOOD
for(t in 2:n){y[t] ~ dnorm(mean[t],tau)
mean[t] <- mul[M]

+ st [t]*phi [M]*(y [t-1]-mu[M])
+ a[M]*time[t]
+ b[M]*pow(time[t],2)}

tau <- pow(sd,-2)

sd ~ dunif(0,100)

# MODEL 1: null model
mul1] <- mui[M]; phi[1] <- 0; a[1] <- 0; b[1] <- 0
mul[1] <- mul.pr
mul[2] <- mul.ps
mul[3] <- mul.ps
mul[4] <- mul.ps

# MODEL 2: autoregressive model
mu[2] <- mu2[M]; phi[2] <- phi2[M]; a[2] <- 0; b[2] <- O
mu2[1] <- mu2.ps; phi2[1] <- phi2.ps;
mu2[2] <- mu2.pr; phi2[2] <- phi2.pr;
mu2[3] <- mu2.ps; phi2[3] <- phi2.ps;
mu2[4] <- mu2.ps; phi2[4] <- phi2.ps;

# MODEL 3: circadian model
mul[3] <- mu3[M]; phi[3] <- 0; al[3] <- a3[M]; b[3] <- b3[M]

mu3[1] <- mu3.ps; a3[1] <- a3.ps; b3[1] <- b3.ps
mu3[2] <- mu3.ps; a3[2] <- a3.ps; b3[2] <- b3.ps
mu3[3] <- mu3.pr; a3[3] <- a3.pr; b3[3] <- b3.pr
mu3[4] <- mu3.ps; a3[4] <- a3.ps; b3[4] <- b3.ps

# MODEL 4: combined model
mu[4] <- mu4[M]; phi[4] <- phi4[M]; al[4] <- a4[M]; b[4] <-
mu4[1] <- mu4.ps; phi4[1] <- phi4.ps; a4[1] <- ad.ps; b4[1] <-
mu4[2] <- mu4.ps; phi4[2] <- phi4.ps; a4[2] <- ad.ps; b4[2] <-
mu4 [3] <- mu4.ps; phi4[3] <- phid.ps; a4[3] <- ad.ps; b4[3] <-
mu4 [4] <- muéd.pr; phi4[4] <- phid.pr; a4[4] <- ad.pr; b4[4] <-

# PRIORS AND PSEUDOPRIORS
mul.pr ~ dnorm(0,.0001); mul.ps ~ dnorm(mul.psm,mul.pst)
mu2.pr ~ dnorm(0,.0001); mu2.ps ~ dnorm(mu2.psm,mu2.pst)
mu3.pr ~ dnorm(0,.0001); mu3.ps ~ dnorm(mu3.psm,mu3.pst)
mu4.pr ~ dnorm(0,.0001); mu4.ps ~ dnorm(mu4.psm,mu4.pst)
phi2.pr ~ dnorm(0,1); phi2.ps ~ dnorm(phi2.psm,phi2.pst)
phi4.pr ~ dnorm(0,1); phi4.ps ~ dnorm(phi4.psm,phi4.pst)
a3.pr ~ dnorm(0,.01); a3.ps ~ dnorm(a3.psm,a3.pst)
a4.pr ~ dnorm(0,.01); a4.ps ~ dnorm(a4.psm,ad.pst)
b3.pr ~ dnorm(0,.01); b3.ps ~ dnorm(b3.psm,b3.pst)
b4.pr ~ dnorm(0,.01); b4.ps ~ dnorm(b4.psm,b4.pst)

A.2. Application 2 (subliminality)

modelq{

# MODEL INDEX
M ~ dcat(pll)
pl1] <- priorl
pl2] <- prior2
postrl <- 2-M
postr2 <- M-1

# MODEL LIKELIHOOD
K ~ dbin(theta,N)
theta <- Q*phi(phi[M]) + (1-Q)*.5
Q <- step(phi[M])

# MODEL 1: subliminal model
phi[1] <- phi.sub[M]
phi.sub[1] <- phisub.prior
phi.sub[2] <- phisub.pseudo
phisub.prior ~ dnorm(0,1)I(,0)
phisub.pseudo ~ dnorm(phisub.psm,phisub.pst)I(,0)

# MODEL 2: supraliminal model

b4 [M]
b4.ps
b4.ps
b4.ps
b4.pr

phi[2] <- phi.supral[M]

phi.supra[2] <- phisupra.prior

phi.supra[1] <- phisupra.pseudo

phisupra.prior ~ dnorm(0,1)I(0,)

phisupra.pseudo ~ dnorm(phisupra.psm,phisupra.pst)I(0,)

A.3. Application 3 (enhanced discriminability)

modeld{

# MODEL INDEX
M ~ dcat(p[])
pl1] <- prioril
pl[2] <- prior2
postrl <- 2-M
postr2 <- M-1

# MODEL LIKELIHOOD

for(subj in 1:nsubj){
K1i[subj]l ~ dbin(thetal[subj],N)
K2[subj]l ~ dbin(theta2[subj]l,N)
thetal[subj] <- phi(phil[subj])
theta2[subj]l <- phi(phi2[subj]l)
phil[subj] <- phi2[subj] + alpha[subj]
phi2[subj] ~ dnorm(phi.mu,phi.tau)
alphal[subj] ~ dnorm(alpha.mu,alpha.tau)

}

phi.mu ~ dnorm(0,1)I(0,)

phi.tau <- pow(phi.std,-2)

phi.std ~ dunif(0,10)

alpha.mu <- delta[M] * alpha.std

alpha.tau <- pow(alpha.std,-2)

alpha.std ~ dunif(0,10)

# MODEL 1: null model
delta[1] <- delta.null
delta.null <- 0O

# MODEL 2: full model
deltal[2] <- delta.full[M]
delta.full[1] <- deltafull.pseudo
delta.full[2] <- deltafull.prior
deltafull.pseudo ~ dnorm(deltafull.psm,deltafull.pst)I(0,)
deltafull.prior ~ dnorm(0,1)I(0,)

Appendix B. The bisection method to optimize the prior model
probabilities

The choice of prior model probabilities in the transdimensional
model is important for the quality of the Bayes factor estimate.
Prior model probabilities 77" and ;""" should be chosen such
that approximate equal posterior model activation is obtained:
That is, #7*" ~ #P*". It is convenient to formalize this goal
as wanting to specify prior model probabilities for which the
difference in posterior model probabilities, § = AP — AP s
approximately 0.

The bisection method (Conte & De Boor, 1980) is used to
find the root (a function value of 0) of a continuous function
within a specified interval of values for the function argument.
Because of continuity, the function values of the interval bounds
should have opposite signs to guarantee that the root is inside
the interval. Translating the prior specification problem to the
bisection method, the function we want to find the root for is
fos- This function has 77" as a function argument, it applies the
product space method using the set of prior model probabilities

{m"", 73"}, and gives as output the difference in posterior

model probabilities § = 75" — #P°"", The value of § has a range

of —1 (when M; is exclusively activated) to 1 (M, is exclusively
activated), with the root being the desired position of equal model
activation.

Under normal circumstances, the bisection method is able to
find prior model probabilities when applying the bisection method
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to this function f,,. By systematically scanning the function values
over the region of possible values [0, 1] for the function argument

7™, the algorithm finally stops when the function value is close
enough to the root. One can distinguish three actions in the
algorithm:

1. Initialization. Set the initial search interval for 7" equal to | =

[Tiower, Iupper] = [0, 1]. The corresponding set of function values
for these lower and upper boundaries are [—1, 1], reflecting full
dominance of respectively M; and M,.

2. Bisection: Estimate the function value for the midpoint of the
interval Iq (hower + lupper)/2. Based on the sign of the
function value, shrink the interval I to one of the bisections of
the original I. If fps(Imiq) is negative, set liower = Imid-. If fos (Imia)
is positive, set Iypper = Imig. This way, the function values of
the borders of the new interval always have opposite signs (and
thus contain the root).

3. Evaluation: The algorithm repeats the bisection step until
Ifps(Imia)| < €, with € set to some arbitrary, small, positive
precision value. The value of € defines the preferred degree
of equal model activation. For instance, setting ¢ equal to
0.10 makes the algorithm stop once estimated posterior model
probabilities are within the region of [0.45,0.55], with a
maximum absolute difference of 0.10. Once that condition is
obtained, the optimal prior model probability is approximated
by Iia.

We should be aware of the fact that f,s is a stochastic
function: Repeated runs of the function, while keeping the function
argument """ constant, will return different results. This kind
of varlablllty can be reduced by changing MCMC settings, such
as collecting more MCMC samples, or using a thinning factor.
This is worth doing, in our experience, since variability can form
a fundamental problem for the method. In particular, if the
estimated difference in posterior model probabilities does not
have the same sign as the true difference in posterior model
probabilities, then the chosen bisection interval does not contain
the root of f,s. Monitoring the sampling behavior of the model
index is crucial to obtain good estimates of the posterior model
probabilities (see Appendix C).

The bisection method can deal relatively well with situations
of strong asymmetry in evidence, when one of the models is
preferred much more than the other. This is illustrated by the

application of the bisection method in the Kobe Bryant analysis.

Here, the extreme value of the best prior probability 7™ =

0.000000007451 is obtained only after 27 bisection 1terat10ns. A
maximum can be specified for the number of bisections since, at
some point, the computational precision boundaries of a computer
are reached.

Appendix C. A Markov approach to monitor the sampling
behavior of the model index

Well chosen prior model probabilities are necessary to obtain
equal posterior model activation within the product space method.
However, equal posterior model activation does not automatically
imply good sampling behavior of the model index. As illustrated
in Fig. 3(b), equal posterior model activation can be obtained with
only a few model switches. For a categorical parameter, the lack
of model switches in its Markov chain is comparable to a high
level of autocorrelation for the Markov chain of a continuous
parameter. To improve model switching behavior, various practical
actions can be taken, such as reparameterization of the model,
changing prior distributions, using a thinning factor, and so on.
In this appendix, we discuss an approach using Markov transition
matrices to monitor the sampling behavior of the model index.

The reason why we name it a Markov approach is not because
the posterior samples of the model index are actually a Markov
chain of a fixed order, but rather because we focus on the first order
dependency in the series of model index samples to learn about
their switching behavior. While it is true that the Gibbs sampler
for the full transdimensional model generates a Markov chain of
order 1, the model index alone, looked at marginally, does not.
One sufficient condition for it to be a Markov chain of order 1 is
that the within-model transition of parameters is performed by an
independent sampler.'® Of course, this cannot be true for MCMC
simulations. However, it can be said that the Markov approach
presented here will be a good approximation to model switching
behavior when the MCMC sampling of parameters within each
model exhibits good mixing with a reasonably low degree of
autocorrelation throughout the chain.

For the Markov chain of the model index M, the 2 x 2 transition
matrix 7" is defined. This matrix contains the transition
probabilities (75" and 7)7") on the off-diagonal elements and
the non-transition probabilities (7{7™ = 1 — 7{¥™ and 73" =
1 — 7") on the diagonal elements
n,trans _ |:n.]tr]ans n]trzans]

- trans trans .

(C.1)
Ty Ty

These probabilities describe the level of persistency of model
activation, once a particular model has been activated. For
example, 7™ = 0.99 and 7™ = 0.01 indicates that, once
M; has been activated, there is a strong tendency that M; will
stay activated over several MCMC iterations. The optimal situation
would be that the probabilities of activating M; or M, at the
next MCMC iteration are equal, and that these probabilities are
independent of the currently activated model. This corresponds to
a transition matrix with all values equal to 0.5.

The stationary distribution 7%t is a two-dimensional vector,
reflecting the expected posterior model activation, and is derived
from the transition matrix 7.1 The elements 7" and 75™
represent the probabilities of respectively M; and M, bemg
activated.

stat
stat __ | 709
T = stat
U

Fig. C.15 visualizes the relation between the transition matrix
and the stationary distribution. The x and y axes represent the
transition probabilities 7{3"* and 73" over their full range from
0to 1.Since 7{?™ = 1— 71{53"5 and 33" = 1 — 731, all possible
values for the transition matrix are represented within this two-
dimensional grid. Each point within this grid represents a unique
transition matrix, for which the stationary distribution can be
derived. The contour surface within this grid represents the value
of 3" as a function of the transition probabilities, representing
the full stationary distribution (since 5% = 1 — 7).

Although Fig. C.15 shows the link between all p0551ble transi-
tion matrices and their corresponding stationary distributions, this
does not mean that all of these situations are plausible within an
MCMC context. We discuss the three trace plots for the model in-
dex as depicted in Fig. 3, as they each represent typical situations

(C.2)

10 o proof of this proposition is available upon request. The intuition is as follows.
Suppose that dependency present in a Markov chain for a transdimensional model
can be divided into dependency due to the within-model transition of parameters
and dependency due to the transition of the model index. Consider that the Markov
model presented in the paper only describes the transition of the model index. It
makes sense that the model becomes an accurate description when the within-
model dependency is taken out of the equation, which is done by assuming an
independent sampler within each model.

11 The derivation is based on the equality 7752 (1 — 7™ 4 U) = 1, withla2 x 2
identity matrix, U a 2 x 2 matrix of ones and 1 a two-dimensional vector of ones.
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Fig. C.15. Contour plot of the stationary probability of Model 1, ;'*, as a function
of the transition probabilities 775" and 757", The three prototypical situations that
have been illustrated in Fig. 3(a), (b) and (c) are located within this grid with the
corresponding symbols a, b and c.

for the model index in transdimensional MCMC. The correspond-
ing letters (a, b, ¢) in the subfigures of Fig. 3 are also located in the
grid of Fig. C.15.

The situation of strong preference for one of the models is
illustrated in Fig. 3(a). Typically, these cases are situated within the
grid in the upper-left quadrant (dominance of M;) and the lower-
right quadrant (dominance of M,). This problem can be solved by
changing prior model probabilities. However, even when posterior
model activation has been obtained when using an optimal prior
distribution for the model index, there can still be a lack of
model switching, as illustrated in Fig. 3(b). Fig. C.15 reveals that
equal posterior model activation is obtained whenever transition
probabilities are equal. However, transition probabilities close to
zero lead to poor estimates of the posterior model probabilities,
since there are almost no model switches. Various actions can
be taken to increase the number of model switches, such as
reparameterizing the model so that parameters may be shared
between models, and improving the estimation of pseudopriors.
In case some parameters are shared by the compared models, it
is important to check whether their posterior distributions have
enough overlap. The goal is to get as close to the optimal situation
of equal posterior model activation as possible, as illustrated in
Fig. 3(c). In Fig. C.15, that situation is located in the center of
the grid. We also note that the upper-right quadrant is not a
plausible value region within an MCMC context, since transition
probabilities higher than 0.5 can be interpreted as negative
autocorrelations for Markov chains for continuous parameters.
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