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Expected Value of Sample Information
Calculations in Medical Decision Modeling

A. E. Ades, PhD, G. Lu, K. Claxton, PhD

A societal decision maker confronted with a choice
of alternative health care interventions should

choose the intervention with the greatest expected net
benefit if he or she wishes to maximize heath outcome
subject to a budget constraint.1,2 However, in the pres-

ence of uncertainty about the net benefits associated
with the alternative treatments, there is a finite proba-
bility that the optimal decision is wrong. The expected
opportunity loss associated with this uncertainty can
be quantified and is known as the expected value of
perfect information (EVPI) because it is the amount the
decision maker should be willing to pay to elimi-
nate all uncertainty in the decision. These concepts
were developed within Bayesian statistical decision
theory.3,4

Where there are multiple sources of uncertainty, it is
possible to calculate the expected value of partial per-
fect information (EVPPI), the EVPI on a subset of pa-
rameters. Several authors both in the risk analysis liter-
ature5–7 and in medical decision literature8–10 have
highlighted the use of these methods in research priori-
tization and in sensitivity analysis.

The EVPI and EVPPI set an upper limit on the soci-
etal returns to further research. They provide a “hur-
dle” since further investigation will be potentially
worthwhile only if the EVPI exceeds the cost of further
research.11 However, complete elimination of uncer-
tainty can be achieved only by an infinitely large sam-
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There has been an increasing interest in using expected value
of information (EVI) theory in medical decision making, to
identify the need for further research to reduce uncertainty in
decision and as a tool for sensitivity analysis. Expected value
of sample information (EVSI) has been proposed for determi-
nation of optimum sample size and allocation rates in ran-
domized clinical trials. This article derives simple Monte
Carlo, or nested Monte Carlo, methods that extend the use of
EVSI calculations to medical decision applications with mul-
tiple sources of uncertainty, with particular attention to the
form in which epidemiological data and research findings are
structured. In particular, information on key decision param-
eters such as treatment efficacy are invariably available on
measures of relative efficacy such as risk differences or odds
ratios, but not on model parameters themselves. In addition,
estimates of model parameters and of relative effect measures
in the literature may be heterogeneous, reflecting additional
sources of variation besides statistical sampling error. The

authors describe Monte Carlo procedures for calculating
EVSI for probability, rate, or continuous variable parameters
in multiparameter decision models and approximate meth-
ods for relative measures such as risk differences, odds ratios,
risk ratios, and hazard ratios. Where prior evidence is based
on a random effects meta-analysis, the authors describe dif-
ferent ESVI calculations, one relevant for decisions concern-
ing a specific patient group and the other for decisions con-
cerning the entire population of patient groups. They also
consider EVSI methods for new studies intended to update
information on both baseline treatment efficacy and the rela-
tive efficacy of 2 treatments. Although there are restrictions
regarding models with prior correlation between parameters,
these methods can be applied to the majority of probabilistic
decision models. Illustrative worked examples of EVSI calcu-
lations are given in an appendix. Key words: expected value
of sample information; epidemiology; odds ratios; random
effects. (Med Decis Making 2004;24:207–227)



ple. The practical task is therefore to calculate the ex-
pected value of sample information (EVSI) and to set
this against the costs of obtaining the sample. The dif-
ference between the reduction in the expected loss due
to sample information and the costs of obtaining the
sample is the expected net benefit of sampling and rep-
resents the societal return to proposed research.3,4 The
EVSI calculation is therefore part of the process of find-
ing an optimum sample size for a future study. EVSI
studies can be found particularly in the environmental
engineering and health risk assessment literature.12–14

In the medical decision context, Claxton has applied
EVSI to the optimal size and treatment allocation in
randomized clinical trials (RCTs).2,11,15

Decision theoretic EVI analysis provides an explicit,
coherent, and flexible framework with many advan-
tages. It separates the decision to adopt a health care
technology given current evidence from the decision
on whether more research is required to inform this
choice. This contrasts with the traditional inference-
led approach in which the adoption decision is based
on arbitrary significance tests or confidence ranges, re-
search design is based on arbitrary power calculations,
and there is no guidance on which model parameters
are most deserving of further data. Furthermore, the ex-
plicit valuation of both the benefits and the costs of ob-
taining more information produces an optimal study
size, rather than a perpetual plea that “more research is
needed”16 or that more “large”17 or even “very large”
studies are needed.18 In contrast, EVI theory not only
provides a framework for efficient research design but
also guarantees that research expenditure is commen-
surate with service provision,11 as well as offering a co-
herent framework for regulatory authorities.19

EVI concepts are now beginning to attract attention
in the epidemiological literature,16 but despite their
power and coherence, practical full-scale applications
of EVSI methods are difficult to find. Besides the com-
plexity of EVI calculations and the difficulty of the tra-
ditional notation used in textbooks, there are also con-
ceptual obstacles. Based as it is on Bayesian decision
theory, EVI requires probabilistic decision modeling,20–

22 which is only recently becoming accepted.23 This
methodology requires investigators to be completely
specific about parameter uncertainty and thereby
raises very searching questions about the origin of un-
certainty and variation in epidemiological data. These
questions can readily be sidestepped in deterministic
sensitivity analysis, but probabilistic modeling re-
quires that all sources of uncertainty and variation be
appropriately represented and no more so than in EVI
calculations. After all, if uncertainty is a result of the
limitations of current data and is to be reduced by col-

lecting more data, it follows that careful attention has
to be paid toward how epidemiological data are
structured, interpreted, and analyzed.

An additional impetus for this work is the increas-
ing use of formal health economic assessment in deci-
sion models intended to inform national policy on the
provision and reimbursement of specific heath care
technologies.24–28 Such analyses are intended primarily
to inform the decision to adopt or reimburse a technol-
ogy based on current evidence. However, these models
are based on increasingly sophisticated and thorough
use of systematic literature review and meta-analysis,
and their output provides a natural source for consen-
sus-based prior parameter distributions for input to
EVSI analyses, which would directly address whether
additional evidence is required to support a technol-
ogy. This issue is, indeed, now actively considered by
many regulatory and reimbursement authorities.28

This article begins with a brief introduction to EVI
concepts to establish a conceptual framework and no-
tation (section 1). We then develop EVSI calculations
for probability, rate, and normally distributed variables
(section 2). The implications of the “fixed” versus “ran-
dom effects” distinction29–31 are pursued in section 3.
Section 4 shows how information on relative effect
measures, such as odds ratios, can be mapped into in-
formation on the absolute effect measures, the latter be-
ing the more relevant in decision models. In discus-
sion, we examine the limitations and the scope of the
proposed methods, the approximations made on the
way, and the wider optimization problem design of an
optimal research portfolio. An appendix provides
some worked examples of EVSI calculations.

1. FRAMEWORK FOR EXPECTED
VALUE OF INFORMATION

1.1. Incremental Net Benefit

We adopt a net benefit approach to cost-effective-
ness analysis.1,11 Health gains are monetarized by mul-
tiplying quality adjusted life years (QALYs) by a cost-
effectiveness threshold λ, the decision maker’s pre-
sumed willingness to pay per additional QALY. This is
gaining acceptance32–35 not least because it avoids the
difficulties associated with cost-effectiveness ratios.

We assume a decision model with unknown param-
eters θ, with a choice to be made between a fixed num-
ber of treatments t = 1,2 . . . T. B(t, θ) is the net benefit of
treatment t if the parameters take the value θ. The net
benefit attaching to treatment t is thus

B(t, θ) = λU(t, θ) – C(t, θ), (1)
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where the functions C and U give the costs and the
QALYs under treatment t.

1.2. Expected Value of Perfect Information (EVPI)

The optimal decision given current information is
the decision that yields the highest expected net
benefit:

maxt Eθ B(t, θ).

The true values of θ are not known, but if they were
known, we could maximize over t, maxtB(t, θ), to obtain
the value of an optimal decision at these known values
of θ. As the θ are not known, the expected net benefit of
a decision taken with perfect information is found by
averaging this expression over the joint distribution of
θ:

Eθ maxt B(t, θ).

The EVPI is the difference between the expected value
of a decision made with perfect information about all
the uncertain parameters θ and a decision made now:

EVPI = Eθ maxt B(t, θ) – maxt Eθ B(t, θ). (2)

1.3. Expected Value of Partial Perfect
Information (EVPPI)

Suppose we were interested in the value of perfect
information about a vector subset θI of the parameters θ.
If we knew the values of θI, then the expected net bene-
fit of a decision made now would be found by averag-
ing over the uncertainty in θ that remains after knowing
θI and then selecting the optimal treatment

max ( , )|t E B t
Iθ θ θ .

But again, we do not know θI, so the expected value of a
decision made with perfect information about θI is
found by averaging over our current information about
θI:

E E B t
I Itθ θ θ θmax ( , )| .

The EVPPI is the difference between the expected
value of a decision made with perfect information
about θI and the current optimal decision:

EVPPI E E B t E B t
I It t= −θ θ θ θθ θmax ( , ) max ( , )| . (3)

Consider the parameters of interest θI and the com-
plement set θ I

c . It has been noted8,9 that if B(t, θ) is linear
in θ I

c and there are no correlations between the θI and
the θ I

c , then we can rewrite as E
Iθ θ| B(t, θI, θ I

c ) as B(t, θI,
E ( θ I

c )) and thus avoid the inner integration. The short
cut it also possible when B(t, θI, θ I

c ) is multilinear in the
components of θ I

c and there are no correlations be-
tween the components of θ I

c or between the θI and the
θ I

c . This condition allows the net benefit functions to
contain products of (independent) parameters. There-
fore, many standard decision tree models, with branch-
ing path probabilities and independent parameters, are
amenable to EVPPI calculations that require only a sin-
gle Monte Carlo integration. In general, a model is
multilinear in a parameter as long as it occurs only
once on any path from the origin to a terminal node.
However, a nested inner integration would be required
for Markov models, which bring in higher order terms
in branch probabilities.

1.4. Expected Value of Perfect
Information at a Population Level

The expressions for EVPI and EVPPI refer to ex-
pected value of information per individual patient pre-
senting at the decision point. These expressions need
to be scaled up to a population level to reflect the effec-
tive EVI that is relevant to a decision about further re-
search.2,11 If Qy patients (or patient episodes) enter this
decision problem in year y, with an H year effective life-
time for the technology and a discount rate of α, then

Population EVPI = EVPI . Σy = 1,2 . . . HQy(1 + α)–y.

Both the number of patients entering the decision prob-
lem each year and the effective lifetime of the technol-
ogy may themselves be unknown parameters on which
further information could be sought. It should be noted
that with a positive discount rate, the population EVPI
will be finite.

1.5. Expected Value of Sample Information (EVSI)

If EVPPI calculations suggest there are P parameters
on which it may be cost-effective to obtain more infor-
mation (i.e., the EVPPI exceeds the cost of conducting
further research), the question of which information to
obtain and how much could represent an extremely
large decision problem (see section 1.6). Here, we as-
sume that a particular study is being considered with a
specific sample size vector n. The new study will pro-
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vide sufficient statistics D relating to parameters of in-
terest θI.

The development mirrors that of EVPPI. If we knew
in advance what D would be, the expected value of a
decision made after sufficient statistics D have been ac-
quired is found by taking an expectation over the poste-
rior distribution of the net benefit of each treatment t
given the new data D, that is,

maxt Eθ | D B (t, θ).

If we suppose that θI and θ I
c are a priori independent

and that the data D provide information only about the
subvector θI and not the complement set θ I

c , then this
expression can further be written as

max ( , , )
,(t I I

cE B t
I
cθ θ | )

θ θ
I D

,

where the expectation is taken over the prior density of
θ I

c and the posterior density of θI given D.
As we do not yet know what D will be, we must aver-

age over the distribution of D:

E E B tD t I I
c

I
cmax ( , , )

,(θ θ | )
θ θ

I D
.

Finally, the distribution of D must be based on prior
knowledge of θI. To clarify the nature of the computa-
tion, we can consider the expectation over D as an ex-
pectation over the predictive distribution of the new
data D conditional on θI, averaged over the prior distri-
bution of θI.

As before, the expected value of sample information
is the difference between the expected value of a deci-
sion made after data D have been collected and the ex-
pected value of a decision made now:

E E B t E B tD t D I I
c

t I I
c

I
c

I
max ( , , ) max ( , , )

,( | )θ θ θθ θ θ θ− . (4)

In parallel with EVPPI, this expression contains an in-
ner integration within the maximization step. This
takes the form of the Bayesian calculation of a posterior
mean, after priors θI have been combined with new
data D. This article restricts itself to situations in which
the likelihood for the proposed data D is conjugate with
priors, so that means or parameters for posterior distri-
butions are available in closed form and to scalar priors
with no correlations. These restrictions are strong but
nevertheless allow for EVSI calculations via single or
nested (see below) Monte Carlo simulations in a very
wide class of decision models. Possible approaches for
a still wider class of models are taken up in discussion.

The following algorithm shows how the calculation
of EVSI can be implemented in a Monte Carlo decision-
modeling framework.

General Algorithm for Calculation of EVSI

A1. For i = 1,2 . . . N simulations
B1. Draw a sample θI

(i) from the prior distribution
of θI.

B2. Draw a sample D(i) from the distribution of the
sufficient statistics D| I

(i) arising from a new
study of size n

B3. Calculate posterior expected net benefits for
each strategy t, using algorithms C1, C2, C3,
and C4 (see below) as appropriate

B4. Find the treatment t maximizing expected net
benefit for simulation i and record the corre-
sponding maximum value

A2. Find the average of the maximum expected net
benefits, over the N simulations. This is the ex-
pected value of a decision based on sample
information

A3. Subtract the expected value of a decision based on
current information

The main focus of the article will be to set out steps
B1, B2, and B3 for a wide range of data types and prior
evidence structures. We start with the calculations C1,
C2, C3, and C4 required in step B3 to produce the ex-
pected posterior net benefits over which the maximiza-
tion must take place on each simulation,

E B t
I
c

I
iD I I

c
θ θ

θ θ
, ( | )( ) ( , , ). (5)

The choice of algorithm is determined by the linearity
of the net benefit functions in θI andθ I

c . Four algorithms
to calculate this “inner” integration can be distin-
guished, all assuming prior independence of θI andθ I

c .

Algorithms to Find the Expectation of
Net Benefits after New Data Are Collected

C1. B(t, θ) is linear in θI and θ I
c AND there are no corre-

lations between any of the θI and θ I
c parameters;

OR B(t, θ) is multilinear and there are no correla-
tions between any parameters: Plug in the prior
means for the parameters θ I

c and the posterior
means for θI.
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E B t B t E D E
I
c

I
iD I I

c
I

i
I
c

θ θ
θ θ θ θ

, ( | )
( )

( ) ( , , ) ( , ( | ), ( )= .

For example, B(t, θ1, θ2) is multilinear (but not lin-
ear) in its parameters when it contains products
of independent parameters.

C2. B(t, θ) is linear in θI but nonlinear in θ I
c : Carry out a

nested Monte Carlo integration over θ I
c , drawing

from the prior distributions of the parameters θ I
c

and plugging in the posterior means for θI.

E B t E B t E D
I
c D i

I
cI I

c
I

i
I
c

θ θ
θ θ θ θ

θ, ( | ( ) )
( , , ) ( , ( | ), )( )

Ι
=

C3. B(t, θ) is nonlinear in θI but linear in θ I
c : Carry out a

nested Monte Carlo integration over the posterior
θI|D and plug in the prior means for θ I

c .

E B t E B t E
I
c

I
i

I
iD I D I I

c
θ θ θ

θ θ θ θ
, ( | ) |( ) ( )( , , ) ( , , ( ))I

c = .

C4. B(t, θ) is nonlinear in both θI and θ I
c : Carry out a

nested Monte Carlo integration, drawing from the
posterior distributions of the parameters θI|D and
from the prior distributions of θ I

c .

Thus, for algorithms C1 and C2, it is necessary to cal-
culate only the posterior mean of the parameters on
which new data are to be collected. For algorithms C3
and C4, it is necessary to have the parameters of the
posterior distribution in closed form so that samples
can be drawn from them. The most important distinc-
tion in practice, however, is between algorithm C1,
which allows the posterior net benefits to be found by
plugging in prior means of θ I

c and posterior means of θI

for that simulation, and the other algorithms that re-
quire a nested inner Monte Carlo integration.

1.6. Cost of Sampling and the
Expected Net Benefit of Sampling

EVSI calculations are invariably set within an opti-
mization problem relating to sample size. If we con-
sider a study of known design with fixed sample size n,
aimed at providing information on 1 or more parame-
ters, then the expected net benefit of a research portfo-
lio is the difference between the population EVSI for n
and the cost of the portfolio3:

ENBS(n) = Population EVSI(n) – Cost(n),

and the task is to find the n that maximizes ENBS(n).
In medical applications to date, calculations of

ENBS(n) have mainly been discussed in cases in which
the research portfolio consists of a single 2-arm RCT,

involving treatment-efficacy parameters for each arm.
Optimization for n, which is then a vector of 2 sample
sizes to be allocated to different treatments, can then
proceed by calculating ENBS for a grid of values of {n1,
n2}.

2 As we see in the next section, follow-up time F may
bea furtherdesign feature tobeoptimizedalongwith (n).

Although distinct from the EVSI calculation, it is
worth briefly outlining the cost calculations. These in-
clude both direct resource costs and opportunity costs.
The direct costs are the fixed costs of further research,
and if the research portfolio might include an RCT, the
marginal reporting costs and any additional treatment
costs for patients allocated to a nonstandard treatment
arm. Three elements of the opportunity costs of sam-
pling can be distinguished. First, those who participate
in the trial cannot benefit from the information gener-
ated by the research. Increasing sample size therefore
provides more information for future patients but also
“uses up” those who would otherwise be able to benefit
from the sample information. Similarly, additional
sample or longer follow-up, which delays the trial re-
port, will also reduce the number of future patients
who can benefit from the sample information. Third,
while the trial is being conducted, patients not enrolled
may receive standard treatment even when this is not a
priori optimal due to concerns about the irreversibility
of switching to the new technology. These patients will
forgo the expected additional net benefit associated with
the a priori optimal treatment. Claxton provided an out-
line of such calculations.2 A similar approach has also
been applied to sequential design problems in RCTs.36

Returning to the optimization problem, it must be
emphasized that for a model with uncertainty in a
number of parameters, the optimization problem may
be difficult to solve. With P parameters on which fur-
ther information could be usefully obtained, in the
sense that they pass the EVPPI “hurdle,” the full re-
search space could be a P-tuple of sample sizes n = {n1,
n2 . . . nP}. Clearly, a grid search solution may not be fea-
sible if the research space is large. This is a problem to
which we return briefly in discussion. It is not the role
of this article to propose solutions but only to note that
the potential complexity of the optimization problem
suggests that we should take advantage of any approxi-
mations that might reduce computing time for EVSI(n).

2. UNCERTAINTY IN SINGLE PARAMETERS

2.1. Introduction

This section rehearses the standard results of
Bayesian theory,37,38 as they would be applied to single
parameters, or sets of single parameters, within our
Monte Carlo implementation of EVSI calculations. We
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take 3 common parameter types—path probabilities,
hazard rates, and continuous variables—and then look
at the questions raised by heterogeneity in prior infor-
mation. As demonstrated in the general EVSI algo-
rithm, all that is required is that we can specify the pa-
rameters of the prior distribution in closed form,
generate new data from the prior, update the priors
with the new data, and either identify the posterior
mean (algorithms C1 and C2) or the parameters of the
posterior distribution (algorithms C3 and C4). Below,
we describe the general algorithm for EVSI calcula-
tions for probability, rate, and normally distributed pa-
rameters, when the prior information relates directly to
the parameters, not to a function of the parameters.

In each case, we assume that the prior information is
based on an observation of n0 individuals, although
this can be a notional sample size if the prior is based
on expert opinion. In the case of a continuous, nor-
mally distributed variable, the prior variance (of an
individual observation) is σ 0

2 , which can either be
known or unknown. The prior variance is based on ν0

degrees of freedom. If the prior variance is based on the
sample variance of n0 previous observation, then ν0 = n0

– 1, but again, the degrees of freedom could be notional.
It is often convenient to refer to precision, which is 1/
variance. Throughout the article, we use the symbol τ
for the precision and parameterize the normal distribu-
tion in terms of mean and precision: normal(µ, τ). In
each case, the decision maker is considering a new
study of size n for a single parameter. For a probability
parameter, the prior is based on having observed a suc-
cesses out of n0 trials. In the case of a rate parameter, the
prior is based on n0 events observed over a total Y0

years at risk, and the proposed study will observe n pa-
tients with an average F years of follow-up. It should be
emphasized that the algorithms below refer to scalar
parameters, but they can also be applied when θI

includes multiple scalar parameters, as long as the
restrictions on correlation (section 1.5) are met.

To see how the standard results of Bayesian theory
apply in a Monte Carlo simulation framework, we dis-
tinguish between the name given to a random variable
θ and the value it takes in the ith simulation, which is
given a superscripted index θ(i).

Specific Algorithms for EVSI for
Individual Parameters, Steps B1–B3

For each outer simulation i:
B1. Draw a sample θI

(i) from the prior distributions of
the parameters θI on which more data are to be
collected.

Probability, based on a events out of n0:
θI

(i) ~ Beta(a, n0 – a)
Rate, based on n0 events in Y0 total years at risk:

θI
(i) ~ Gamma(n0, Y0)

Normal variable, known variance σ 0
2 = 1/τ0:

θI
(i) ~ Normal(µ0, n0τ0)

Normal variable, unknown variance. First draw a
sample from the prior distribution of the
population precision (= 1/variance), then
draw a sample from the prior distribution of
the mean given that precision:

τ0
(i) ~ Gamma(ν0/2, ν0σ0

2 /2)

θI
(i) ~ Normal(µ0, n0τ

(i))

B2. Draw a sample from the predictive distribution of
the sufficient statistics D(i) arising from a new
study of size n, given the current θI

(i)

Binomial numerator: rD
(i) ~ Binomial(θI

(i), n)
Poisson event count: eD

(i) ~ Poisson(θI
(i) nF)

Sample mean, known variance:
µD

(i) ~ Normal(θI
(i), nτ0)

Sample mean, unknown variance. First draw a
sample τD

(i) from the predictive distribution
of the population precision, then draw a
sample µD

(i) from the predictive distribution
of the sample mean:

τD
(i) ~ Gamma((n – 1)/2, (n – 1)/(2τ(i)))

µD
(i) ~ Normal(θI

(i), nτD
(i))

B3. Posterior expectation E(θI|D(i)), for use in algo-
rithms C1, C2:
Probability: E(θI|D(i)) = (a + rD

(i))/(n0 + n)
Rate: E(θI|D(i)) = (n0 + eD

(i))/(Y0 + nF)
Normal variable, known variance:

E(θI|D(i)) = (µ0n0 + µD
(i)n)/(n0 + n) = µpost-kn

(i)

Normal variable, unknown variance:

E(θI|D(i)) =
( )

( )

( ) ( )

( )

µ τ µ τ
τ τ
00 0

0 0

n n

n n
D

i
D

i

D
i

+
+

= µpost-ukn
(i)

Posterior distributions, for use in C3, C4:
Probability: θI|D(i) ~ Beta(a + rD

(i), n0 + n – a – rD
(i))

Rate: θI|D(i) ~ Gamma(n0 + eD
(i), Y0 + nF)

Normal variable, known variance:
θI|D(i) ~ Normal(µpost-kn

(i), τ0(n0 + n))
Normal variable, unknown variance:

θ I
iD| ~( ) tv n post unk

i
post unk

i

0 + − −( , )( ) ( )µ τ

τ τ

τ µ µ

post ukn
i

D
i

D

n n v n v

n n n

− = + +

+ + −

( )

( )

( )( ) / [ /

/ (

0 0 0 0

0 0
( ) ) / ( )]i n n2

0 +
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We refer above to the posterior distribution because
in each simulation, a posterior mean is created from the
new data D(i) and the prior. However, this is ahead of
any new data being collected. Over the N simulations,
the steps B1–B3 are in fact building the prior distribu-
tion of the posterior mean, also known as the pre-
posterior distribution, although we do not sample from
this distribution explicitly. It is instructive to consider
the variance of the preposterior distribution and its re-
lation to sample size, as its role in the EVSI calculation
is the same as the role of the prior in EVPI. Taking the
case of a normally distributed variable with known
variance as an example, it can be shown3 that the
variance of the preposterior distribution is

σ0
2

0 0n
n

n n+






 .

With a small sample size n, the new data, when we
have it, will add very little, so we know in advance that
our posterior mean will be close to our prior mean,
which is already known. Consequently, the variance of
the preposterior becomes lower as n decreases. As the
sample size increases, the variance of a sample mean
(σ 0

2 /n) of course decreases, but we become increasingly
uncertain about where the posterior mean will be. This
will depend more and more on the sample mean, and
uncertainty about the sample mean converges toward
the uncertainty in the prior mean (σ 0

2 /n0), which is, af-
ter all, what is generating the sample. Thus, with an in-
creasing sample size, the variance in the preposterior
approaches the variance in the prior, until EVSI with
an infinite sample is equal to EVPI.

2.2. Transformations of Data or Parameters

Continuous variables may be transformed to a log or
other scale ξ = G(θI) to stabilize the variance and pro-
duce normality. Then the prior, the sufficient statistics
for the new sample, and the formation of a posterior all
take place on the transformed scale using the proce-

dures for normally distributed data outlined above.
Then, at step B3, we can follow algorithms C3 or C4 by
drawing a value ξ|D(i) from the posterior distribution of
the variable on the transformed scale and then back
transforming to obtain a value of θI|D(i) to enter into the
net benefit function in an inner Monte Carlo integra-
tion. Alternatively, if the net benefit is linear in θI, then
it may be helpful to use expressions for E(θI|D(i)) that
can be obtained in closed form (see Table 1).

A similar situation obtains when the prior informa-
tion and the new sample will provide information on a
basic variable that is related to net benefit via a mathe-
matical function. For example, if rate parameters are
expressed as instantaneous hazards, cumulative dis-
counted net benefits can readily be derived directly us-
ing stochastic tree models.39–42 But this requires that the
model be run over a lifetime and that hazard rates re-
main constant. As a result, hazard rates θ are frequently
transformed to a discrete time form in which ξ = G(θ) =
1 – e–θX is the probability of moving from 1 state to an-
other in time X.43,44 The procedure here would there-
fore be to adopt a nested Monte Carlo algorithm: The
prior distribution would be updated on the scale of the
rate parameter, then samples would be drawn from its
posterior distribution and transformed into discrete
time probabilities, to obtain the posterior mean net
benefits via Monte Carlo integration. Care must be
taken to convert continuous time Markov rates in mul-
tiple state models into discrete time Markov transition
probability matrixes.45

3. HETEROGENEITY IN PRIOR OBSERVATIONS

3.1. Random Effects Models

If there are M independent sources of information on
a parameter, these can be combined into a suitably
weighted pooled estimate that can serve as a basis for a
beta, gamma, or normal prior. This assumes that there
is a single fixed effect of which each prior study gives
an estimate. But the existence of more than 1 source of
data raises the question of whether the estimates are
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Table 1 Expectation E(θ) of a Continuous Variable θ, Which Is Normally Distributed after Transformation

Transformation G( ) E(�)

Natural logarithm: log(θ) ~ Normal(µ, τ), θ > 0 exp(µ + 1/(2τ))
Power transform*: θa ~ Normal(µ, τ), θ > 0 µb[1 + b(b – 1)/(2τµ2)], b = 1/a
Logistic*: log(θ/(1 – θ)) ~ Normal(µ, τ), 0 < θ < 1 h + h(1 – h)(1 – 2h)/(2τ), h = eµ/(1 + eµ)

Note: G(θ) ~ Normal(µ, τ). τ is precision (= 1/variance).
*Approximation by 2nd-order Taylor series expansion.68



consistent. At the opposing extreme, one might regard
all the M estimates as completely unconnected. An in-
termediate position, the random effects model is that
the M study-specific estimates are drawn from a com-
mon distribution. (It should be emphasized that al-
though a statistical significance test of the null hypoth-
esis of no heterogeneity can provide strong evidence
that there is heterogeneity, it is unlikely to produce
convincing evidence that heterogeneity can be ruled
out.) Fixed versus random effects models are usually
discussed in the context of measures of relative effi-
cacy,46 and this is taken up in section 4. However, the
same issues are relevant for any measure, and we now
illustrate an approximate approach for a probability
parameter.

First, we represent the available evidence D0 from M
previous studies statistically in terms of a random ef-
fects model. We assume that the logits of the probabili-
ties in these studies, rather than the probabilities them-
selves, are from a common normal distribution. (One
rationale for this rescaling is that all values for proba-
bility parameters are forced to be in the interval 0 to 1).
Each study i, i = 1,2 . . . M, has produced estimates yi of
the ξi = logit(θi), where θi is the “true” probability esti-
mated by study i. Each yi has a known variance σ i

2 de-
termined by the study numerator ri and denominator ni

and based on a normal approximation. The data struc-
ture is

yi = log(ri) – log(ni – ri)

σ i
2 = 1/ri + 1/(ni – ri).

We assume a 2-level Gaussian model, in which the ξi

are drawn from a common normal distribution repre-
senting the population of studies and the observed
logits are also normally distributed about their
expected values.

yi|ξi ~ Normal(ξi, σ i
2),

ξi|µ ~ Normal(µ, σξ
2).

A range of methods is available to estimate such ran-
dom effects models from the available data46,47 and spe-
cifically to generate estimates of the population vari-
ance σ ξ

2 . In what follows, we adopt an approximate
solution in which the value of σ ξ

2 = 1/τξ based on the
original data D0 is assumed fixed and known and will
not be updated explicitly in the data-gathering exer-
cise. Given such an estimate, we obtain estimates of the

population mean µ, its precision τµ, and the ξi and their
precisions τi, as follows:

µ = Σiwiyi/Σiwi, wi = 1/(σ i
2 + σξ

2), τµ = 1/Σiwi

ξi = (yi/σ i
2 + µ/σξ

2)/(1/σ i
2 + 1/σξ

2), τi = 1/σ i
2 + 1/σξ

2.

The critical feature of the random effects model can
be seen in the estimates ξi, which are “shrunk” toward
µ by an amount that depends on distance from the
mean and sample size. Their decreased variance, com-
pared to the empirical variances σ i

2 , reflects the way
the ξi borrow strength from their neighbors, through be-
ing drawn from a common underlying distribution.

The estimates from this meta-analysis of original
data D0 can now inform priors for use in EVSI calcula-
tions. However, the appropriate EVSI calculation de-
pends crucially on the relationship between the target
population in the decision problem and the M popula-
tions that have been studied so far. The main distinc-
tion to be made is between a decision that concerns a
specific patient group, which may or may not have
been studied before, and a decision relating to the en-
tire population from which the M groups were drawn.

3.2. Collection of Further Information
on a Specific Population

3.2.1. Target Population Studied Before

Information on population group K that was studied
in D0 could be used directly to inform a beta prior. How-
ever, as was implied above, a superior estimate of θK is
obtained by considering this population as exchange-
able with the other M – 1 populations.48 This “shrink-
age” toward an overall mean is especially beneficial if
observations so far on the group have been extreme or
based on sparse results. We therefore use ξK and τK as
the prior mean and precision: ξ = logit(θ) ~ Normal(ξK,
τK).

3.2.2. The Target Population
Has Not Been Studied Before

If the decision maker is prepared to consider the
new population as “exchangeable” with the M popula-
tions studied so far, the relevant uncertainty can be ex-
pressed as the uncertainty relating to a new, (M + 1)th,
patient population, drawn from the same overall distri-
bution as the previous M patient populations. We can
generate a predictive distribution by sampling from the
population distribution.
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ξM + 1 ~ Normal(µ, τξ).

Exchangeability is a similar but weaker condition to be
identically independently distributed. In this context,
it means the each of the M + 1 patient populations is an
equally likely draw from this common distribution.

3.2.3. Algorithms Based on Normal/Normal
Conjugacy via Normal Approximation

The approach adopted here is to treat the prior, once
it has been derived from the meta-analysis, as if it were
based on a single previous study. Then the methods of
section 2 are applicable, except that the prior informa-
tion is not on the parameter θ itself but on a function of
θ, ξ = log(θ/(1 – θ)). At this point, the discussion can be
generalized to also cover random effects models for
rates ξ = logθ, based on an equivalent normal theory hi-
erarchical model as outlined above or a random effects
model for some normally distributed continuous pa-
rameter. The appropriate procedure is then similar to
what has been outlined for transformed continuous
variables. The latter case is identical to the known vari-
ance situation in section 2. For rates and probabilities,
we consider again EVSI of a study of size n and with F
years of follow-up for studies on the rate parameter.

Algorithm for EVSI on a Parameter
with a Log Odds or Log Prior

For each outer simulation i:
B1. (a) Draw a sample ξ(i) from its prior distribution

Normal(µ0, τ0) (see above)
(b) Transform back to θ(i):

logit of probability: θ(i) = exp(ξ(i))/(1 + exp(ξ(i))
log rate: θ(i) = exp(ξ(i))

B2. (a) Draw a sample from the distribution of the suf-
ficient statistics:
Binomial numerator: rD

(i) ~ Binomial(θ(i), n),
Poisson event count: eD

(i) ~ Poisson(θ(i)nF)
(b) Find the sufficient statistics for sample, using

the normal approximation.
logit probability: µD

(i) ≈ log(rD
(i)/(n – rD

(i))),
τD

(i) ≈ [1/rD
(i) + 1/(n – rD

(i))]–1

log rate: µD
(i) ≈ log(eD

(i)), τD
(i) ≈ 1/eD

(i)

B3. (a) Update the prior with the new data to obtain
parameters of the posterior distribution:

ξ|D(i) ≈ Normal((µ0τ0 + µD
(i)τD

(i))/(τ0 + τD
(i)), τ0 + τD

(i))

(b) For use in algorithms C2, C3, C4, transform
this back to the original parameter scale:

logit of probability:
θ|D(i) = exp(ξ|D(i))/(1 + exp(ξ|D(i)))

log rate: θ|D(i) = exp(ξ|D(i))
(c) Alternatively, an approximate expression for

the posterior expectation E(θI|D(i)) may be
available in closed form for use in algo-
rithm C1 (see Table 1).

3.3. Collecting Further Information
on the Population Mean

A very different EVSI calculation is required if infor-
mation is desired not on a single patient group but on
the population mean µ itself. A situation in which this
might be relevant would be, for example, a test sensi-
tivity parameter that has been observed to vary unsys-
tematically from center to center, perhaps as a result of
variation in local expertise in its use. Changes in base-
line treatment efficacy or disease progression parame-
ters might also vary in this way. If this variation be-
tween centers was completely random, it might be
reasonable to consider the M prior studies to be random
draws from the national population. Then the overall
mean µ would then be an estimate of the national aver-
age, and its precision τµ would appropriately represent
the uncertainty in the mean. There are a number of
important caveats to this analysis, which are examined
later in this section.

To obtain new information on population average µ,
it will not be useful to run a single study in 1 center.
However large this study is, the addition of 1 more data
point will do little to reduce τµ. Instead, a study is re-
quired in a number of centers, randomly chosen from
the general target population. The design problem is to
weigh the informational benefits and (low) costs of re-
cruiting more individuals from each center with the
higher costs and higher informational benefit of re-
cruiting new centers. Of course, the number of centers
must be reasonable to obtain a good estimate of the
population mean, while the numbers per center must
be high enough to give a reasonable estimate of the cen-
ter-specific value. We will therefore examine how to
calculate EVSI for any number m of centers and any
number n of patients per center. This is illustrated here
for an underlying probability parameter, but the results
would follow through to any parameter for which a
Gaussian hierarchical model can be constructed.
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Algorithm for EVSI for the Mean of
a Random Effects Distribution that
Is Normal on the Logistic Scale

For each simulation i:
B1. (a) Draw m independent samples ξk

(i), k =
1,2 . . . m, from Normal(µ, τξ)

(b) Transform back to θk
(i) = exp(ξK

(i))/(1 + exp(ξk
(i)))

B2. (a) Draw m binomial sample numerators, 1 for
each k: rk

(i) ~ Beta(θk
(i), n)

(b) Estimate the population average µD
(i) and its

precision τµD
(i) from the m binomial samples

using the closed-form moment estimator29 as
follows (temporarily dropping the simula-
tion superscripts (i))):

xk = logit(rk/n)

s2 = Σk[xk
2 –(Σkxk)

2/m]/(m – 1)

vk = 1/rk + 1/(n – rk)

σµ
2 = max(0, s2 – Σkνk/m)

wk = (νk + σµ
2 )–1

µD(i) = Σwkxk/Σwk, τµD
(i) = Σwk

B3. (a) Update the prior distribution with the new
sample data to obtain parameters of the post
erior distribution:

ξ|D(i) ~ Normal((µτµ + µD
(i)τµD

(i))/(τµ + τµD
(i)), τµ + τµD

(i))
(b) and (c) Proceed as for the algorithm for param-

eters with a log odds prior

A weakness in the approach is the use of the moment
estimator, which can produce negative variances. This
is one of several approximations that are taken up in
discussion.

A word of caution is required regarding the interpre-
tation of the random effects distribution for these pur-
poses. First, there is no guarantee that the previous M
studies have sampled from the overall patient popula-
tion in a representative way. For example, if patient
groups differed in the baseline probability of disease
progression, then the choice of population of interest in
the M previous RCTs might be far from random. If, how-
ever, interest was focused on a wider population that
perhaps included some or all the previous M, then it
might be possible to reconstruct the required target
population as a suitably weighted µ and its precision τµ
using the ξi and τi from the prior meta-analysis with
population sizes as weights. Uncertainty regarding the

weights could also be built in using a Dirichlet
distribution.

A 2nd difficulty with the approach we have sug-
gested is that there is a danger of confusing parameter
uncertainty with parameter variation. If the reason for
parameter heterogeneity is known, for example, an as-
sociation with age or disease severity, then the decision
problem should possibly be focusing on the age or se-
verity threshold at which one treatment becomes cost-
effective relative to another. Uncertainty regarding the
threshold could be reduced by further research, but
this leads to questions concerning the uncertainty in
the mathematical relationship between θ and the
covariate, which takes us beyond the scope of this
article.

4. UNCERTAINTY IN MEASURES
OF RELATIVE EFFICACY

4.1. Relative Measures Involving Probabilities:
Risk Difference, Risk Ratio, and Odds Ratio

In comparative cost-effectiveness analyses involv-
ing clinical interventions, the decision model includes
2 parameters, θ1 and θ2, representing, say, the probabili-
ties of recovery on treatments 1 and 2. In a “textbook”
presentation of such a problem, one would assume
Beta priors for each parameter. However, almost invari-
ably, both the epidemiological literature and expert
opinion on θ1 and θ2 will be expressed in terms of some
relative efficacy measure—a risk difference, risk ratio,
or odds ratio—and these same measures will be em-
ployed in the design and analyses of planned trials.
(See Deeks49 for discussion of the merits of alternative
relative effect measures.) The decision question is to
choose an optimal allocation {n1, n2} for a randomized
trial. It is assumed, in addition, following common
practice in decision literature, that the baseline recov-
ery rate, θ1, has already been determined, either from
other trials or from a cohort study. Often, θ1 is taken to
be a constant. However, to preserve generality, we as-
sume it is a random variable with a beta or gamma
prior, and furthermore, the prior estimate of θ1 is inde-
pendent of the prior for the relative effect measure. The
proposed RCT will not update this parameter, only the
relative effect measure. Alternatives are examined in
section 4.3. The general form of the algorithm in this
situation is as follows, with the appropriate formula for
risk difference (RD), log odds ratio (LOR), log risk ratio
(LRR), and log hazard ratio (LHR).
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Algorithm for EVSI for Relative Effect Measures

For each simulation i:
B1. (a) Draw a sample from the prior distribution ξ(i) =

G(θ1, θ2) ~ Normal(µ0, τ0) of the relative effect
measure, and draw a sample baseline param-
eter θ1

(i) from its prior distribution.

RD, LOR, LRR: θ1
(i) ~ Beta(a, b)

LRH: θ1
(i) ~ Gamma(n0, Y0)

(b) Transform back to obtain an implied prior for
θ2

(i):

RD: θ2
(i) = ξ(i) + θ1

(i)

LOR: θ2
(i) = exp(ξ(i))/(1 – θ1

(i) + θ1
(i) exp(ξ(i)))

LRR: θ2
(i) = θ1

(i)exp(ξ(i))

LHR: θ2
(i) = θ1

(i)exp(ξ(i))

B2. (a) Draw a sample sufficient statistic D(i), a bino-
mial numerator or Poisson event count as ap-
propriate, for each arm t,

RD, LOR, LRR: rt
(i) ~ Binomial(θt

(i), nt)

LHR: et
(i) ~ Poisson(θt

(i)ntF)

(b) Convert the sufficient statistics to a mean and
variance using the normal approximation:

RD: µD
(i) = r2

(i)/n2 – r1
(i)/n1, τD

(i) ≈ [r2
(i)(n2 – r2

(i))/n2

+ r1
(i)(n1 – r1

(i))/n1]
–1

LOR: µD
(i) = log[(r2

(i)(n1 – r1
(i))/(r1

(i)(n2 – r2
(i)))],

τD ≈ [1/r1
(i) + 1/(n1 – r1

(i)) + 1/r2
(i) + 1/(n2 – r2

(i))]–1

LRR: µD
(i) = log[r2

(i)n1/(r1
(i)n2)],

τD
(i) ≈ [(n1 – r1

(i))/(n1r1
(i)) + (n2 – r2

(i))/(n2r2
(i))]–1

LHR: µD
(i) = log[e2

(i)n1/(e1
(i)n2)], τD

(i) ≈ [1/e1
(i) + 1/e2

(i)]–1

B3. (a) Update the prior with the new sample to obtain
parameters of the posterior distribution:

ξ|D(i) ~ Normal((µ0τ0 + µD
(i)τD

(i))/(τ0 + τD
(i)), τ0 + τD

(i))

(b) For use in algorithms C2, C3, C4, back trans-
form to obtain θ2|D(i) using the relationships
set out in step B1(b) and θ1

(i)

(c) If conditions are met for algorithm C1, use the
approximations for the posterior means
E(θ2|D

(i)) in Table 2.

4.2. Heterogeneity of Prior Information
in Measures of Relative Efficacy

The relative merits of fixed or random effects meta-
analysis in the context of relative efficacy measures
have been well rehearsed.30,31,50 The comments in sec-
tion 3 on heterogeneity of proportions or other absolute
quantities apply equally to relative effect measures. In
other words, the decision maker must determine
whether the target population has been studied before
and if not, whether the new group is exchangeable with
groups that have been studied or whether interest cen-
ters on the average of a set of patient groups. The meth-
ods outlined previously can then be applied using the
formulae above for updating relative effect measures
and normal approximations for the variances of the
relevant relative effect measures.

However, the danger of confusing uncertainty with
variation appears to be greater in a relative effect mea-
sure than in a single parameter, and the nature of varia-
tion and its implications for the target population must
be considered carefully. There may certainly be scope
for considering a national average LOR, when it is
known that relative treatment efficacy varies unsys-
tematically between centers, perhaps because of the
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Table 2 Expectations of Random Variable E(θ2) Given the Distributions of θ1 and Relative Effect Measures
G(θ1, θ2) ~ Normal(µ, τ), Assuming θ1 and G(θ1, θ2) Are Independent

Relative Effect
Measure G(�1, �2) ~ N(�, �) �1 E(�2)

Risk difference θ2 – θ1 Beta(a, b) µ + a/(a + b)
Log odds ratio* log(θ2(1 – θ1)/(θ1(1 – θ2))) Beta(a, b) h + (1/τ + 1/a + 1/b)h(1 – h)(1 – 2h)/2, where h = ew/(1 + ew),

and w = µ + log((a – 0.5)/(b – 0.5))
Log relative risk* log(θ2/θ1) Beta(a, b) a exp(µ + 1/(2τ))/(a + b)
Log hazard ratio* log(θ2/θ1) Gamma(a, b) a exp(µ + 1/(2τ))/(a + b)

*Second-order Taylor series expansion.68



way one of the treatments is administered. However,
this seems intuitively much less likely than unsystem-
atic variation in baseline parameters. Metaregression51–

53 is the statistical technique for determining the rela-
tionship between relative treatment efficacy and a co-
variate such as age that may explain heterogeneity.
Once again, there is every possibility that further
information is required on the relation between
relative efficacy and the covariate.

4.3. Updating Both Baseline
and Relative Effect Measures

Whether or not the prior for baseline efficacy, θ1 on
treatment 1, is based on cohort or RCT studies, it may
make sense to use results of a new study to update the
baseline parameter as well as the relative effect mea-
sure. The comparator treatment arm of the trial will, af-
ter all, represent the efficacy of placebo or standard
treatment under the relevant, contemporary circum-
stances. Technically, the algorithm of the previous sec-
tion can be easily modified to achieve this: All that is
required is that the simulated data in step B2 is used to
update not only the relative effect measure but also the
baseline efficacy via the beta binomial in section 2.
Then, in step B3, the posterior distribution is used in
steps B3(a, b) or its parameters in steps B3 (c).

However, this procedure has an interpretation that
may not be the intended one: It assumes that there is a
single, constant efficacy under standard care that does
not vary between studies and that can therefore be up-
dated by additional information. This would depart
from meta-analysis practice, in which the study effect
is usually removed by using the relative effect mea-
sures as primary data or may at best be modeled as a
random effect. If this line of reasoning is accepted, then
the EVSI calculations for studies that update the base-
line study effect as outlined above will be valid only if
the decision problem defines a specific patient group
and some specific circumstances for which it can be
reasonably held that the baseline really is fixed. If a
fixed effects model cannot be assumed, then the base-
line should be considered to be a random effect, and if
further information is needed, then this should be
further information on its mean (see section 3.3).

5. DISCUSSION

EVSI calculations can be carried out for 1 or more
parameters, in a wide range of decision models, in the
presence of multiple sources of uncertainty, and with

priors structured in the form typically seen in epidemi-
ological literature. This article has shown how these
methods can be applied when prior information
informs us about transformations of the parameters
that appear in the model and, in particular, the canoni-
cal situation with priors on relative efficacy measures.
In addition, the prior information available on parame-
ters may exhibit additional sources of uncertainty or
variation (heterogeneity), over and above sampling er-
ror. This has led us to propose different EVSI calcula-
tions relating to the collection of further information on
a previously studied group, on a new “exchangeable”
group, or on the average of a set of heterogeneous
population groups.

5.1. The Scope of Proposed Methods

Expected value of information theory is concerned
with the accurate quantification of uncertainty. The
overriding feature of these methods is therefore that
they can be applied only to fully probabilistic models.
Although many deterministic models can be converted
into probabilistic form, those that rely on Monte Carlo
simulation to be evaluated for a fixed set of parameter
inputs require a further outer simulation even to deter-
mine the decision maximizing expected net benefits
under parameter uncertainty. In many cases, an addi-
tional level of Monte Carlo simulation may prove
computationally nonfeasible. This is not, of course, a
failure of EVSI theory or a limitation of the algorithms
proposed here but simply a reflection of the computa-
tional cost of microsimulation and discrete event simu-
lation, which encourages reliance on deterministic
forms of sensitivity analysis. However, Monte Carlo
simulation is not the only way of evaluating probabilis-
tic models: Gaussian process models can be used to
produce more accurate estimates with far fewer
simulations.54–57

Given a computationally manageable probabilistic
model, the EVSI algorithms we have proposed are flex-
ible, accommodating parameters in complex relations
to the data to be collected and nonlinear net benefit
functions. In effect, the preposterior uncertainty is
propagated through the decision model in the same
way as prior uncertainty in the evaluation of prior net
benefit. Where net benefit is linear in all parameters,
Taylor series approximations are often available, al-
lowing evaluation via a single Monte Carlo cycle even
when information is obtained on nonlinear functions
of parameters.
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There are, however, significant limitations. One im-
portant class of restrictions are those regarding prior
parameter correlation. If there are correlations between
the parameters θI of interest that are to be updated and
the remaining set θ I

c , then new data on θI will provide
information about θ I

c , and the calculations of posterior
net benefit, including the mean posterior net benefit,
will be incorrect. (We exclude from this the specific
case of prior correlation that can be represented as a
multivariate normal distribution, as this can be readily
updated with a multivariate normal likelihood.) It
could be argued that the restriction is not significant as
the vast majority of decision models are populated
with independent parameters derived from unrelated
literature sources. However, this way of populating de-
cision models owes a lot to the philosophy behind de-
terministic modeling. The uncorrelated priors assump-
tion may become less relevant, as the whole thrust of
probabilistic, Bayesian, decision analysis—and above
all, EVI theory—requires that uncertainties are accu-
rately represented and therefore based on all available
data, rather than simply “enough” data to populate the
model. Incorporation of all the available data will often
necessitate use of computational techniques for com-
bining information on parameters with information on
model outputs and other complex functions of several
parameters. Such methods inevitably induce parame-
ter correlation. These include the confidence profile
method of David M. Eddy and his colleagues58 and the
Bayesian Monte Carlo methods in the risk analysis lit-
erature.59–61 The ready availability of flexible Bayesian
Markov chain Monte Carlo (MCMC) software to carry
out these and still more complex multiparameter evi-
dence syntheses62 is likely to accelerate a trend away
from simple uncorrelated prior parameter structures.

Another related limitation is that priors must be rep-
resented in a fully parametric form. Although a joint
posterior distribution from a Bayesian MCMC analysis
of current data would conceptually represent the ideal
prior for EVSI calculations, this does not constitute a
set of priors that are amenable to updating with conju-
gate likelihoods. There are, in fact, few examples of
EVSI calculations that have not relied on conjugacy to
achieve computational feasibility, but one exception is
Bayesian Monte Carlo.14 This is one of a class of several
nonparametric, noniterative Monte Carlo techniques48

for updating a prior with new data. In the EVSI context,
these methods require nested Monte Carlo simulation
but could be applied with correlated priors, or when
the new data induces parameter correlation, and in
nonlinear models. Noniterative MC methods have the
general difficulty that they can be inefficient if the prior

parameter space and the likelihood parameter space
are disparate, and it is therefore too early to determine
whether they can be used routinely in EVSI as applica-
tion-specific modifications may be required.61 The in-
creasingly popular MCMC methods avoid these prob-
lems by converging quite rapidly toward the posterior
parameter space, but the fact that the first few thousand
“burn in” simulations have to be discarded presents a
barrier to their routine use in the inner integration step
of EVSI calculations. There are, however, a wide range
of computational methods for Bayesian updating,48,63

which, although somewhat sidelined by MCMC for
general Bayesian data analysis, could still be highly
relevant in computation of EVSI in medical
applications. This is an area for future research.

5.2. Approximate Nature of
Proposed Solutions

Our main objective in the article has been to clarify
the nature of EVSI calculations in an epidemiology
context for a broad range of parameters and informa-
tion structures. Simplifying assumptions have there-
fore been made to preserve generality and facilitate ex-
position. Having said this, the proposed algorithms are
intended for use in real applications, so it is worth
considering the potential for improvement.

Apart from the algorithms proposed in section 2, the
methods used here must be regarded as only approxi-
mate. Normal approximations are used in many places
to create the normal-normal conjugacy conditions that
allow binomial and Poisson distributed data to be com-
bined with priors that are commonly expressed in
terms of normal distributions, and it is not known what
effect this might have on accuracy. Although there are
“exact” methods for updating priors on LOR,64 and
even risk ratios and risk differences with binomial
data,65 these generally require MCMC.

In basing priors on the output from the meta-analy-
sis of existing data set D0, a series of additional approxi-
mations have been made. First, it was assumed that the
population variance σ ξ

2 was known. It is well known
that this assumption can create problems: Negative
variance estimates can occur, and there is a tendency to
exaggerate the uncertainty in extreme ξi. The difficulty
does not lie so much in representing the possibility that
the population variance is unknown as much as in re-
flecting the complex nature of the joint uncertainty of
σ ξ

2 , µ, and the study specific true means ξi, while still
devising a simple algorithm for updating with new
data D.
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Another approximation, in dealing with heter-
ogenous priors, was that all the prior information was
summarized in terms of parameters of normal distribu-
tions for µ and the ξi. New data D was used to update
these distributions, but at this point, the original meta-
analysis structure had been discarded. An alternative
would be to analyze the new sample D(i) on each simu-
lation i along with previous data D0 as the (M + 1)th
group. This seems more logically consistent, as the pos-
terior analysis post D(i) is exactly the same as the earlier
posterior analysis post D0. Compared to this “re-meta-
analysis,” it is likely that the methods we have pro-
posed will overestimate the value of the new study on
the new (M + 1)th patient population, especially for
large M. This is because if the preposterior analysis
were based on the full M + 1 group data set, the mean
for group M + 1 would be drawn in toward the popula-
tion mean. The methods proposed by Abrams and
Sanso,66 based effectively on the same 2-stage Gaussian
model for meta-analysis assumed in section 3, provide
accurate approximations for posterior means of µ and ξi

that can be computed in closed form. Suitably adapted,
these could have an important role in some EVSI
calculations.

It should not be forgotten, of course, that Monte
Carlo methods for integration are themselves only ap-
proximations, and the appropriate number of simula-
tions from the prior and nested “inner” Monte Carlo
simulations for algorithms C2, C3, and C4 is itself a
nontrivial matter. Bearing in mind that the EVSI calcu-
lation is set within an optimization problem for sample
size, the attractions of the C1 algorithm that relies only
on prior and posterior means on each outer simulation
are all the stronger. We have recommended the use of
Taylor series approximations when EVSI requires up-
dating nonlinear functions of parameters in otherwise
linear models. But it is possible that this approach
could sometimes also be valuable when net benefits are
not linear in parameters.

The accuracy of the outer simulation depends on the
number of iterations on which the strategy option with
the maximum postsample net benefit differs from the
current optimal strategy. This can be assessed from the
mean and variance of the prior incremental net bene-
fits. Furthermore, when plugging parameter means or
subtracting the expected value of the current decision,
it is also essential to ensure these were generated by the
same random number sequence. This will reduce the
error due to simulation. Whenever the net benefit is not
linear in all its parameters, nested Monte Carlo calcula-
tions are required, but the relative effect of increasing
the number of inner or outer simulations is not known.

The Gaussian process approach to computationally ex-
pensive models could again be useful.54

5.3. Optimal Expected Net Benefit
of Sampling as the Context for EVSI

It is worth reminding ourselves that EVSI calcula-
tions are set within an optimization problem for ex-
pected net benefit of sampling. In section 1.6, for exam-
ple, the case of P parameters passing the EVPPI
“hurdle” was mentioned, as was the requirement to op-
timize over the vector of samples sizes n = {n1, n2, . . .
nP}. Recent work in the hydrology literature has com-
pared 2 general optimization methods for such prob-
lems, the branch and bound and the genetic algo-
rithm.13 However, this formulation of the problem, in
which each unknown parameter is informed by an item
of data, will not always be applicable in a medical con-
text and does not seem to entirely cover what one might
mean by an “optimal research portfolio.” As we have
seen, data on a relative effect measure—a function of
parameters—may be required, as well as or instead of a
baseline. At the same time, a single study might pro-
vide information on the proportion of patients able to
benefit from a treatment, on a relative probability of
avoiding a defined illness condition, on baseline treat-
ment efficacy, on the time spent in hospital by those
who become ill, on average utilities in certain states,
and on certain cost components.67 The precise charac-
terization of the real research space and mathematical
solutions to the optimization problem are issues for
further research.

5.4. Conclusion

This article has attempted to set out a technical ap-
proach to EVSI calculations that fits within the Monte
Carlo computation framework generally used for
probabilistic decision analysis. However, to develop
computational methods relevant for the form in which
epidemiological data are analyzed and presented in the
literature, it has been necessary to explore many non-
technical issues relating to the interpretation of epide-
miological data. In particular, whether the uncertainty
that further data are supposed to reduce is uncertainty
in the absolute parameter values or in a relative effect
measure. In addition, EVI analysis requires investiga-
tors to be completely specific about all parameter un-
certainty relevant to the decision and reveals searching
questions about the origin of uncertainty and variation
in epidemiological data, especially the relationship be-
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tween the target population for decision and the popu-
lations previously studied. These are not new ques-
tions, but the EVI analysis exposes the fact that they
must be answered if coherent research planning and
design are to be undertaken.

We have shown how EVSI calculations can be car-
ried out via a single or double Monte Carlo simulation
for a very wide range of decision situations, given an

explicit model for all sources of uncertainty and varia-
tion. Further research is required to extend the avail-
ability of these powerful decision theoretic calcula-
tions to a still wider class of models, to characterize the
concept of an optimal research portfolio, and to suggest
solutions to the optimization problems that this
represents.

APPENDIX
Illustrative Calculations for Expected Value of Sample Information (EVSI) in a Simple Decision Model

This appendix provides practical examples of several of
the algorithms mentioned in the main text. We begin by pre-
senting a fictitious decision model, then derive the optimal
current decision and its value. A computing strategy is out-
lined before we set out EVSI calculations for different param-
eters. In the appendix, we simply outline the main features of
the calculations along with some illustrative results. SAS
code for all the examples is available at http://www.hsrc.
ac.uk/Current_research/research_programmes/mpes.htm.

The Model

A new treatment has been proposed for an illness in which
a critical event occurs with probability pC on standard care.
The new treatment is thought to reduce the risk of the critical
event substantially but it is accompanied by side effects, with
probability pSE. There is prior information on the efficacy of
the new treatment in the form of a log odds ratio (LOR) and
also on the probability of side effects, but both are limited.
The critical event leads to a decrement in quality of life, QE,
but this too has been assessed imprecisely. The decision

model is shown in Figure A1. Its parameters and their prior
expectations and distributions appear in Table A1.

The A Priori Decision and Its Expected Value

Using the model in Figure A1, we can readily set out ex-
pressions for the net benefit B(t, θ), with t taking the values C
for the standard care and T for the new treatment.

Net benefit equations are as follows:

nbC = pC *(–CE + W * L * (1 + QE)/2) + (1 – pC) * W * L

nbT = –CT + pSE * pT * (–CSE – CE + W *

(–QSE + L * (1 + QE)/2)) + pSE * (1 – pT) *

(–CSE + W * (L – QSE)) + (1 – pSE) * pT*

(–CE + W * L * (1 + QE)/2) + (1 – pSE) *

(1 – pT) * W * L.

Below, we will write it as a known function of 5 arguments,
B(t, pSE, QE, pC, pT).
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Table A1 Model Parameters, Prior Distributions, and Their Means

Description Parameter Mean Distribution

Mean remaining lifetime L 30 Constant
QALY after critical event, per year QE 0.6405 logit(QE) ~ N(0.6,6)
QALY decrement due to side effects QSE 1 Constant
Cost of critical event C $200,000 Constant
Cost of treatment CT $2000 Constant
Cost of treatment side effects CSE $100,000 Constant
Monetary value of 1 QALY W $75,000 Constant
Probability of critical event, no treatment pC 0.15 Beta(15,85)
Probability of treatment side effects pSE 0.25 Beta(3,9)
Odds ratio, pT(1 – pC)/(pC(1 – pT)) OR log(OR) ~ N(–1.5,3)
Probability of critical event on treatment pT 0.0440

Note: QALY = quality-adjusted life year. The parameters of normal distributions are given as mean and precision (= 1/variance). Prior means of parameters QE
and pT are based on 100,000 simulations.



The equations are multilinear in all their parameters so
that the expected net benefits can be found by plugging in
their mean values. Care must be exercised here as we do not
have the prior means of QE and pT immediately available but
must obtain them indirectly, either through simulation or us-
ing the Taylor series formulae in Tables 1 and 2. As explained
below, we chose to calculate the expected net benefit by sim-
ulation, deriving values of QE and pT on each Monte Carlo cy-
cle via the following relationships:

QE = exp(Logit(QE)/(1 + exp(Logit(QE))

and

logit(pT) = log(pC/(1 – pC)) + LOR

pT = exp(Logit(pT)/(1 + exp(Logit(pT)).

Based on 100,000 simulations, we find expected net bene-
fits are $2,159,300 for standard care and $2,164,700 the new
treatment, to the nearest $100. The prior decision is therefore
strategy T, new treatment, and the expected value of this deci-
sion is $2,164,700.

Computing Strategy

Because the algorithms we propose are all based on Monte
Carlo simulation, results are subject to simulation error.
When drawing samples from a prior distribution beta(15,85),
there is no guarantee that the mean of even 100,000 simula-
tions will be exactly the 0.15 expected. In addition, the final
step of all EVI calculations involves subtracting the expected
value of the current optimal decision from the expected value
of a decision based on perfect or sample information. If these
2 elements are calculated from different random number se-
quences, further inaccuracy will occur.

The following computing strategy has been adopted to
mitigate these problems:

1. For each prior distribution, the same random number
sequence is used for all calculations.

2. When the prior expectation of a parameter is required,
the value used is the mean given by that random
Monte Carlo sequence, which will be called θ0.

3. We rewrite EVSI expression (4) from section 1.5,

E E B t E B tD t D I I
c

t I I
c

I
c

I
max ( , , ) max ( , , )

,( | )θ θ θθ θ θ θ− ,

as

E E B t E B tD t D I I
c

D I I
I
c

I I
c

I
max ( , , ) ( *, ,

,( | ) ,( | )θ θ θ θ
θ θ θ θ− c )



 ,

where t* indicates the a priori optimal strategy, in this case T.
This means that on each draw from the prior, we compute the
expected value of both decisions based on the predicted pos-
terior net benefits and record either a zero when T is the pos-
terior decision or the difference between the expected poste-
rior benefits when C is best. This partially controls for the
effect of the random Monte Carlo sequence used to draw sam-
ple statistics from their predictive distributions (step B2) and
also for the effects of any normal approximations that are
used to derive sample statistics in a form that is conjugate
with the priors.

Expected Value of Perfect Information (EVPI)

Using the formulation above, EVPI is the expected differ-
ence between the value of the optimal decision based on per-
fect information and the value of the prior decision. We take
the maximum of B(C, θ(i)) and B(T, θ(i)) on each Monte Carlo
cycle, subtract B(T, θ(i)), and average over all simulations. The
EVPI per patient turns out to be $10,140. We can estimate the
probability that the optimal prior decision will turn out to be
the wrong decision by counting the number of simulations in
which B(C, θ(i)) > B(T, θ(i)). This probability is 0.43.
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Figure A1 Decision model. See Table A1 for prior expectations and distributions.



EVSI for Probability of Side Effects, pSE

What would it be worth to conduct an observational study
on n = 60 patients who are on the new treatment? Following
the algorithm in section 2.1, we draw 100,000 values from the
prior distribution pSE ~ beta(3,9) (step B1), then for each pSE

(i),
we draw a binomial sample rD

(i) from Binomial(pSE
(i), n = 100)

(step B2). For each simulated study numerator rD
(i), the poste-

rior mean pSE
(i) is given by

E [pSE|D(i)] = (a + rD
(i))/(n0 + n),

where a = 3, n0 = 12, and n = 60. The above posterior mean
value of pSE on each Monte Carlo cycle i is then used in the
formula for net benefit (step B3), with all the other parameters
taking their prior mean value (algorithm C1) as net benefit is
linear in all parameters. Specifically, we find the value of

E [B( t, θ|D (i) )] = B (t, E [pSE|D (i)], E[QE], E [pC], E [pT])

= B(t, E [pSE|D(i)], 0.6402, 0.1499, 0.0440).

For both t = C and t = T on each cycle i, find the maximum and
subtract from it the value of the current decision, that is,
where t = T. The average of this series of zeros and differences
is the EVSI, which is $5,550 for a study of size n = 60. (The
constants in the equation are the values θ0 of the prior expec-
tations as computed by simulation.)

Because side effects do not occur under standard care, the
term pSE does not appear in the equation for net benefit under
C, and this expression is a constant over each simulation. Val-
ues of B(T, E [pSE|D(i) ], 0.6402, 0.1499, 0.0440) that are less
than $2,159,300, the expected benefit under C, will therefore
lead to a change in decision. Figure A2 shows the distribution
of E[B(t, θ|D(i) )] – 2,159,300 across the simulations. This is
the so-called preposterior distribution of incremental net

benefit (see section 2.1). An additional study of n = 60 pa-
tients changes our prior decision in 34% of simulations, the
area to the left of zero. The discrete nature of the distribution
in Figure A2 is due to the fact that the only variable in
E[pSE|D(i)] is an integer rD

(i).
It is instructive to observe the effect of different sample

sizes. Table A2 shows how EVSI increases with sample size.
Because of the relatively low precision of the prior mean,
even modest study sizes contribute quite substantially to the
decision. The table also gives the probability that the new
sample will change the initial decision, that is, Pr{B(C,
E[θ|D(i)]) B(T, E[θ|D(i)])}. This appears at first sight to behave
inconsistently, rising from 0.25 with a sample size of 1 and
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Figure A2 Histogram of the simulated posterior expectation of incre-
mental net benefit given further information on the parameter pSE
based on a sample of n = 60, also known as the preposterior distribu-
tion. For samples on the left of zero (34% of occasions), the expected
net benefit after the new sample is greater under standard care, and a
decision maker would switch treatment.

Table A2 Expected Value of Sample Information (EVSI) Calculations for pSE with a Range of Sample Sizes,
and Probability That the New Study Will Change the Current Decision and Preposterior Means

for pSE and for Net Benefit under New Treatment

n EVSI ($) Probability of Change in Decision Preposterior s (pSE) Preposterior s (B(T, θ)

1 1190 0.25 0.03 5.8
5 2750 0.37 0.07 11.4

10 3630 0.27 0.08 14.2
20 4550 0.39 0.09 16.6
40 5250 0.36 0.11 18.4
60 5550 0.34 0.11 19.1

100 5820 0.36 0.11 19.8
200 6010 0.36 0.12 20.3
500 6150 0.36 0.12 20.7

1000 6190 0.37 0.12 20.8
10,000 6240 0.37 0.12 20.9

10,000,000 6240 0.37 0.12 20.9
Note: These are the distributions of the predicted posterior means over the 100,000 Monte Carlo draws.



then rising to 0.36 with n = 5, but falling again with n = 10.
This is again due to the discrete nature of the posterior distri-
bution of pSE. With n = 1, for example, based on the prior
mean of 0.25 for pSE, the new study will produce rD = 1 in 0.25
simulations. On these occasions, the posterior mean for pSE
must be (3 + 1)/(12 + 1) = 0.308, which is high enough to
switch the decision to standard care. Table A2 also shows
how the preposterior variance of pSE and of net benefit under
new treatment, E[B(T, θ|D(i))], increase with increasing sam-
ple size.

EVSI for Quality of Life after Critical Event, QE

The prior distribution for logit(QE) is normal, with a mean
of 0.6. Assume this was based on a study of n0 = 12 patients
with side effects. A decision maker now wants to assess the
EVSI attaching to a new study on n = 100 new patients. The
precision (1/variance) of the prior distribution is n0τ0 = 6 (see
Table A1), assumed to be known, therefore the population
precision τ0 = 0.5.

We again take 100,000 simulations (A1), and on each sim-
ulation, we draw a sample lQE

(i) = logit(QE)
(i) from its prior dis-

tribution N(0.6,6) (step B1), and then a new sample mean µD
(i)

from N(lQE
(i), 0.5n) (step B2). The precision of the sample

mean, 0.5n, is based on the population precision, 0.5, and the
size of the proposed new study, n. Next (step B3), the prior is
updated with the new sample to give a posterior expectation:

ElQE
(i) = E [logit(QE)|D (i)] = (0.6 × 6 + µD

(i) × 0.5n)/(6 + 0.5n).

Although the net benefits are linear in all parameters, we can-
not immediately plug in a posterior mean for QE because at
this point, we have only a posterior mean for logit(QE). How-
ever, on each simulation, we have a value for both the mean
and precision (6 + 0.5 × 30) for the posterior distribution
logit(QE)|D(i), and we can use the Taylor series method (see
Table 1) to obtain an approximate posterior mean for QE on
each cycle, as follows:

h(i) = exp(ElQE
(i))/(1 + exp(ElQE

(i)))

E[QE|D(i)] = h(i) + h(i)(1 – h(i)) (1 – 2h(i))/ 2(6 + 0.5n))

and plug this into the net benefit equations, with remaining
parameters taking the value of their prior means

B(t, E[pSE], E[QE|D(i)], E[pC], E[pT])

= B(t, 0.2498, E[QE|D(i)], 0.1499, 0.0440).

Averaging over all simulations, we find that a new study of QE
with n = 100 patients has an EVSI of $1880.

EVPI on the LOR

What would be the expected value of a decision based on
perfect information about the LOR? Methods for the expected
value of partial perfect information (EVPPI) in general have
been given by Felli and Hazen9; however, as LOR is a nonlin-

ear function of parameters, these methods need to be slightly
modified. We provide this illustration here as it allows us to
compare 1-stage EVSI computation with 2-stage EVSI, illus-
trates the use of the Taylor series formulae in Table 2, and
serves as an introduction to the EVSI calculations for LOR.

To compute EVPPI for LOR, we must draw repeated sam-
ples LOR(i) from the prior for LOR, and for each sample, we
must identify the maximum net benefit. First, imagine that
we set out to evaluate expected net benefit on cycle i by a 2nd
stage, inner Monte Carlo simulation. On this inner cycle, we
would undertake the following calculations on each inner cy-
cle k nested within i:

1. Draw a sample pSE
(i,k) from the prior distribution

beta(3,9).
2. Draw a sample logit(QE

(i,k)) from its prior distribution
N(0.6,6).

3. Calculate
QE

(i,k) = exp (logit(QE
(i,k)))/(1 + exp(logit(QE

(i,k) ))).
4. Draw a sample pC

(i,k) from its prior beta(15,85).
5. Calculate logit(pT

(i,k)) = logit (pC
(i,k)) + LOR (i).

6. Calculate
pT

(i,k) = exp (logit(pT
(i,k) ))/(1 + exp(logit(pT

(i,k) ))).
7. Calculate B(C, θ(i,k)|LOR(i) ), and B(T, θ(i,k)|LOR(i) ) by

plugging in the above values into the net benefit equa-
tions. Note that step 5 draws a sample from the condi-
tional distribution of logit(pT) conditioning on a
known value of LOR(i).

After running through all the cycles k, we compute the av-
erage net benefits and calculate

Maxt (E[B(C, θ|LOR(i) )], E[B(T, θ|LOR(i) )] – E[B(t*, θ|LOR(i) )].

This process is repeated over the outer Monte Carlo simula-
tions i, and the average of this expression is the EVPPI for
LOR alone. With 10,000 inner simulations and 5000 outer cy-
cles, we obtained EVPPI = $3890.

Now compare this algorithm to the 1-stage version made
feasible because the model is multilinear in its parameters.
We can take advantage of this by plugging in the appropriate
expectations into the net benefit equations, rather than com-
puting them by simulation. In particular, we can plug in the
prior expectations of QE, pSE, and pC and the conditional ex-
pectation of pT|LOR(i). To obtain the latter, we use the mean
and variance of the conditional distribution of
logit(pT)|LOR(i). The required conditional expectation of pT
on each cycle i is computed as follows (see Table 2):

ElpT
(i) = log(14.5/84.5) + LOR(i)

h(i) = exp(ElpT
(i) )/(1 + exp(ElpT

(i) ))

EpT
(i) = h(i) + h(i) (1 – h(i) )(1 – 2h(i) )Var(lpT

(i) )/2,

where, as can be seen from the 2-stage algorithm outlined ear-
lier, Var(lpT

(i)) is given by

Var(lpT
(i) = Var(lpc) + Var(LOR(i) ) = Var(lpc) = 1/15 + 1/85,
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as LOR (i) is known (i.e., fixed on every inner cycle k) and
therefore has zero variance. Using this form of calculation
with 100,000 simulations, EVPPI for LOR alone was $3920.

EVSI for the LOR

What would be the EVSI for a study allocating nT = 200 pa-
tients to new treatment and another nC = 200 to standard care?
The procedure here is to set all parameters except pT and LOR
to their prior expectations and then (step B1(a)) draw samples
pC

(i) from the prior distribution of pC ~ beta(15,85) and a prior
LOR(i) from its prior distribution N(–1.5,3) (step B1(a)). On
step B1(b), these 2 samples are combined to create a sample
pT

(i) = logit(pC
(i)) + LOR(i).

Then (step B2(a)), draw binomial samples to serve as nu-
merators for each arm in the proposed new study:

rC
(i) ~ Bin(pC

(i), nC) and rT
(i) ~ Bin(pT

(i), nT).

Next (step B2(b)), the new data on simulation i are formed
into an LOR µD

(i) with precision τD
(i). Whenever rC

(i) or rT
(i) = 0

or nC, nT, the standard zero cell correction is carried out, add-
ing 0.5 to each numerator and 1 to each denominator for that
cycle. Using standard formulae, we then define the sample
LOR, µD

(i) and its precision τD
(i).

We then (step B3(a)) obtain a posterior mean and precision
for LOR|D(i) as a precision weighted average of µD

(i) and the
prior mean –1.50. The posterior precision is 3 + τD

(i). Finally,
we convert our information on the posterior mean LOR with
information on the prior mean of pC to obtain a mean and vari-
ance for the posterior of pT|D(i):

lpT
(i) = E [logit(pT|D(i) )] = log(14.5/84.5) + E(LOR|D(i) )

and then use the Taylor series formulae in Table 2 to obtain a
posterior mean for pT|D (i):

h(i) = exp(lpT
(i) )/(1 + exp(lpT

(i) ))

E[pT|D (i)] = h(i) + h(i)(1 – h(i))(1 – 2h(i) )([1/(3 + τD
(i) )]

+ 1/15 + 1/85)/2.

Note that the variance expression in the Taylor series formula
reflects the fact that the posterior variance of logit(pT|D(i)) is
the sum of the prior variance of logit(pC) and the posterior
variance of LOR|D(i). The net benefit equations are then
run with the posterior mean of pT and all other parameters,
including pC, taking their prior mean values. An allocation of
n = 200 to each arm gives an EVSI of $3260.

EVSI for a Randomized Clinical Trial (RCT)
Gaining Information on LOR, pSE and QE

An RCT to compare new treatment and standard care is
also an opportunity to obtain more information on pSE in pa-
tients allocated to the new treatment and more information
on the quality-adjusted life year (QALY) decrement QE that
follows the critical event. Consider a design, for example, in
which the investigator is able to choose an allocation for nC
and nT, with the aim of gaining information on the LOR but
also to use the nT patients allocated to the new treatment to
gain more information on the probability of side effects pSE. It
is also proposed to use the patients experiencing the critical
event in both trial arms to contribute further information on
the QALY decrement QE. Note that the number available for
this is not known in advance. The simulation approach pro-
posed can readily accommodate this, as the calculation of
E[QE|D(i)] on each cycle i can be based on the sample size n(i) =
rC

(i) + rT
(i), the total number of patients suffering the critical

event in both arms of the proposed RCT, even though this var-
ies across Monte Carlo cycles. The net benefit equations have
the form

B(t, E [pSE|D (i) ], E[QE|D (i) ], 0.1499, E [pT|D (i) ]).

Averaging over all cycles, the EVSI for an RCT with 200 allo-
cated to each arm under these circumstances is $8330. This
type of calculation, in which the same study provides infor-
mation on several model parameters, demonstrates the flexi-
bility of the simulation-based approach to EVSI in the context
of optimal trial design.
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