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A B S T RAe T 

The Buffon needle problem and some variations 

are used to illustrate classical statistical methods 

of estimation and to lead into, and contrast with, 

the problems which arise when a sample of some random 

structure is the data. The flavor of these problems 

is conveyed largely by discussion of the simplest, 

and most described, case, that of point processes. 

Note: Thi~ technical ~epo~t W~ o~iginally delive~ed 

~ a lectu~e at the Bufioon Bicentena~y Sympo~ium on 

Geomet«cal P~obability, Image Analy~i~, Mathematical 

Ste~eology and ,thei~ ~elevance to the dete~mination 00 

Biological St~uctu~e, Pa~i~, June 20-24, 1977. 
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1. INTRODUCTION 

The Buffon needle problem has its origins in gambling. But, un­

like card and dice games, it requires some geometry and calculus. 

Thus it was a bold step in generalizing the idea of mathematical 

probability. The needle problem and minor variants have been studied 

by many authors up to the present day as a means of estimating ~ 

statistically. More sensibly, however, they provide a means of in­

ferring the ratio of the length of the needle to the scale of the 

regular network onto which it is thrown. And of course this is the 

origin of modern methods for the sampling study of geometric bodies. 

Thus it seems most appropriate at this Symposium to begin my talk by 

going over this work which used only quite standard statistical ideas. 

However when the needle is replaced by a more general probe or 

sampling window -- in other words, some set -- and the regular net­

work is replaced by a random structure, we must face statistical prob­

lems of quite a different character. They are akin to those met in 

time series analysis which has a long history by statistical standards 

but in which there is still some confusion between the exploratory, 

modelling and confirmatory aspects and a lack of communication between 

probabilists and statisticians. The spatial problems are decidedly 

more difficult. There are not so many explicit probability models to 

get statistical experience with. One must consider the shape as well 

as the size of sampling windows. The data has a more awkward form. 

The second part of the lecture will therefore merely give some idea 

of these problems and their literature. Hopefully other speakers 

will address them in detail. But it is clear that statistical geo­

metry or morphology is just beginning. 
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2. BUFFON PROBLEMS 

The classical problem considers a parallel grid with spacing a 

and a needle of length .e where .e !S 11. If the needle is tossed so 

that its position and orientation are random, the probability p that 

it cuts a grid line is given by 

p = ?. {. 
TT 11 

(1) 

Uspensky (1937), Kendall and Moran (1963), for example, give proofs of 

this and most of the results used below. 

Define $ 1 r = ~ and suppose that n independent trials 
TT 11 

(tosses) yield C cuts. Then O«C) = Binomial (n,p) where p = 2$r. 

The statistical problems that arise are 

(i) estimate $, i.e., estimate TT 

(ii) estimate r, i.e., estimate 11 if .e is known 

(iii) test that r = rO (known). 

The most complete reference on (i) in this case and those given below 

is Perlman and Wichura (1975). Oddly no one seems to have considered 

(ii) and (iii). Trivial though they are, they are the prototypes of 

the real problems. 

The likelihood of the data when c cuts are observed is 

(n)pc(l_p)n-c and the number of cuts is a complete sufficient statis­
c 

tic for p. Thus we may assert: among all functions f(c) such that 

£f(C) = p, for all p in (0,1), it is true that 

var f(C) ~ var f = n p(l-p) 
n 

Thus the obvious estimator of p, 
A 

P C/n 

(2) 

is, uniformly in p, the 
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minimum variance unbiased estimator of p. 

If one knows r and wishes to estimate 1T, the same is true of 

$ C var (~) £ (t - 1) (3) 
2rn ' n 

A 

However 1Tl 1/~ is biased. If n is large, we may argue that 

E; 1 Et ~ + $;~-1 

= q, I;., (Il} 
. · f -" ~(t - 1 ~ 
.... 1T as n .... co 

Further it follows from (3) that 

(4) 

Thus if one is set on estimating 1T this way and can "design the 

experiment" one should take l a since this choice minimizes (4). 

In thi s case 
A 

var 1Tl ::: 5.63/n. Lazzerini (1901) conducted such an 

experiment with n = 3408 and found ;1 - 1T = 3 x 10- 7. As Kendall 

and Moran (ibid.) suggest, he must have stopped when he noticed the 

remarkable and fortuitous accuracy! 

In fact we know $ and are more likely to want to know a. By 

the same arguments used above, a = 2lpn , and we will have 
c 

Ea .... a as and 

var (~) :: a 3 (..2!.... _ 1) 
n 2l a 

(5) 
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Again if we can choose the needle size we should try to make it 

near to but less than a. Thus the effort to optimize may lead to 
~ 

bias since (1) is false when {> a. Trivially if n is large, a 

is Gaussian so tests are easy to make. 

Instead of a parallel grid, Laplace considered a rectangular 

grid, the A lines being a apart, the B lines being b apart. 

He showed that the probabil ity that the needle cuts at least one line 

is 

a fascinating formula whose direct derivation is tricky so that it 

seems easier to get it from a more general Crofton argument. To 

illustrate my points here set a = band 

r, <j> 

Introducing the notation 

1 
1f 

(6) 

PAB Prob(needle cuts a B line but not an A line), 

PAB = Prob(needle cuts neither an A nor a B line), 

etc., formula (6) is clearly Further if 

PA Prob(needle cuts an A 1 in e) 

PB Prob(needle cuts a B line) 

then 
PA PAB + PAs 2r<j> 

PB P AB + PAB 2r<j> 

and 
PAB + PAS + PAB + PAB = 1. 
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These three equations plus (6) for 1 - PAB yield 

and for brevity we follow Perlman and Wichura in writing 

2 
P AB = 1 - (4 r - r )<p 1 - mcp • 

Let n trials yield results (in an obvious notation) 

N = {nAB' nAIf' nAB' nAB}' Then 

;(N) = 4-nomial (n; PAB , PAB' PAB ' PAB ) 

Thus the likelihood of the data is proportional to 

Defining 

nAB 
L = PAB 

NO nAB = 

Nl nAB + 

N2 nAB = 

n NO + 

# no cuts 

nAB = # 1 cuts 

# 2 cuts 

Nl + N2 

and using (7) and (8), L may be written as 

L = (l_mcp)No cpN 1+N 2 r2N2+Nl (2_r)N 1• 

(7) 

(8) 

(9) 

Thus if r is known, NO or N 1 + N2 is a compl ete sufficient 

statistic for cp and L(N 1+N 2) = Binomial(n, mcp) so the story of the 

estimator of 11 follows the previous pattern. The resulting estima-
A 

tor 112 has, for n large, a variance equal to 0.47/n so that the 

extra work in using a square grid yields an estimator which is 12 

times as efficient as that for the parallel grid. 
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However to estimate r knowing n is quite different. The 

practical method is to choose r to maximize the likelihood (9). 

Setting a log Liar equal to zero leads to the equation 

2 
1 _ 4r-r 

n 

2r-4 + 2N 2+N 1 _ ~ 
o 

n r 2-r 
(10) 

which must be solved iteratively to yield 
A 

r. The standard theory of 
A 

maximum likelihood estimation gives us an asymptotic formul a for r, 

A -1/- ( a2 109 L ). ( 11) var r 
ar2 

and asymptotic normality of 
A 

r so that tests can be made. 

The rectangular grid follows the same pattern with 

r 1 = !:. 
_ .t 

L is a function of r 1 and r 2 which are esti-
It 

, r 2 - b ' 

mated by solving a 109 L/ar 1 = 0, a log L/ar2 = o. Other regular 

networks do not introduce the need for further techniques. 

Above we considered only the case of l S It = b. The case when 

.t is much greater than It is simple and instructive to consider. 

Let then this long needle intersect the B lines at an angle 8. 

Then 8 is uniformly distributed on (0,n/2). If we define 

NA # A lines cut :: r cos 8 

} NB # B lines cut ::: r sin 8 (12 ) 

N # lines cut ::: r{cos 8 + sin 8) , 

we have 
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ENA ~ r/2r cos e de 
1[ 0 

2r = 
1[ E(N B) , 

EN 4r 
1[ 

EN 2 E(r2 + 2r2 cos e sin 9) , 

r2(1 + ~) 1[ , 

so 

= r2 (1 (~) 2 ) var N + ~ -1[ 

Hence if we make n throws and find c as the average number of 

cuts, it will be an unbiased estimator of E(N). Hence the estimator 

of 1[ that is suggested, following our ealier work, is 

and an easy calculation shows that 

~ 1[4 
var 1[3 - --2 

16 r 

:: 0.0095 
n 

var N 
n 

While this seems a great improvement, we will show below that one can 

do better still with this experiment. 

To estimate r from Z, the "natural" method is to set r = :!I.e 
4 

r 2 
1[2 ( J with var r :: 11 42 1 + ~ - :~ . This estimate too can be improved 

because neither is the maximum likelihood estimator, as was true of 

our first three examples. 
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From (12), N = 12 r cos (6 - i) so that 

P rob (N S k) = Prob(cos tjJ ~ k/rl2} where ..e (tjJ) is uniform on 

(-7[/4, 7[/4). Let tjJO = cos- 1 k Then 
rl2 

Prob(N S k} 2 Prob(tjJ > tjJO} , 

(13 ) 

so that the probability density of N at k is the partial deriva­

tive of (13) with respect to k, namely 

4 1 

ii /2/ _ k2 

Thus given counts k1, ... ,kn in n trials, their likelihood is 

n 4 
IT 
1 7[ ,hr2 k~ 

1 

provi ded r ::; all the k. 's < 12 r, and zero otherwise. 
1 -

Thus the 

maximum likelihood estimate of r is 

not 

-2 
n , 

r 11<:/4. 

not order 

(14) 

It may be shown that the variance of r* is of order 

n- 1 like that for r. Thus for large n, r* is a 
A 

very much better estimator than r. This shows dramatically that the 

usual practice in geometrical statistics of obtaining estimators by 

equating theoretical and observed means may be very inefficient. So 

much for the "long needle." Other details may be found in Diaconis 

(1976) and in a forthcoming monograph by H. Solomon. 



225 

Buffon's needle may be used to obtain a connection with a quite 

different aspect of geometrical statistics. Let us analyze the toss­

ing of the needle. Suppose now that an origin is marked on one of the 

lines of the parallel grid and that the needle is thrown so that its 

center rests on the plane a distance X from the marked line. Let 

i(X) = Gaussian (0,02 ) so it has probability density 

It is then clear that if Y is the distance from the center of the 

needle to the nearest line below it, 

Prob(x < Y ~ x + dx) = L f(x - va)dx 
v=-oo 

g(x)dx , say. 

The density g(x) is concentrated on (O,a) and g(x) is periodic, 

period a. Thus we may write 

g(x) L g.exp(-2~ijxla) . 
j=_oo J 

(15) 

(16) 

It is shown that (see Hartman and Watson (1974») this density can be 

very well approximated by 

(17) 

where K is a suitably chosen function of 0 and that by certain 

randomizing an exact result may be obtained. One of the commonest 

distributions for describing non-uniformly distributed angles (which 

we would need if we wished to give the needle a preferential orienta­

tion) is the von Mises distribution 
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Our final two examples lead into random structures. Suppose that 

the spacings of the parallel grid are identically and independently 

distributed (1.1.0.) with some density function h(a) which is zero 

when a < aO' Consider a needle of length ! 5 aO tossed at random. 

Then 

Since 

Prob(center of the needle 
falls in a space, 
a < space < a + da) 

Prob(cutlspace a) 

Prob(cut) 

2 ! 
1T a 

2 ! 
if "[(aT 

ah(a)da 

rah(a)da 

aa 

ah(a)da 

E(a) 

Thus by repeating this experiment the ~ thing we can learn about 

the spacings is E(a). There is, for example, no way one can check 

whether they are 1.1.0. This would require a long needle. 

Thus let us consider an infinitely long needle and suppose that 

we could know, after it is tossed at random onto an arbitrary para­

llel grid, the sequence of spaces on the needle between line cross­

ings, {silo If the needle makes an angle e (which we do not know) 

and the grid spacings are a i then si sin e, for all positive 
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and negative integers i. From only the sequence {si} we can check 

all properties of the {ail sequence that do not depend upon scale, 

e.g., that it is 1.1.0., stationary, etc. 

The cut points on the needle form a Point Process in one dimen­

sion. The discussion of Point processes in space is the largest 

aspect of geometric probability and statistics in the modern sense, 

the topic to which we now turn. 

3. WHAT IS STATISTICAL GEOMETRY? 

Everyone is fairly clear what is meant by geometry but 

statistics is less well defined. It has a number of facets -

(i) exploring data for regularities, i.e., patterns; (ii) estimating 

"population" characteristics from a sample; (iii) testing hypotheses; 

(iv) designing sampling plans to be effective and efficient (usually 

by including a random element). 

Probability models enter (i) to (iv) in several ways: 

a) by a scientific mechanism or model, 

b) by assumption, 

c) via a random sampling plan, 

and to different degrees. In (i) they may not enter explicitly at 

all. 

In statistical geometry our data will be a sample from some geo­

metrical "population." 

Such definitions do not convey much, so we now give some examples 

of problems and the groups that pursue them. (A) Grenander's books 

on "Pattern Synthesis" (1976) cover a vast area in a novel way not 

represented at all at this Symposium, and I think they are of basic 
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importance. He has developed an abstract way of generating and distort­

ing patterns and then restoring them. The latter is of course statis­

tical. He gives a wealth of diverse examples; one of the simplest 

is discussed below. (B) Classical problems such as may be found in 

the Kendall and Moran (1963) book. (C) The publications of the 

Fontainebleau School of Mathematical Morphology represent a different 

line again. Their major achievement seems to me to be the wedding of 

the image analyzer and mathematical description of the objects 

scanned. While much practical work is done, the publications deal 

more with the mathematical theory than with the statistical aspects. 

(0) The Stochastic Geometry pursued in Cambridge by O. G. Kendall 

(see, e.g., Harding and Kendall, 1974) and others overlaps theoreti­

cally with the French School but has, it seems, purely mathematical 

motivations. Like so much of this literature, it has not been re­

duced to a level of mathematical simpl icity for practical statistical 

use. (E) The Point Process literature, stemming from Bartlett (see, 

e.g., 1963, 1964, 1976) originated in practical statistical problems 

and mainly in one dimension. It is now pursued at a highly mathe­

matical level by Krickeberg (1977) and other Europeans in many dimen­

sions. Earlier practical work in Forestry, especially Matern's (1960) 

has led to many papers see, e.g., the issuesof Biometrika. 

Ripley's recent papers (1977a, 1977b) have a combination of theory 

and practice and extensive bibliographies. 

While there are many mechanisms for generating point processes 

in time, the few that do so in space are summarized by Ripley (1977a), 

for example. The main emphasis, in line with second order stationary 

processes, is the definition and estimation of functions that control 
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the enhancement or inhibition of neighboring points. Here, as in time 

series analysis, there is a large exploratory element. Even if there 

were parametric models, it would rarely be possible to write down the 

likelihood of the data so that the time-honored statistical methods 

illustrated earlier cannot be used. Computers are essential for al­

most all calculations, unlike the Buffon problems, e.g., variances 

must usually be found by simulating. 

In practice we will often want random sets, rather than the 

Poisson fields of points. lines, flats, etc. that are most often 

discussed. In his 1967 book Matheron made one of the early models 

that can be dealt with easily -- the Boolean scheme. Here 1.1.0. 

copies of a random set Ki are attached to a Poisson field of points 

{xilxi£x} in a vector space to obtain the random set 

A = LJ (Ki + Xi). Such a set is intUitively stationary, i.e., 
xi£X 

spatially homogeneous though not necessarily isotropiC. If we know, 

for any fixed set B, 

q(B) = Prob(KnB ~) 

then 

Prob(AnB = ~) = eXP{-Af (l-q(B+~»)dO 
RP 

(19 ) 

where A is the intenSity of the Poisson process. In this Symposium 

Coleman went further in this construction than (19) which is the zero 

term of a POisson distribution. 

Time series analysis is about 100 years old. It began as a 

practical endeavor, became very mathematical and it is only recently 

that practical books and programs have been readily available. The 
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time lag for this subject could be greatly shortened if theoreticians 

would make the effort to write for practical users and not only for 

other mathematicians. 

We conclude with the simplest instance of problems in Grenander's 

book (ibid.). It illustrates (i) how a finite window is different 

from a finite sample of I.I.D. observations, (ii) the use of Fourier 

analysis. It is the restoration of a linear lattice whose points 

have been independently displaced. The complete set of points is 

Xv = a + Vs + nv (v = .•• , -1, 0, 1, ... ) 

where a is a phase, s the lattice spacing (unknown) and nv is 

the noise. The window is the interval (O,L). When the noise is small 

with respect to L, almost all the points that should be in (O,L) will 

be there and no two points will have their true order inverted. Then 

we have an ordinary regression problem in estimating a and s. 

When the noise is not small, successive X points may not have suc-

cessive indices and the "wrong" points may be in the window this 

illustrates point (i). (This model is essentially the same as that 

set up by D. G. Kendall (1974) to detect a uni t of measurement in an 

archeological site.) 

Here one automatically thinks of Fourier analysis. To save time, 

set a = ° and define, 

¢(w) = t I exp 
Xv£( 0, L) 

m(w) E¢(w) 

1 (L 
[ 10 exp(iwx)p(x)dx, 

(20) 
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where 

p(x) E f(x - vI;). 
v 

f(x) density of the noise nv 

and 

p(x) E Pk exp(-2TTik/I;). 
k 

exp8w - 2~k}ig - 1 

mew) E Pk 
k i L{w - 2TTk} 

I; 

Then 

As L .... "', 

mew) .... 0, w f multiple of 2TTk/1; 

.... Pk' w = multiple of 2TTk/1; 

Thus we would hope to see a pattern of peaks near the points 2TTk/1; 

from which we would fi rst try to see if there ~ a pattern, and if so 

to estimate 1;. 

var cp(w) - t t ~ - I f*(w) I ~ 

where f* is the Fourier transform of f so that 

Pk = t f*(2~k) . 

Thus var(cp(w») may also help us learn about the noise since this is 

governed by f. 

The same computation with a Poisson process leads to 

E(cp) = A exp(iLw) -1 
i Lw var cp t ' a very different picture also 

seen with all renewal processes. Thus cp does not differentiate be­

tween stationary point processes but one hopes that the variance might. 

If we define 
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N(x) = # pOints in (O,x) , 

we have 

.(W) = t J~eXp(iWX)dN(X) , 

,.(w),2 = L~ f~Jexp(iW(X-Y))dN(X)dN(Y) 

Assume with Bartlett (1976) that 

E(dN(x))2 = Adx 

EdN(x)dN(y) = {A2 + W(x-y)}dxdy . 
(21) 

If W(·) in (21) is identically zero, the points are Poisson. Let 

W(v) = W(-v). It is clear that if W(v) is positive, a point at y 

means that there is, relative to the Poisson process, more chance of 

having a point at y + v, i.e., enhancement. Negative values mean 

inhibition. Now 

E,.,2 _ ~ + A2 + t Joow(v)exP(iwv)dV (22) 

which verifies our notion that knowledge of 1.1 2 should yield in-

formation about the function W(v). 

In this use of Fourier analysis one should note that the F.F.T. 

cannot be used; it is hard to adjust for bias and finite L and hard 

to find the variance of 1.1 2 , even in R'. The vagueness in these 

last two paragraphs is to some extent unavoidable. When dealing with 

unknown functions, one simply ~ to use judgment, try various tricks 

with the computer -- there cannot be any simple and apparently clear 

cut methods of the t-test type. 
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