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Abstract— Bayesian methods are theoretically optimal in
many situations. Bayesian model averaging is generally con-
sidered the standard model for creating ensembles of learners
using Bayesian methods, but this technique is often out-
performed by more ad hoc methods in empirical studies. The
reason for this failure has important theoretical implications
for our understanding of why ensembles work. It has been
proposed that Bayesian model averaging struggles in practice
because it accounts for uncertainty about which model is
correct but still operates under the assumption that only one
of them is. In order to more effectively access the benefits
inherent in ensembles, Bayesian strategies should therefore be
directed more towards model combination rather than the
model selection implicit in Bayesian model averaging. This work
provides empirical verification for this hypothesis using several
different Bayesian model combination approaches tested on
a wide variety of classification problems. We show that even
the most simplistic of Bayesian model combination strategies
outperforms the traditional ad hoc techniques of bagging and
boosting, as well as outperforming BMA over a wide variety of
cases. This suggests that the power of ensembles does not come
from their ability to account for model uncertainty, but instead
comes from the changes in representational and preferential
bias inherent in the process of combining several different
models.

I. INTRODUCTION

Learner error can often be reduced by combining infor-

mation from a set of models. This poses the challenge of

finding effective ways to create combinations of learners. A

number of ad hoc strategies have been proposed to address

this task. For example, bagging [1] employs one of the

simplest methods of combining the information presented in

an ensemble: allowing each learner to have one vote toward

the final classification of an instance. Boosting [2], attempts

to focus on harder instances during the course of training,

and votes are weighted by the accuracy that a given learner

achieves on the data set.

One possible explanation for the success of ensemble

learners is based on Bayesian learning theory [3]. Suppos-

edly, using a single model for learning ignores the uncertainty

about model correctness that results from a finite amount

of data. Under this assumption, ensembles work because

they can more effectively deal with this uncertainty about

model correctness. Strategies such as bagging compensate

for this uncertainty simply by incorporating a set of models

into the learning process while Bayesian model averaging

(BMA) should provide the “optimal” ensemble procedure.
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Bayesian model averaging accounts for uncertainty of model

correctness by integrating over the model space and weight-

ing each model by the probability of its being the “correct”

model. BMA is the generally accepted method for applying

Bayesian learning theory to the task of model combination.

Although the result of BMA is a combination of models,

this combination is actually just integrating out the system’s

uncertainty as to which model is correct in the sense of

being the Data Generating Model (DGM) assuming that

one and only one of the models is indeed the DGM. Thus,

BMA is actually a model selection procedure that deals with

uncertainty about its selection using a combination.

One might expect Bayesian model averaging to perform

well since Bayesian techniques have been applied to many

other tasks with high success. For example, even simple

single model classifiers such as Naı̈ve Bayes [4] and Flexible

Bayes [5] can achieve remarkably high accuracy on certain

problems. More complex distributions can be represented

by Bayesian mixture models. Sampling techniques such as

Markov Chain Monte Carlo can be used to infer parameters

in relatively complex models [6]. Specific models are also

commonly used for specific tasks. The latent Dirichlet allo-

cation model is commonly used to identify topics present in a

set of documents [7]. However, when it comes to the task of

ensemble creation, the standard technique of Bayesian model

averaging encounters some problems.

In an empirical study, Domingos [8] showed that Bayesian

model averaging is prone to higher error rates than more ad

hoc methods. Specifically, Bayesian model averaging resulted

in higher average error rates than bagging and partitioning

in a variety of experiments. A similar result was obtained by

Clarke [9], who compared BMA to stacking. At first, these

results appear to be surprising given the supposed optimality

of Bayesian techniques and their success in so many other

areas.

Domingos argued that the problem with BMA is that

it places too much weight on the maximum likelihood

classifier. Even slight differences in error rate between clas-

sifiers result in much higher weighting of the more accurate

classifier in the ensemble. Yet Bayesian model averaging is

theoretically the optimal method for dealing with uncertainty

about which hypothesis in the hypothesis space is correct.

Given the superior performance of ad hoc methods in em-

pirical studies, it would appear that ensemble performance

is due to more than just their ability to deal with model

uncertainty.

While comparing BMA to stacking, Clarke empirically



noticed that when the Data Generating Model (DGM) is not

one of the component models in the ensemble, BMA tends to

converge to the model closest to the DGM rather than to the

combination closest to the DGM [9]. He also empirically

noted that, in the cases he studied, when the DGM is not

one of the component models of an ensemble, there usually

existed a combination of models that could more closely

replicate the behavior of the DMG than could any individual

model on their own.

Three years earlier, Minka theorized that Bayesian model

averaging is outperformed by other strategies because it fails

to take advantage of the enriched hypothesis space that an

ensemble can provide [10]. If Minka is correct, an ensemble

does more than just deal with uncertainty about which model

is the correct model; it can augment the hypothesis space

with hypotheses that its individual members may not be

able to even represent on their own. Further, ensembles

may change the preferential bias of a learning algorithm,

predisposing the algorithm towards combinations of models

that tend to overfit less than single learners. As Minka states

in his paper, “...the only flaw with BMA is the belief that it

is an algorithm for model combination.” Yet, despite this

fact, people continue to employ BMA in the very case

where BMA is unlikely to perform well, namely the case

where the DGM is not one of the component ensemble

members [9]. In this situation, Bagging and other ad hoc

strategies should have an advantage over Bayesian model

averaging because they incorporate more information from

the enriched hypothesis space provided by an ensemble. This

suggests that if Bayesian methods are to be effectively used

in ensemble creation strategies, efforts should be directed

towards creation of Bayesian mixture models that directly

infer the optimal combination of the component models.

Such strategies would take advantage of both the optimal-

ity of Bayesian learning strategies and the error reduction

advantages that can result from combinations of models.

There are several ways in which an ensemble combina-

tion can be generated using Bayesian principles. Bayesian

inference could be used to generate the optimal combination

(ensemble member weights) given a set of fixed (and already

trained) learners. Alternatively, Bayesian inference could be

used to infer the optimal set of component model parameters

given a fixed ensemble combination scheme. Finally, these

two approaches could be used simultaneously. In this work

we will provide empirical evidence for Minka’s hypothesis

by examining the first two of these three possibilities. In

Section II we review Minka’s argument that Bayesian model

averaging assumes that a single ensemble member is the

DGM. Section III then proposes several possibilities for

generating ensemble weighs given a set of fixed compo-

nent models using the same Bayesian principles as BMA,

but directing them towards the task of model combination

instead of model selection. More complicated strategies are

clearly possible, but even the simple models presented here

outperform bagging, boosting, and Bayesian model averaging

in terms of error reduction on 50 data sets. As a complement

to these techniques, we present a strategy in Section IV

that uses Bayesian methods to learn optimal component

model parameters given a fixed combination of weights.

Again, while there is clear potential for more sophisticated

strategies, even this simple one outperforms more ad hoc

methods of model learning in terms of error reduction.

II. BAYESIAN AVERAGING OF LINEAR COMBINATIONS

OF MODELS

With traditional Bayesian model averaging, the class value

assigned to a given example by the overall model is de-

termined by taking the probability of each class value as

predicted by a single model, multiplying by the probability

that the model is the Data Generating Model (DGM) given a

sample of data, and summing these values for all models in

the hypothesis space. Let n be the size of a data set D. Each

individual example di is comprised of a vector of attribute

values xi and an associated class value yi. The model space

is approximated by a finite set of learners, H , with h being

an individual hypothesis in that space. Equation 1 illustrates

how the probability of a class value is determined for a given

example. The class value assigned to the instance will be the

one with the maximum probability.

p(yi|xi, D,H) =
∑

h∈H

p(yi|xi, h)p(h|D) (1)

By Bayes’ Theorem, the posterior probability of h given

D (the posterior probability that h is the DGM) can be

calculated as shown in Equation 2. Here, p(h) represents

the prior probability of h and the product of the p(di|h)
determines the likelihood.

p(h|D) =
p(h)

p(D)

n∏

i=1

p(di|h) (2)

Bayesian model averaging strategies commonly assume a

uniform class noise model when determining likelihood [8].

With this model, the class of each example is assumed to

be corrupted with probability ε. This means that p(di|h)
is 1 − ε if h correctly predicts class yi for example xi

and ε otherwise. Equation 2 can be rewritten as shown in

Equation 3. (Since the prior probability of the data p(D) is

the same for each model, the equation becomes a statement

of proportionality and p(D) can be ignored.)

p(h|D) ∝ p(h)(1− ε)r(ε)n−r (3)

r is the number of examples correctly classified by h. ε can

be estimated by the average error rate of the model on the

data. This method of calculating likelihood tends to weight

even slightly more accurate classifiers much more heavily.

For example, on a data set with 100 examples, a learner that

achieved 95% accuracy would be weighted as 17 times more

likely than a learner that achieved an accuracy of 94%.

(1− 5

100
)95( 5

100
)5 = 2.39 ∗ 10−9

(1− 6

100
)94( 6

100
)6 = 1.39 ∗ 10−10



Using these posterior probabilities to weight learner clas-

sifications is clearly an effective way of exploiting the model

with the highest accuracy while still allowing influence from

other models to account for the uncertainty about which

model is correct. It is somewhat ineffective, however, at

taking advantage of information provided by the entire set of

models [9]. If the goal is to use optimal Bayesian techniques

and still capitalize on the possible advantages inherent in

learner combinations, these techniques could be modified

in order to produce optimal methods of model combination

rather than model selection.

Fig. 1. Bayesian model averaging. Since the probability of the most likely
hypothesis is often much higher than the probability of the other hypothesis,
p(yi|xi, D,H) will be predominantly determined by p(hmostLikely |D).

III. BAYESIAN MODEL COMBINATION

Bayesian model averaging can easily be modified to pro-

duce an optimal technique for model combination rather

than model selection. This strategy is referred to here as

Bayesian model combination (BMC). Equation 1 is modified

as follows:

p(yi|xi, D,H,E) =
∑

e∈E

p(yi|xi, H, e)p(e|D) (4)

where e is an element in the space E of possible model

combinations. In this case, the outputs from individual hy-

potheses are combined in a variety of ways to create a set of

diverse ensembles. The output from each ensemble is then

weighted by the probability that the ensemble is correct given

the training data. Now, instead of integrating out uncertainty

about which ensemble member is correct, we are instead

integrating out uncertainty about which model combination

is correct.

Although the space of potential model combinations is

very large, as we shall see, it can easily be sampled from

in order to produce a reasonable finite set of potential model

combinations to test.

A. BMC with a Linear Combinations of Models

For the first set of Bayesian model combination exper-

iments, ensembles were created using linear combinations

of outputs from the base classifiers. Ensembles consisted

of m decision trees whose votes were combined using

various weights. In order to systematically generate a diverse

collection of ensembles, nested for loops were used to assign

incrementally increasing values to the base components.

Fig. 2. Bayesian model combination. In this case, p(yi|xi, D,H,E) will
be predominantly determined by p(emostLikely |D). The model is now
heavily weighting the most probable combination of hypotheses instead of
the most probable single hypothesis.

These values were then normalized to produce a vector of

weights. Table I illustrates how weights were assigned. For

the reported experiments m = 10 and ensemble weightings

were assigned using an increment value of three. This

allowed for the creation of 59, 049 different ensembles from

the same ten base classifiers.

TABLE I

WEIGHT ASSIGNMENTS FOR INDIVIDUAL COMPONENTS IN A SIMPLE

BAYESIAN MODEL COMBINATION LEARNER. EACH COMPONENT IS

WEIGHTED WITH A UNIFORM PRIOR IN THESE EXPERIMENTS.

Raw weights Normalized weights p(e)

1 1 1 1 1 1 1 1 1 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1
59049

1 1 1 1 1 1 1 1 1 2 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.18 1
59049

1 1 1 1 1 1 1 1 1 3 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.25 1
59049

1 1 1 1 1 1 1 1 2 1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.18 0.09 1
59049

. . . . . . . . .

3 3 3 3 3 3 3 3 3 3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1
59049

This version of Bayesian model combination is com-

pared to the strategies of bagging, boosting, and traditional

Bayesian model averaging. Experiments were implemented

using modified Weka code [11]. Ten J48 decision trees

(Weka’s implementation of the C4.5 algorithm) with reduced-

error pruning were used as the base classifiers in each of the

algorithms. Bagging and boosting were implemented using

Weka defaults. For bagging, training data for the component

classifiers was obtained by drawing with replacement from

the initial training set until a new training set the same size



as the original set was created [1]. Training sets for the

boosting algorithm were generated in a similar manner, but

instances misclassified by initial component classifiers were

more likely to appear in the training data for subsequent clas-

sifiers [2]. Bayesian model averaging and Bayesian model

combination were implemented using the same ten decision

trees that were used in the bagging experiments as component

classifiers.

Probabilities for class predictions by individual learners

and ensembles were estimated using Weka defaults. For

the individual J48 decision trees, p(yi|xi, h) was estimated

based on the purity of classification at the leaf node. For the

ensemble, p(yi|xi, e) was calculated by averaging probability

estimates from the individual trees.

Posterior probabilities for ensembles in the Bayesian

model combination approach were estimated the same way

they were estimated for individual learners in Bayesian

model averaging. Equation 3 can be easily applied to cal-

culate p(e|D) instead of p(h|D). The class of each example

is assumed to be corrupted with probability ε, so p(di|e) is

1 − ε if e correctly predicts class yi for example xi and ε

otherwise.

Empirical results, shown in Table II, demonstrate the

efficacy of this Bayesian model combination strategy. Ex-

periments were conducted on the twenty-six data sets cited

by Domingos, but since this selection of data sets proved

insufficient to draw conclusions about the statistical signifi-

cance of mean differences in accuracy, an additional twenty-

four datasets were included. All data sets were obtained from

the UCI repository [12]. Error was calculated using ten-fold

cross-validation.

Just as in Domingo’s experiments, these results show that

Bayesian model averaging achieves a lower average accuracy

on the data sets than either bagging or boosting. However,

a strategy that iterates over combinations of models allows

a Bayesian method to compete with the ad hoc methods.

An application of the Friedman test reveals significant dif-

ferences in average accuracy among the various strategies.

(27.77 ∼ χ2, DF = 4, p <= 0.01). The Bonferroni-Dunn

post hoc test indicates that the improvement in accuracy of

this Bayesian model combination strategy exceeds the critical

difference for significance at a confidence level of 95% for

two of the other four strategies (Critical difference = 0.87,

Mean rank differences: 1.26, 0.81, 0.18, 1.25).

B. BMC with Sampling from a Dirichlet Distribution

Our previous implementation of BMC used a systematic

method for sampling the space of potential model combina-

tions. But as we shall see, further improvements in accuracy

can be achieved using a slightly more sophisticated stochastic

strategy for creating a set of potential model combinations.

Instead of assigning weights incrementally, the weights for

each combination of the base classifiers can be obtained by

sampling from a Dirichlet distribution.

In this next set of experiments, weights for the first

q combinations were drawn from a Dirichlet distribution

with uniform alpha values. p(e|D) was then calculated for

TABLE II

AVERAGE ACCURACY OF VARIOUS ENSEMBLE COMBINATION

STRATEGIES

J48 Bagging Boosting BMA BMC

anneal 98.44 98.22 99.55 98.22 98.89
audiology 77.88 76.55 84.96 76.11 82.30

autos 81.46 69.76 83.90 70.24 84.39
balance-scale 76.64 82.88 78.88 82.88 81.44

bupa 68.70 71.01 71.59 70.43 69.86
cancer-wisc. 93.85 95.14 95.71 95.28 95.42
cancer-yugo. 75.52 67.83 69.58 68.18 73.08

car 92.36 92.19 96.12 92.01 93.87
cmc 52.14 53.63 50.78 41.96 53.22

credit-a 86.09 85.07 84.20 84.93 85.65
credit-g 70.50 74.40 69.60 74.30 72.90

dermatology 93.99 92.08 95.63 92.08 95.36
diabetes 73.83 74.61 72.40 74.61 72.92

echo 97.30 97.30 95.95 97.30 97.30
ecoli-c 84.23 83.04 81.25 82.74 84.82
glass 66.82 69.63 74.30 68.69 70.56

haberman 71.90 73.20 72.55 73.20 74.51
heart-cleveland 77.56 82.18 82.18 82.18 80.86

heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80.00

hepatitis 83.87 84.52 85.81 83.87 84.52
horse-colic 85.33 85.33 83.42 85.05 85.87
hypothyroid 99.58 99.55 99.58 99.55 99.60
ionosphere 91.45 90.88 93.16 90.60 93.16

iris 96.00 94.00 93.33 94.00 95.33
kr-vs-kp 99.44 99.12 99.50 99.12 99.44

labor 73.68 85.96 89.47 87.72 84.21
led 100.00 100.00 100.00 100.00 100.00

lenses 83.33 66.67 70.83 58.33 79.17
letter 100.00 100.00 100.00 100.00 100.00

liver-disorders 68.70 71.01 71.59 70.43 69.86
lungcancer 50.00 50.00 53.12 46.88 53.12

lymph 77.03 78.38 81.08 79.05 79.73
monks 96.53 99.54 100.00 96.99 100.00

page-blocks 96.88 97.24 97.02 97.26 97.26
postop 70.00 71.11 56.67 71.11 68.89

primary-tumor 39.82 45.13 40.12 45.13 41.59
promoters 81.13 83.96 85.85 85.85 81.13
segment 96.93 96.97 98.48 96.88 97.66

sick 98.81 98.49 99.18 98.46 98.94
solar-flare 97.83 97.83 96.59 97.83 97.83

sonar 71.15 77.40 77.88 77.40 75.48
soybean 91.51 86.82 92.83 86.38 93.56

spect 78.28 81.65 80.15 82.02 79.03
tic-tac-toe 85.07 92.07 96.35 91.65 93.53

vehicle 72.46 72.70 76.24 72.81 76.36
vote 94.79 94.58 95.66 94.58 95.66
wine 93.82 94.94 96.63 93.26 95.51
yeast 56.00 60.04 56.40 31.20 60.24
zoo 92.08 87.13 96.04 86.14 93.07

average: 82.37 82.79 83.62 81.64 83.93

each combination, and the weights from the most probable

combination were used to update the alpha values for the

distribution from which the next q weight assignments were

drawn. Table III illustrates how weights were assigned in

these experiments.

The same ten base classifiers from the previous section

were used in these experiments. Alpha values were updated

with a q value of three, and 59, 049 Dirchlet-generated weight

assignments were considered. Results are shown in Table IV.

An application of the Friedman test reveals significant

differences in average accuracy among the various strategies.



TABLE III

SAMPLE WEIGHT ASSIGNMENTS FOR INDIVIDUAL COMPONENTS IN A

BAYESIAN MODEL COMBINATION LEARNER EMPLOYING A DIRICHLET

DISTRIBUTION. AFTER A SET OF COMBINATIONS ARE GENERATED, THE

WEIGHTS OF THE MOST PROBABLE COMBINATION ARE USED TO UPDATE

THE ALPHA VALUES OF THE DIRICHLET FROM WHICH THE NEXT SET OF

COMBINATIONS WILL BE DRAWN. AS WITH THE FIRST EXPERIMENTS,

EACH COMPONENT IS WEIGHTED WITH A UNIFORM PRIOR.

Weights p(e|D) p(e)

Initial alpha values: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.06 0.26 0.08 0.11 0.09 0.20 0.17 0.00 0.02 0.01 0.00 1
59049

0.10 0.15 0.14 0.28 0.04 0.00 0.17 0.03 0.07 0.02 0.03 1
59049

0.00 0.10 0.04 0.04 0.03 0.03 0.09 0.02 0.29 0.36 0.02 1
59049

New alpha values: 1.10 1.15 1.14 1.28 1.04 1.00 1.17 1.03 1.07 1.02

0.07 0.00 0.04 0.12 0.26 0.15 0.07 0.13 0.01 0.13 0.03 1
59049

0.16 0.13 0.15 0.05 0.00 0.04 0.07 0.14 0.13 0.12 0.02 1
59049

0.01 0.05 0.07 0.15 0.04 0.08 0.26 0.01 0.26 0.08 0.02 1
59049

New alpha values: 1.17 1.15 1.19 1.40 1.31 1.16 1.24 1.17 1.07 1.15

0.02 0.02 0.03 0.28 0.20 0.04 0.04 0.00 0.18 0.19 0.02 1
59049

0.35 0.12 0.13 0.06 0.08 0.07 0.09 0.02 0.06 0.01 0.00 1
59049

0.07 0.14 0.02 0.01 0.17 0.01 0.17 0.15 0.14 0.12 0.03 1
59049

(28.76 ∼ χ2, DF = 4, p <= 0.01). The Bonferroni-Dunn

post hoc test indicates that the improvement in accuracy

of Bayesian model combination with Dirichlet sampling

exceeds the critical difference for significance at a con-

fidence level of 95% for three of the other four strate-

gies (Critical difference = 0.87, Mean rank differences:

1.33, 0.87, 0.29, 1.31).

IV. BAYESIAN MODEL PARAMETER LEARNING GIVEN A

FIXED COMBINATION OF MODELS

The previous experiments effectively use Bayesian tech-

niques to determine the optimal combination of a fixed set

of learners. Alternately, Bayesian techniques can be used

to update learners given a fixed combination of weights.

There are likely many models for which this sort of strategy

could be applied, but one simple illustrative case involves

the CMAC neural network topology [13].

The CMAC is modeled on the human cerebellum. It func-

tions by mapping weights w[i] to tiles which are interpreted

spatially, as illustrated in Figure 3. Inputs are mapped to

the correct bins by means of an association function b[i](x),
where b[i](x) = 0 when x does not fall within the spacial

region assigned to bin i and where b[i](x) = 1 when it does.

The output of the system can be computed as follows:

fCMAC(x) =
∑

i

w[i]b[i](x) (5)

Note that the CMAC outputs continuous values, so the

experiments in this section will involve data sets with real

rather than discrete target values. The error at location x is

calculated as shown:

e(x) = fCMAC(x)− fobserved(x) (6)

Traditionally, weights are updated as follows:

∆w[i] = α
e(x)∑
i b[i](x)

(7)

TABLE IV

AVERAGE ACCURACY OF VARIOUS ENSEMBLE COMBINATION

STRATEGIES

J48 Bagging Boosting BMA BMC-D

anneal 98.44 98.22 99.55 98.22 98.89
audiology 77.88 76.55 84.96 76.11 82.30

autos 81.46 69.76 83.90 70.24 84.88
balance-scale 76.64 82.88 78.88 82.88 81.92

bupa 68.70 71.01 71.59 70.43 71.88
cancer-wisc. 93.85 95.14 95.71 95.28 95.14
cancer-yugo. 75.52 67.83 69.58 68.18 73.08

car 92.36 92.19 96.12 92.01 93.75
cmc 52.14 53.63 50.78 41.96 52.95

credit-a 86.09 85.07 84.20 84.93 85.07
credit-g 70.50 74.40 69.60 74.30 73.10

dermatology 93.99 92.08 95.63 92.08 95.36
diabetes 73.83 74.61 72.40 74.61 74.35

echo 97.30 97.30 95.95 97.30 97.30
ecoli-c 84.23 83.04 81.25 82.74 84.52
glass 66.82 69.63 74.30 68.69 70.09

haberman 71.90 73.20 72.55 73.20 74.51
heart-cleveland 77.56 82.18 82.18 82.18 79.87

heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80.00

hepatitis 83.87 84.52 85.81 83.87 83.87
horse-colic 85.33 85.33 83.42 85.05 86.14
hypothyroid 99.58 99.55 99.58 99.55 99.60
ionosphere 91.45 90.88 93.16 90.60 93.45

iris 96.00 94.00 93.33 94.00 95.33
kr-vs-kp 99.44 99.12 99.50 99.12 99.44

labor 73.68 85.96 89.47 87.72 84.21
led 100.00 100.00 100.00 100.00 100.00

lenses 83.33 66.67 70.83 58.33 79.17
letter 100.00 100.00 100.00 100.00 100.00

liver-disorders 68.70 71.01 71.59 70.43 71.88
lungcancer 50.00 50.00 53.12 46.88 56.25

lymph 77.03 78.38 81.08 79.05 80.41
monks 96.53 99.54 100.00 96.99 100.00

page-blocks 96.88 97.24 97.02 97.26 97.24
postop 70.00 71.11 56.67 71.11 67.78

primary-tumor 39.82 45.13 40.12 45.13 41.30
promoters 81.13 83.96 85.85 85.85 81.13
segment 96.93 96.97 98.48 96.88 97.45

sick 98.81 98.49 99.18 98.46 98.97
solar-flare 97.83 97.83 96.59 97.83 97.83

sonar 71.15 77.40 77.88 77.40 74.52
soybean 91.51 86.82 92.83 86.38 93.12

spect 78.28 81.65 80.15 82.02 79.03
tic-tac-toe 85.07 92.07 96.35 91.65 93.53

vehicle 72.46 72.70 76.24 72.81 76.48
vote 94.79 94.58 95.66 94.58 95.44
wine 93.82 94.94 96.63 93.26 95.51
yeast 56.00 60.04 56.40 31.20 60.51
zoo 92.08 87.13 96.04 86.14 93.07

average: 82.37 82.79 83.62 81.64 84.02

where α is the learning rate. The output y of the network

at any position x is the sum of the weights for the tiles that

overlap that position.

Though not a traditional view, the CMAC can be thought

of as an ensemble where each layer learns information about

a given function and outputs are calculated by combining

information from each layer using a fixed weighting scheme

(each layer is equally weighted with all the others). The

ensemble-like structure suggests that the CMAC could also

be reasonably trained using ensemble techniques such as



Fig. 3. Tile structure for a CMAC with three layers and four tiles per layer

bagging or Bayesian model averaging, treating the layers

as individual learners and altering the weightings of layer

outputs according to the given technique. With one task

specifically designed to match the assumptions made by

BMA, that ensemble creation technique is effective in re-

ducing error. However, once again, a Bayesian strategy that

allows for a model combination approach does better on a

wider variety of tasks.

Carroll, Monson, and Seppi [14] showed how Bayesian

techniques can be applied to CMAC learning. Further details

on BCMAC training can be found elsewhere in the literature

[15], but a brief overview is provided here. A function,

f , is assumed to be stationary, and all observations y are

assumed to have linear Gaussian noise with covariance Σy.

The relationship between the data D and the CMAC’s

representation for f can be modeled as follows:

p(y|x, f) = N(y; f(x),Σy). (8)

This can be rewritten as:

p(y|x, f) = N(y|Hw,Σy), (9)

where H can be thought of as an association matrix. Hi,j = 1
if tile j influences the training example i. Weight values

are represented by the vector w. Weights of the model are

related to observations according to a multivariate normal

model [16] with prior parameters µ0µ0µ0 and ΣΣΣ0. The parameters

of the posterior distributions for the mean and covariance can

then be found by:

µµµ1 = µµµ0 +K1(y −Hµµµ0), (10)

and

ΣΣΣ1 = (I−K1H)(ΣΣΣ0), (11)

where

K1 = (ΣΣΣ0)H
T (H(ΣΣΣ0)H

T +ΣΣΣy)
−1. (12)

These equations are identical to the Kalman filter for a

single time step. This observation means that, given a prior

over CMAC weights and some training data, a well-known

and widely studied filtering technique can be applied to solve

in closed form for both the posterior distribution over the

CMAC weights and the posterior predictive distribution over

CMAC outputs.

The benefits of this strategy are demonstrated in the fol-

lowing experiments. The layers of the CMAC were learned

using the traditional CMAC learning rule, bagging, Bayesian

model averaging, and the BCMAC learning rule. All of the

CMACs were constructed with five layers and between three

and seven tiles tiles per dimension on each layer. With the

bagging CMAC, layers were trained individual on size n

subsets selected with replacement from the initial training

set of size n. Outputs of each layer were then weighted

equally when calculating the final output for a given example.

The Bayesian model averaging CMAC was constructed in

a similar manner, but layer outputs were weighted by a

likelihood term calculated using a normal noise model. Priors

for the BCMAC were calculated empirically based on the

data sets.

Experiments are conducted on three numeric data sets

provided by Weka for machine learning tasks [11]. Because

the CMAC was designed for continuous values, these sets

were selected for their limited number of numerical features

and numeric class values. Algorithm performance was also

tested on twoDimEgg, a variant of the two-dimensional egg

carton function y = sin(x1∗2.5)+sin(x2∗2.5), and step2d,

a stepwise function which returns 1 if x2

1
+ x2

2
< 10 and

−1 otherwise. This rather simple function was specifically

chosen to have a steep, curved boundary, a situation which

have been shown to be difficult for CMAC based learning

algorithms.

In order to further test the theory that BMA performs

poorly because it performs optimal model selection instead of

optimal model combination, the final data set, optimalBMA,

was constructed to provide a situation where model selection

would perform well [9]. The function assigns −1 to all values

left of a vertical boundary and 1 to all values to the right.

This boundary was aligned with the edge of one of the tiles

in the CMAC. Thus, one of the layers would exactly replicate

the DGM in the sense of providing correct outputs for each

example while every other layer would provide at least some

incorrect outputs. The goal of an ensemble strategy would

be to select this layer.

TABLE V

AVERAGE ERROR RATES OF FOUR LEARNING STRATEGIES

CMAC Bagging BMA BCMAC

elusage 0.047 0.045 0.045 0.035
gascon 0.140 0.135 0.134 0.041
longley 0.097 0.119 0.119 0.062
step2d 0.019 0.018 0.022 0.018
twoDimEgg 0.025 0.109 0.270 0.018
optimalBMA 0.005 0.071 0.006 0.002

The BCMAC achieves a substantially lower error rate

than the Bayesian model averaging strategy on all data sets

studied, except for the case of optimalBMA where the results

are nearly indistinguishable. In fact, with the exception

of one tie with bagging on the step2d function, BCMAC



outperforms all of the other three algorithms in terms of error

reduction over the other five data sets. As with the previous

experiments, bagging was often able to achieve a lower

error rate than Bayesian model averaging. However, Bayesian

model averaging substantially outperforms bagging on the

optimalBMA data set, where placing all of the weight on

one component is the best strategy. BMA was outperformed

by the ad hoc techniques, except in the one case where

model selection was required. This again provides further

empirical justification for Minka’s proposition on the theory

of ensemble learning.

V. CONCLUSION

Despite the theoretical optimality of Bayesian methods and

their successful application to a wide variety of tasks, the

standard technique of Bayesian model averaging struggles in

empirical studies. Minka theorized that since the algorithm

places so much emphasis on the most likely ensemble

member, it fails to take advantage of the benefits inherent in

model combinations. However, as we have shown, if BMA is

modified to integrate over combinations of models rather than

over individual learners, it can achieve much better results.

Domingos described a number of situations in which

Bayesian model averaging is outperformed by standard ad

hoc ensemble creation methods. We have shown that even

the most simplistic of Bayesian model combination strategies

outperforms the traditional ad hoc techniques of bagging and

boosting, as well as outperforming BMA in a significant

number of cases. We have demonstrated with the BCMAC

experiments that, in the rare instances where model selection

is indeed the correct approach, Bayesian model averaging

performs well. On most problems, however, a Bayesian

technique geared toward selecting a combination of models

results in lower error rates.

This work has some theoretical implications for why

ensembles work. The results suggest the effectiveness of

ensembles is due, at least in part, to the enriched hypothesis

space and more general bias that can be provided by a

combination of models. We have demonstrated that there are

a wide variety of potential methods for applying Bayesian

techniques to model combination. We have shown that it is

possible to fix the component learners and then learn the

optimal model combination in a Bayesian fashion (both ver-

sions of BMC). We have also shown that in some situations

it is possible to fix the model combination strategy, and learn

optimal models given the known combination (BCMAC).

Future work will involve the investigation of more so-

phisticated methods of Bayesian model combination. For

example, the simple Bayesian model combination strategies

presented in Section III could be modified to allow for

non-linear combinations of models. Other possible strategies

might take spatial considerations into account, developing

learners to specialize in different areas of the feature space

or training learners with the sampling techniques used in

boosting.

In this paper, we have shown how Bayesian inference

can be used to generate the optimal combination (ensemble

member weights) given a set of fixed (and already trained)

learners. We have also shown how Bayesian inference can be

used to infer the optimal set of component model parameters

given a fixed ensemble combination scheme. Future work

will involve using these two approaches could be used

simultaneously. One way to accomplish this could involve an

expectation maximization strategy. An optimal combination

could be determined given a set of learners, and then the

learners could be updated given the new combination strat-

egy. Alternatively, strategies could be developed that would

allow learners and combinations to be inferred simultane-

ously. The BCMAC can be solved in closed form because

both weights and outputs are distributed normally. Other

learners with similar Normal distribution properties might

also be solved in a similar fashion. Gaussian processes should

be explored as a potential rich framework for building such

learners.
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