
Mathematical Geology, Vol. 13, No. 5, 1981 

Application of  the Buffon Needle Problem and its 
Extensions to Parallel-Line Search Sampling 

Scheme 1 

C. F. Chung 2 

Buffon's needle problem is generalized to a grid of  unequally spaced parallel strips and a 
needle with a preferred orientation. This generalization is useful to determine the spacing 
of flight lines for locating anomalies by airborne geophysical surveys. 

KEY WORDS: Buffon needle problem, geometric probability, geophysical surveys, un- 
equally spaced parallel strips, preferred orientation. 

INTRODUCTION 

A common strategy for locating hidden anomalies by airborne geophysical sur- 

veying consists of searching along regularly spaced flight lines. Problems with 

aircraft navigation cause these lines to appear as approximately parallel traverse 

lines on maps as shown in Fig. 1. An anomaly is considered to be located if any 

of the traverse lines intersect it. Buffon's problem and its solutions have been 

applied to calculate the probability of intersection for a given spacing and to 

determine the spacing of flight lines for a given probability level by Agos, 1955 

and McCammon, 1977. 

However, there are the following several difficulties in applying Buffon's 

problem to certain types of  geoohvsical surveys, such as airborne radiometric 

surveys (Grasty, Kosanke, and Foote, 1979) 

1. surveys are performed along lines but respond to strips of ground; 

2. lines are not equally spaced as in Fig. 1 ; 

3. lines are not parallel to each other; and 

4. sometimes, the anomalies have a preferred orientation. 

1 Manuscript received 5 December 1980; revised 31 March 1981. Paper presented at Session 
on Geometrical Probability and Statistical Problems in the Geoseiences, American Statisti- 
cal Association Annual Meeting, Houston, Texas, August 11-14, 1980. 

2Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0ES. 

371 
0020-5958/81/1000-037150.300/0 © 1981 Plenum Publishing Corporation 



372 Chung 

Fig. 1. Flight path map for a survey flown in the Sharbot Lake Area 
of Eastern Ontario to investigate occurrences of uranium mineral, 
ization. The spacings between flight paths are, approximately, be- 
tween 375 and 625 m. 

In this paper, the problem is generalized to cover points 1, 2, and 4. It 

should also be noted that geophysical anomalies, in reality, have considerably 

more complex geometrical shapes than the simple line segment considered. In 

addition, statement 1 above is a simplified approximation to actual coverage by 

airborne surveys (Grasty, Kosanke, and Foote,  1979). 

Buffon's problem and several of  its variations are described followed by a 

generalization of the problem. The results are then applied to a practical 

example. 

BUFFON NEEDLE PROBLEM AND ITS VARIATIONS 

Buffon's problem considers a grid of  parallel lines with spacing d and a 

needle T of  length l as shown in Fig. 2. When the needle T is dropped "at  ran- 
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Fig. 2. Buffon's problem. Ats are a part of a grid of 
parallel lines with equispacing d. The line L is per- 
pendicular to the parallel lines in the grid and passes 
through the midpoint x of the needle T of length l. 
0 is the angle from L to T, a is the crossing point of 

L and A i and b is the midpoint on L between two 

parallel fines A i and A i+1. Without loss of generality it 
can be assumed that x is uniformly distributed in the 
interval [a, b] and 0 takes a value in [-~r/2, *r/2], 
when T is dropped "at random" on the grid. The 

probability that T intersects at least one of the parallel 
lines is given in eq. (1). 

dora" so that  its posi t ion and or ien ta t ion  are random,  the probabi l i ty  Pb that  T 

intersects at least one line o f  the grid is given by  

tf ~ i -  l <~ d 

Pa = 2ao 2 l  
+ - -  - - -  s inao ,  l > d  (1) 

~ Trd 7r nd 

where a0 = cos -1 (d/l). Proofs are given, among m a n y  others, by  Kendall  and 

Moran (1963)  and So lomon  (1978).  Let us now consider the following three 

variations o f  this problem. 

Parallel Strips 

Instead o f  taking a grid of  parallel lines, let us consider a grid of  parallel 

strips shown in Fig. 3. A strip of  breadth  w is defined by  the closed part  of  the 
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Fig, 3. x, 0, T, and L are same as in Fig. 2. Bis axe a 
part of a grid of parallel strips of breadth w with equi- 
spacing d - w. a is the midpoint on L in B i and b is the 
midpoint on L between B i and Bi÷ 1. When T is 
dropped at random we may assume that x E [a, b] 
and 0 ~ [-lr/2, ~r/2] and the probability that T inter- 
sects at least one of the strips is given in eqs. (2) and 
(3) depending upon I. 

plane consisting of  all po in ts  that  lie between two parallel lines at distance w 

from each other (Santalo, 1976). The posit ion and orientation of  a strip are 

determined by  its center line. Suppose that  the spacing between two adjacent 

strips is d -  w; then the probabi l i ty  Ps of  the intersection is given by Santalo 

(1976) 

21 w 
= - -  + - -  l<~d- w (2) 

Ps rrd d ' 

For a longer needle with l > d - w, the probabi l i ty  Ps is obtained from 

= 4 foa° ~oa/2 4 f lr/2foX° dxdO Ps ~ dx dO + - ~  ao 

2l  w 2ao 2l  2Wao 
= - -  + - - + - -  s i n a 0 - - -  (3) 

lrd d Ir 7rd nd  

where ao = cos -1 ( ( d -  w)/l} and Xo = (w + l cos 0)/2. Equations (2) and (3) 

are extensions o f  eq. (1) and Ps = Pb if  w = O. 
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Fig. 4. x, 0, T, and L are the same as in Fig. 2. A grid of  parallel 

lines A i s  are formed by selecting one random line A i from each 

strip S i where Sis are a part  o f  a grid of  strips with breadth r and 

equispacing d - r. Of  course, the spacings 6is are not  identical to 

each other, a is the midpoint  on L within S i and b is the midpoint  

between S i and Si+ 1 on L. When T is dropped at random on the 

grid eq, (4) gives the probability of  intersection. 

Unequally Spaced Parallel Lines 

Let us consider a grid of parallel lines formed by taking a parallel line at 

random within each of the parallel strips as shown in Fig. 4. Obviously, the 

spacings between adjacent pairs of parallel lines of this grid are not identical as 

is the case in Buffon's problem. Suppose that r <<. d/2 for simplicity. Then, for 

l ~< d - r, the probability Pu of intersection is obtained from 

pu = --7 dx + x2 5 x dO 
r 

+ --zrd4 f~r/2 [ foXS l c°S r - dx + f~i~ x2 - X r- dO 

2l 

zrd (4) 
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Fig. 5. x, O, T, L, a, b, and Ais are the same as in 
Fig. 2. T is dropped on the grid such that 0 has the 
density function in eq. (6). The line M shows the pre- 

ferred orientation ~ of T, and the probability of inter- 
section is given in eq. (7). 

where 

x l  = ½ r -  ½ / c o s  0, 

x =½ r+ ½ lcosO, 

x3 = - 21- r + ½ l cos 0, and 

COS 1 (~-) l ~ r 

a 1 = 

L 0, l~< r 

However, when  the expecta t ion E(s) of  the spacing s is known,  Pu can also 

be obta ined  from (Watson, 1978); 

2 l  

P" re(s) (s) 

Of course, E(s) = d in this si tuation,  because the spacing s has a symmetr ic  tri- 

angular density func t ion  with the apex at s = d. Hence Pu in eq. (5) is identical  

to that  o f  eq. (4). 
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Needle with a Preferred Orientation 

Suppose that the orientation of the needle is distributed about "a preferred 

orientation cg' shown in Fig. 5, instead of the uniformly distributed orientation 

as has been assumed in Buffon's problem. The most commonly used distribu- 

tion to describe preferred oriented angles is the Von Mises distribution which is 

sometimes referred to as "circular normal" (Johnson and Kotz, 1970). However, 

Marriot (1969) has proposed the following density function to describe such pre- 

ferred oriented angles 

. . . . .  1 ( I + K c o s 2 ( 0  o0), rr ~<0~< rr 
f (0 )=  lr 2 2 '  

-1 ~<K~< 1 (6) 

This density function is much simpler to handle than the Von Mises dis- 

tribution and Marriot (1969) has studied its properties and the maximum likeli- 

hood estimation of a and K, where a and K are the location and scale parameters, 

respectively. Subsequently, Marriot (1971) has shown that, for a preferred 

orientation a of the needle of length l ~ d, the probability pp of the intersec- 

tion is given by 

2l 2 lK 7r 
pp = - - + - - c o s 2 a , r r d  3rrd l<.d, O<~oL~-~, - I~<K~<I  (7) 

These results can be extended to a longer needle of l > d. However, that will be 

discussed as a special case in the next section. 

UNEQUALLY SPACED PARALLEL STRIPS 

AND A NEEDLE WITH A PREFERRED ORIENTATION 

In this section, not only the combination of all three previous variations, 

but also the cases without restriction on the length of the needle T, are de- 

scribed. Let us consider a grid of parallel strips of breadth r with spacing d - r. 

A grid of parallel strips of breadth w is constructed by taking a strip of breadth 

w at random within each parallel strip of breadth r, as shown in Fig. 6. Of 

course, the spacings between adjacent strips of breadth w are not identical. 

Suppose that a needle T of length I is dropped on the grid and the direction 0 

has a preferred orientation a with the density function in eq. (6). 

To simplify the calculation of the probability that T intersects at least one 

of the strips, the restriction, w ~ ½r ~< ¼d is imposed on the parameters of the 

grid. Without the restriction, the probability has a complex analytic form. How- 

ever, most real situations satisfy the restriction which indicates that the breadth 

w of Ais is less than the half o f r  of Sis and r is less than the half of d in Fig. 6. 

With the restriction, the probability p can be obtained from (as discussed 
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in Appendix for detail) 

2l 21K w 
+ - -  cos2t~+ l < ~ d - r  

P = zrd 3zrd "d-' 

2l 21K w G(a2, -a2) 
= - -  + - - c o s 2 o ~ + - - -  d - r < ~ l < ~ d - w  

lrd 3zrd d 6d(r -  w) ~' 

= Ld [g(2' a3)-[-E (-a3,-2)]-I-d IF(2 'a3) l'F( -G3, -2)] 
- ( r -  w )  - - -  + a 

- d ( r -  w) 

• F ( ~ , - ~ )  + - g  - r -  

l 2 G(a3, -a3) 
w------~) C(a3, -a3) + 6d(r - w) 2' d - w <<. l <~ d + r - 2w 

d(r 

1 4 ( r -  d) z G(a2, aa) + G(-a3, -aO + _ w) 
- 6d(r- w) 2 ~ (r- d(r- w) 

IF(a3, a4) + F(-a4, -as)] + - ~  1 - r -  [E(a3, a4) 

l 2 
[C(a3, a4) + C(-a4, -a3)] 

d ( r -  w) 

1 

6d(r- w) 2 [G(a3, a4) + G(-a4, -aa)] + F(a4, -a4), 

+ E(-a4, -a3)] 

l > ~ d + r -  2w. 

where the functions G, D, C, E, and F are defined in eqs. (A10)-(A14), 

respectively. 

PRACTICAL EXAMPLE 

For several years, the Geological Survey of Canada has been conducting a 

program of experimental airborne 7-ray spectrometer surveys applied to the 

location and mapping of radioactive mineral resources. Surveys have also been 

conducted to locate sources of radioactive contamination (Grasty, Richardson, 

and Knight, 1977). 
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Fig. 6. x, O, T, and L are the same as in Fig. 2. a, b, and Sis are the same as in Fig. 4 andM 
is the same as in Fig. 5. A grid of parallel stripsAis with breadth w is generated by choosing 

one strip A i at random within each S i and Tis dropped on the grid so that 0 has the density 
function in eq. (6). The probability that T intersects at least one of the strips is given in 
eq. (8). 

Figure 1 is the flight pa th  map for a survey f lown in the Sharbot  Lake Area 

of  Eastern Ontar io  to investigate occurrences of  u ran ium mineral izat ion.  The 

spacings be tween flight paths are approximate ly  be tween  375 and 625 m and the 

breadth  o f  the strips in this case might  be considered to be about  100 m. Con- 

sequently,  d = 500 m, r = d/2,  and w = d/5 for this example.  Let us consider  

two targets, T1 and T2, where / ' i  has a preferred or ien ta t ion  ~ = 0.0 and 

K = 0.75 and T2 has a = 30.0 and K = 0.3. As in eq. (6), K is a scale parameter  

and indicates densi ty a round a. For  example,  K = 0.75 for T~ indicates that  7"1 
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Fig. 7. Probability curve (solid line) using eq. (8) with respect to lid when r = 0.5d and 
w = 0.2d for the target T1. TI has a preferred orientation a = 0.0, K = 0.75, and length l. 
Broken line using eqs. (2) and (3) is also shown for comparison. For example, suppose that 
the minimum length l of a target is desired with probability 0.5. We read the value of 
lid = 0.38 (solid line), and thus the minimum length is 0.38 times the spacing d. 

l ikely has an or ienta t ion  near a = 0.0. Using the given values for the parameters,  

p can be evaluated for various lengths l. Figs. 7 and 8 were const ructed for the 

targets T1 and T2, respectively. The probabil i t ies o f  intersect ions are shown 

with respect to the ratios be tween  the lengths of  the targets and the spacings of  

flight paths. F r o m  the figures, the spacing of  flight paths can be determined for 

a given l and a probabi l i ty  of  detect ion.  Similarly, for a given spacing d and a 

> ,  

I x  

v'().0 0.4 0.8 1.2 1.6 2.0 

Ra t io  I / d 

Fig. 8. Probability curve using eq. (8) with respect to 1/d when r = 0.5d and w = 0.2d for 
the target T 2./ '2 has r~ = 30.0 and K = 0.3. 
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given 1, the probabil i ty o f  intersect ion can be evaluated. For example ,  for 

target T1, results show 50% probabil i ty that this survey would  locate  a source 

o f  length 190 m or longer. 

Figures 9 - 1 2  illustrate h o w  the probabil i ty  o f  interaction varies with  the 

parameters r/d, w/d, o~, and K, as given by eq. (8).  

From Fig. 9, it is obvious that r exerts  very little inf luence on the proba- 

bil ity.  On the other hand, as can be observed in Fig. 10, w has an effect  on the 

probabil i ty for relatively short targets bu_t net  for longer ones.  Figure 10 m a y  

also be used for studying eff iciencies  o f  search densities and survey instruments  

1.0 

0.8 

>, 0.6 

o 
Q,. 0.4 

0.2 

. . . . . .  d = l . 0  

" W = 0 . 0  

" a = 0 .0  

' K  = 0 . 0  

- 7 

_ _  r = 0,0 (Buf fon)  

_ _ _  r=0 .3  

r =  0 .5  

L/ . I I I --'7~ I 
0"O.0 0.4 0,8 1.2 2.0 

Rat io  I / d  

Fig. 9. Probability curves forr/d = 0.0, 0.3, and 0.5 where w/d = 0.0, a = 0.0, andK = 0.75. 
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Fig. 10. Probability curves for wld = 0.25, 0.175, 0.1, and 0.0 wherer/d = 0.5, c~ = 0.0, and 
K = 0.75. 
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Fig. 11. Probabi l i ty curves for c~ = 0.0, 30.0, 60.0,  and 90.0 where r/d = 0.3, w/d = 0.0, and 

K = 0 . 7 5 .  

(depending upon  capabilities o f  detect ion  through the breadths w o f  the strips) 

by  comparing the resulting probabil it ies.  

As expec ted ,  Fig. 11 conf irms  that the flight paths should be perpendicular 

to the m o s t  l ikely  preferred orientat ion o f  the target (cx = 0 indicates the orienta- 

t ion is l ikely  perpendicular to  the flight paths; see Fig. 6) .  It is particularly im- 

portant  when  K is c lose  to  1. 

> .  0 . 6  

0 . 4  
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0.0 . .3  
0.0 0.4 O.B 1 .z , . .  

Ratio l id  

Fig. 12. Probability curves for K = 1.0, 0.75, 0.5, and 0.0 where rid = 0.3, w/d = 0.0, and 
a = 0.0. 
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CONCLUDING REMARKS 

From this study, the following conclusions can be made 

1. For a circular shaped target with diameter l, the probabilities of intersections 

are identical to the conditional probabilities Pl/O, P2/o, P3/o, P4/o and Ps/o in 

eqs. (A2)-(A6), respectively. This is 

w p = m + m  
d d '  

l < . d - r  

l w (l + r - d) 3 
= - -  + - - -  d -  r<~l<~d- w 

d d 6d(r- w) 2' 

2 ( l + r - d ) -  4 
= 1 + 7 -3g w) 

(l + r - d )  2 ([ + r - d )  3 
+ 

d(r-  w) 6d(r- w) 2 ' 

d -  w < . l < . d + r -  2w 

= 1, l > ~ d + r -  2w 

2. For "short" or "long" targets, the probabilities in eq. (8) can be approxi- 

mated by thep  in eqs. (2) and (3), as can be seen in Figs. 9 to 12. 

3. The probability in eq. (8) may be sufficiently accurate as an approximation 

of the probability for an elliptically shaped target when the major axis is 

about four times longer than the minor axis and the minor axis is relatively 
short. 

4. However, as mentioned earlier, the geometric shape of the target in practice 

may be much more complex than the simple segment. Furthermore, the 

actual detection range is not the simple strip assumed. Much work is still 

needed to investigate the effect of removing some of the simplifying restric- 
tions imposed in this study. 

A computer program was written to compute p in eq. (8) for given I/d, r/d, 

w/d, a, and K. The program can be obtained on request from the author. 

APPENDIX 

In order to calculate the probability that needle T of length l intersects at 

least one of the strips of the grid characterized by the parameters w, r, and d 
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with w --.< ½r-~< ¼d, as shown in Fig. 6, let 

_ icos-  l >r-2w 
0, l < r -  2w 

JCO$ -1 ( - ~ ) ,  l ~> d - r  

a2 / 
~ ,  l < d - r  

@ os_ 1 (d__~/w) l >~ d - w 

a 3 =1 

O, l < d -  w 

ICos 
__l ( d  + r -  2w~ l >1 d + r - 2w  

l ] 
a4 =l 

~ , l < d + r -  2w 

(A1) 

Then 0 ~< a4 <~ a3 ~ a2 ~. a l  ~ rr/2 because w ~< ½r ~< ¼d. We may assume, 

without loss of  generality, that the midpoint x of  T takes a random point in 

[0, ½d],  instead of  [a, bl shown in Fig. 6, because b - a = ½d. 

Let P.lo be the conditional proDamlity that T with a fixed orientation 0 

intersects a strip of  the grid and let P.lo,x  be the probability that a fixed T (not 

only 0 but also x of  T are fixed) intersects the strips. These conditional proba- 

bilities depend upon the length l, where 0 lies between -½rr and ½rt and also 

where x lies in [0, 1  dl. 
Case (•): al ~<0 ---< ½zr or - ½ ~ 0  <<.-al. I f l < . r -  2w, thiscase covers 

all 0, since al = a2 = a3 = a4 = 0. Otherwise, al > 0 and it only covers T with 0 
1/[ in [al, l rr]  or [ -5  , - a l ]  where al is defined in (A1). The conditional proba- 

bi l i typ l lo ,  x for a f ixedx  and 0 is given by 

/ c o s 0  + w  
Pllo, x = , X E  [0, X1] 

r - w  

X 2 - X 
-- - - ,  X E  [ X l ,  X2] 

g - W  

= 0, x E [x2, d/2] 
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where x, = ½ r -  ½1cosO-  w and x2 = ½ r +  ½/cosO. Thus, PllO for the given 

0 with al ~< 0 ~< ½rr or -17r ~< 0 ~< -a l  is obtained from 

X l 2 l cos 0 + w 
Pll 

= d  - -  r -  w 
0 d x + - j  r - w  - - d x  

1 
d (l cos 0 + w) (A2) 

This conditional probability Pll 0 will be used to calculate the probability p of 

intersection. 

Case (2): 

a 2 ~ 0 ~ a l  or -a l  ~< 0 ~< - a  2; l > r -  2w. 

This case only occurs when l > r -  2w, the P210,x for a fixed x and 0 with 

a2 ~< 0 ~< al or -a l  ~< 0 ~< -a2 is given by 

P21o, x = 1, x E  [0, x3] 

x 2 - x 
- - - ,  x ~  [x3, x~] 

r - W  

= 0, x E  [x2, d/2]  

where x3 = ½ l cos 0 + w - ½ r. Thus, 

Case(3): 

P3tO, x 

P~lo = ~ d x  + 7 r - w 

1 
d (l cos 0 + w) 

a3 < 0  ~ a 2  o r  -a2 dO < -a3; 

=1,  

X 2 - X 

r - W  

x2 - x4 (x2 - x ) ( x -  x4)  

- -  dx  

l > d - r  

x ~  [0, x3] 

x ~ [x3, x4] 

(A3) 

r -  w ( r -  w)  2 ' x E [x4, d /2]  
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where x4 = d - ~ l cos 0 - l r .  Thus 

Chung 

P3tO = xa dr. + 
x r - w  

' ~  dx  

+ ?txr: (x2 - x) (x- x4).) dx] 
~;: w),~ 

1 ( l co s0  + r -  d)  3 
d (l cos 0 + w) - 6d(r - w) 2 

Case (4): 

a4<O<~a3 or - a 3 < ~ O < - a 4 ;  l > d - w  

P410,x = 1, x E  [0, xa] 

_ x= - x ,  (x= - x ) ( x -  x , )  
x E  [x3, d/2] 

, - w  ( r - w )  = ' 

Thus, 

2 foo x" 2 f~ al= )c=-x4 
p4lo=-~ dx'['-'~ X, F W 

(x~ - x ) ( x -  x 4 )  

(r- w) 2 

4 
= 1 +  ( l c o s 0 + r - d ) -  ~ - ( r - w )  

( l c o s 0 + r - d )  2 + ( l c o s 0 + r - d )  3 

d ( r -  w) 6d(r -  w) 2 

Case (5): 

-a4 <~O<<.a4; l > d + r -  2w 

Pslo, x = 1 foraU x E  [0, d/2] 

Thus, 

dx 

(A4) 

(A5) 

Pslo = 1 (A6) 
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Therefore, the probability p of  intersection is obtained from 

;--" f_7 f_? P = PltO f(O) dO + P21o f(O) dO + Pslo f(O) dO 
rr/2 a a 

+ P41o f(O) dO + Pslo f(O) dO + P41o f(O) dO 
a 3 a 

+ Pslo f(O) dO + P=lo f(O) dO + Pllo f(O) dO (A7) 

a a 1 

However, eq. (A7) can be separately solved depending upon the length I. 

(a) l < d -  r. 

Since a2 = as = a4 = 0 in eq. (A1) and PllO = P210, P in (A7) becomes 

f rrl2 1 1 
p = ~- (l cos 0 + w) - -  (1 + K cos 2(ct - 0)) dO 

- ~ / 2  n 

2l 21K w 
= - -  + - -  cos 2a + - -  (A8) 

zrd 31rd d 

(b) d -  r < ~ l < d -  w. 

Since as = a4 = 0, by substituting equations in (A2), (A3) and (A4) into (A7), 

p becomes 

f ~/2 1 1 
P = "-~r/2 -~- (l cos 0 + w) --rt (1 + K cos 2(a - 0)) dO 

if ~ ( l c o s 0 + r - d )  s 1 ( l + K c o s 2 ( a - 0 ) ) d 0  
6a(r- w )  2 7r 

2 

21 21K w G(a2, -a2) 
= + - -  cos 2a + (A9) 

rrd 31rd d 6d(r- w) 2 

where 

f b  a 
G(a, b) = (l cos 0 + r - d )  s _1 [1 + K cos 2(a - 0)] dO 

= laD(a, b) + 312(r - d)[(a ,  b) + 3l(r- d)2E(a, b)] + (r -  d)SF(a, b), 

(AIO) 
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D(a, b) = ~b a 

2 K  + - -  
5rr 

2 K  

5~r 

cos  3 0 1 [1 + K c o s  2 ( c t -  0) ]  dO 
7"i" 

1 1 3 K  
a - - -  s in  3 a - s in  b + - -  s in  3 + - -  cos  2 a  

3 3 5rr 

cos  2 u ( s i n  a cos  4 a - s in  b cos'* b )  

- - -  s in  2o~(cos s a - cos  s b) ,  ( A 1 1 )  

~b a l C(a, b )  = cos  2 0 - -  (1 + K cos  2(~ - 0 ) )  dO 
71" 

= (2a  + s in 2a - 2b  - s in  2 b )  + ~ cos  2 

K ( 1  
- 4-'-~- cos  2 a  - 

1 ) 
sin 4 a  - b + ~-  s in 4 b  

K 

2~r 
- - -  sin 2 a ( c o s  4 a - cos  4 b) ,  ( A 1 2 )  

E(a, b) = ~b a 
1 

c o s 0 - -  [ l + K c o s 2 ( a - 0 ) ]  dO 
Ir 

= (s in  a - s in  b )  + - -  cos  2 
lr 

2 K  

31r 
[cos  2 a ( s i n  3 a - s in  3 b )  + sin 2t~(cos a a - cos  3 b ) ] ,  ( A 1 3 )  

~ a 1 
F(a, b )  = - -  [1 + / ~  c o s  2( ,~ - 0 ) l  dO 

it 

1 (a - b )  + K = ~ ~ [cos  2t~(sin 2a - s in  2 b )  - s in  2 a ( c o s  2a - cos  2 b ) ] .  

( A 1 4 )  

(c)  d - w < . l < d + r - 2 w .  
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Similarly, by substituting equations in (A2), (A3), (A4), and (A5) into (A7), 
p becomes 

~rr/2 1 ~-a2 1 
p= a2 - ~ ( l c o s O + w ) f ( O ) d O +  ~r/2 -d ( lcosO+w)  f(O)dO 

fa; 2 ~_ -a3 d_~f 3 + Pa/of(O) dO + p3/of(O) dO + P4/of(O) dO 
a2 3 

: - '  + 

_ G(az, a3) + G(-a3, -a2) + _ (r- w) - -  + 
6d(r- w) 2 - ~  d(r-  w) 

(1 w 2l r -  E(a3,-a3)-  - -  C(a3,-a3) 
"F(a3, -a3) + -~ r - d(r - w) 

G(a3, -as) 
+ 6d(r- w) 2" (A15) 

(d) l>~d-~r- 2w. 

By substituting (A2), (A3), (A4), (A5), and (A6) into (A7), p becomes 

=/"2 1 f_ - u s e  
p .Ja2 --~ (l cos 0 + w) f(O) dO + .12 --~ (l cos 0 + w) f(O) dO 

2 3 3 

+ P3/of(O) dO + p3/of(O) dO + P4/of(O) dO 
a 

f__ - a4 ~f_i "~ 4 + P4/of(O) dO + f(O) dO 
a3 3 

a(a~, a~) + a ( - a 3 ,  -a~)  + _ ( r -  w)  - -  + 
- 6a(r- w) 2 - ~  a(r- w) a 

2' (1 r - d )  [E(a3, a4)+E(-a4,-a3) ] 
• [F(a3, a4) + F(-a4, -a3)] + -~- " r -  w 

l 2 1 
d(r  - w-----~ [C(a3, a4) + C(-a4,  -a3)] + 6 d ( r -  w)  ~ 

• [G(a3, a4) + G(-a4, -a3)] + F(a4, -a4) (A16) 

l 
= m  

d 
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