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I reflect on the past, present, and future of nonparametric Bayesian statistics.
Current nonparametric Bayes research tends to be split between theoretical
studies, seeking to understand relatively simple models, and machine learn-
ing, defining new models and computational algorithms motivated by prac-
tical performance. I comment on the current landscape, open problems and
promising future directions in modern big data applications.

25.1 Introduction

25.1.1 Problems with parametric Bayes

In parametric Bayesian statistics, one chooses a likelihood function L(y|θ)
for data y, which is parameterized in terms of a finite-dimensional unknown
θ. Choosing a prior distribution for θ, one updates this prior with the like-
lihood L(y|θ) via Bayes’ rule to obtain the posterior distribution π(θ|y) for
θ. This framework has a number of highly appealing characteristics, ranging
from flexibility to the ability to characterize uncertainty in θ in an intuitively
appealing probabilistic manner. However, one unappealing aspect is the in-
trinsic assumption that the data were generated from a particular probability
distribution (e.g., a Gaussian linear model).

There are a number of challenging questions that arise in considering,
from both philosophical and practical perspectives, what happens when such
an assumption is violated, as is arguably always the case in practice. From a
philosophical viewpoint, if one takes a parametric Bayesian perspective, then
a prior is being assumed that has support on a measure zero subset of the set
of possible distributions that could have generated the data. Of course, as it is
commonly accepted that all models are wrong, it seems that such a prior does
not actually characterize any individual’s prior beliefs, and one may question
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the meaning of the resulting posterior from a subjective Bayes perspective. It
would seem that a rational subjectivist would assign positive prior probability
to the case in which the presumed parametric model is wrong in unanticipated
ways, and probability zero to the case in which the data are generated exactly
from the presumed model. Objective Bayesians should similarly acknowledge
that any parametric model is wrong, or at least has a positive probability of
being wrong, in order to truly be objective. It seems odd to spend an enormous
amount of effort showing that a particular prior satisfies various objectivity
properties in a simple parametric model, as has been the focus of much of the
Bayes literature.

The failure to define a framework for choosing priors in parametric models,
which acknowledge that the “working” model is wrong, leads to some clear
practical issues with parametric Bayesian inference. One of the major ones is
the lack of a framework for model criticism and goodness-of-fit assessments.
Parametric Bayesians assume prior knowledge of the true model which gen-
erated the data, and hence there is no allowance within the Bayesian frame-
work for incorrect model choice. For this reason, the literature on Bayesian
goodness-of-fit assessments remains under-developed, with most of the exist-
ing approaches relying on diagnostics that lack a Bayesian justification. A
partial solution is to place a prior distribution over a list of possible models
instead of assuming a single model is true a priori. However, such Bayesian
model averaging/selection approaches assume that the true model is one of
those in the list, the so-called M -closed viewpoint, and hence do not solve the
fundamental problem.

An alternative pragmatic view is that it is often reasonable to operate
under the working assumption that the presumed model is true. Certainly,
parametric Bayesian and frequentist inferences often produce excellent re-
sults even when the true model deviates from the assumptions. In parametric
Bayesian models, it tends to be the case that the posterior distribution for
the unknown θ will concentrate at the value θ0, which yields a sampling dis-
tribution that is as close as possible to the true data-generating model in
terms of the Kullback–Leibler (KL) divergence. As long as the parametric
model provides an “adequate” approximation, and this divergence is small,
it is commonly believed that inferences will be “reliable.” However, there has
been some research suggesting that this common belief is often wrong, such
as when the loss function is far from KL (Owhadi et al., 2013).

Results of this type have provided motivation for “quasi” Bayesian ap-
proaches, which replace the likelihood with other functions (Chernozhukov
and Hong, 2003). For example, quantile-based substitution likelihoods have
been proposed, which avoid specifying the density of the data between quan-
tiles (Dunson and Taylor, 2005). Alternatively, motivated by avoiding specifi-
cation of parametric marginal distributions in considering copula dependence
models (Genest and Favre, 2007; Hoff, 2007; Genest and Nešlehová, 2012;
Murray et al., 2013), use an extended rank-based likelihood. Recently, the
idea of a Gibbs posterior (Jiang and Tanner, 2008; Chen et al., 2010) was in-
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troduced, providing a generalization of Bayesian inference using a loss-based
pseudo likelihood. Appealing properties of this approach have been shown in
various contexts, but it is still unclear whether such methods are appropri-
ately calibrated so that the quasi posterior distributions obtained provide a
valid measure of uncertainty. It may be the case that uncertainty intervals
are systematically too wide or too narrow, with asymptotic properties such as
consistency providing no reassurance that uncertainty is well characterized.

Fully Bayesian nonparametric methods require a full characterization of
the likelihood, relying on models with infinitely-many parameters having care-
fully chosen priors that yield desirable properties. In the remainder of this
chapter, I focus on such approaches.

25.1.2 What is nonparametric Bayes?

Nonparametric (NP) Bayes seeks to solve the above problems by choosing
a highly flexible prior, which assigns positive probability to arbitrarily small
neighborhoods around any true data-generating model f0 in a large class.
For example, as an illustration, consider the simple case in which y1, . . . , yn
form a random sample from density f . A parametric Bayes approach would
parameterize the density f in terms of finitely-many unknowns θ, and induce
a prior for f through a prior for θ. Such a prior will in general have support on
a vanishingly small subset of the set of possible densities F (e.g., with respect
to Lebesgue measure on R). NP Bayes instead lets f ∼ Π, with Π a prior
over F having large support, meaning that Π{f : d(f, f0) < ε} > 0 for some
distance metric d, any ε > 0, and any f0 in a large subset of F . Large support
is the defining property of an NP Bayes approach, and means that realizations
from the prior have a positive probability of being arbitrarily close to any f0,
perhaps ruling out some irregular ones (say with heavy tails).

In general, to satisfy the large support property, NP Bayes probability
models include infinitely-many parameters and involve specifying stochastic
processes for random functions. For example, in the density estimation exam-
ple, a very popular prior is a Dirichlet process mixture (DPM) of Gaussians
(Lo, 1984). Under the stick-breaking representation of the Dirichlet process
(Sethuraman, 1994), such a prior lets

f(y) =
∞∑

h=1

πh N (y;µh, τ
−1
h ), (µh, τh)

iid∼ P0, (25.1)

where the weights on the normal kernels follow a stick-breaking process, πh =
Vh

∏
!<h(1 − V!), with Vh ∼ B(1,α) independently, α is the concentration

parameter in the Dirichlet process, and P0 is the base measure. Such kernel
mixture priors satisfy the large support property and can be defined so that the
resulting posterior concentrates around the unknown true f0 at the minimax
optimal rate up to a log factor (de Jonge and van Zanten, 2010).
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Prior (25.1) is intuitively appealing in including infinitely-many Gaussian
kernels having stochastically decreasing weights. In practice, there will tend to
be a small number of kernels having large weights, with the remaining having
vanishingly small weights. Only a modest number of kernels will be occupied
by the subjects in a sample, so that the effective number of parameters may
actually be quite small and is certainly not infinite, making posterior compu-
tation and inferences tractable. Of course, prior (25.1) is only one particularly
simple example (to quote Andrew Gelman, “No one is really interested in den-
sity estimation”), and there has been an explosion of literature in recent years
proposing an amazing variety of NP Bayes models for broad applications and
data structures.

Section 25.2 contains an (absurdly) incomplete timeline of the history of
NP Bayes up through the present. Section 25.3 comments briefly on interesting
future directions.

25.2 A brief history of NP Bayes

Although there were many important earlier developments, the modern view
of nonparametric Bayes statistics was essentially introduced in the papers of
Ferguson (1973, 1974), which proposed the Dirichlet process (DP) along with
several ideal criteria for a nonparametric Bayes approach including large sup-
port, interpretability and computational tractability. The DP provides a prior
for a discrete probability measure with infinitely many atoms, and is broadly
employed within Bayesian models as a prior for mixing distributions and for
clustering. An equally popular prior is the Gaussian process (GP), which is
instead used for random functions or surfaces. A non-neglible proportion of
the nonparametric Bayes literature continues to focus on theoretical proper-
ties, computational algorithms and applications of DPs and GPs in various
contexts.

In the 1970s and 1980s, NP Bayes research was primarily theoretical and
conducted by a narrow community, with applications focused primarily on
jointly conjugate priors, such as simple cases of the gamma process, DP and
GP. Most research did not consider applications or data analysis at all, but
instead delved into characterizations and probabilistic properties of stochas-
tic processes, which could be employed as priors in NP Bayes models. These
developments later had substantial applied implications in facilitating com-
putation and the development of richer model classes.

With the rise in computing power, development of Gibbs sampling and
explosion in use of Markov chain Monte Carlo (MCMC) algorithms in the
early 1990s, nonparametric Bayes methods started to become computation-
ally tractable. By the late 1990s and early 2000s, there were a rich variety of
inferential algorithms available for general DP mixtures and GP-based mod-
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els in spatial statistics, computer experiments and beyond. These algorithms,
combined with increasing knowledge of theoretical properties and characteri-
zations, stimulated an explosion of modeling innovation starting in the early
2000s but really gaining steam by 2005. A key catalyst in this exponential
growth of research activity and innovation in NP Bayes was the dependent
Dirichlet process (DDP) of Steve MacEachern, which ironically was never
published and is only available as a technical report. The DDP and other key
modeling innovations were made possible by earlier theoretical work provid-
ing characterizations, such as stick-breaking (Sethuraman, 1994; Ishwaran and
James, 2001) and the Polya urn scheme/Chinese restaurant process (Black-
well and MacQueen, 1973). Some of the circa 2005–10 innovations include the
Indian buffet process (IBP) (Griffiths and Ghahramani, 2011), the hierarchi-
cal Dirichlet process (HDP) (Teh et al., 2006), the nested Dirichlet process
(Rodŕıguez et al., 2008), and the kernel stick-breaking process (Dunson and
Park, 2008).

One of the most exciting aspects of these new modeling innovations was
the potential for major applied impact. I was fortunate to start working on
NP Bayes just as this exponential growth started to take off. In the NP Bayes
statistics community, this era of applied-driven modeling innovation peaked
at the 2007 NP Bayes workshop at the Issac Newton Institute at Cambridge
University. The Newton Institute is an outstanding facility and there was an
energy and excited vibe permeating the workshop, with a wide variety of top-
ics being covered, ranging from innovative modeling driven by biostatistical
applications to theoretical advances on properties. One of the most exciting
aspects of statistical research is the ability to fully engage in a significant
applied problem, developing methods that really make a practical difference
in inferences or predictions in the motivating application, as well as in other
related applications. To me, it is ideal to start with an applied motivation,
such as an important aspect of the data that is not captured by existing sta-
tistical approaches, and then attempt to build new models and computational
algorithms that have theoretical support and make a positive difference to the
bottom-line answers in the analysis. The flexibility of NP Bayes models makes
this toolbox ideal for attacking challenging applied problems.

Although the expansion of the NP Bayes community and impact of the
research has continued since the 2007 Newton workshop, the trajectory and
flavor of the work has shifted substantially in recent years. This shift is due
in part to the emergence of big data and to some important cultural hur-
dles, which have slowed the expansion of NP Bayes in statistics and scientific
applications, while stimulating increasing growth in machine learning. Cultur-
ally, statisticians tend to be highly conservative, having a healthy skepticism
of new approaches even if they seemingly improve practical performance in
prediction and simulation studies. Many statisticians will not really trust an
approach that lacks asymptotic justification, and there is a strong preference
for simple methods that can be studied and understood more easily. This is
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perhaps one reason for the enormous statistical literature on minor variations
of the lasso.

NP Bayes methods require more of a learning curve. Most graduate pro-
grams in statistics have perhaps one elective course on Bayesian statistics,
and NP Bayes is not a simple conceptual modification of parametric Bayes.
Often models are specified in terms of infinite-dimensional random probability
measures and stochastic processes. On the surface, this seems daunting and
the knee-jerk reaction by many statisticians is negative, mentioning unnec-
essary complexity, concerns about over-fitting, whether the data can really
support such complexity, lack of interpretability, and limited understanding
of theoretical properties such as asymptotic behavior. This reaction restricts
entry into the field and makes it more difficult to get publications and grant
funding.

However, these concerns are largely unfounded. In general, the perceived
complexity of NP Bayes models is due to lack of familiarity. Canonical model
classes, such as DPs and GPs, are really quite simple in their structure and
tend to be no more difficult to implement than flexible parametric models.
The intrinsic Bayesian penalty for model complexity tends to protect against
over-fitting. For example, consider the DPM of Gaussians for density esti-
mation shown in equation (25.1). The model is simple in structure, being a
discrete mixture of normals, but the perceived complexity comes in through
the incorporation of infinitely many components. For statisticians unfamil-
iar with the intricacies of such models, natural questions arise such as “how
can the data inform about all these parameters” and “there certainly must
be over-fitting and huge prior sensitivity.” However, in practice, the prior
and the penalty that comes in through integrating over the prior in deriving
the marginal likelihood tends to lead to allocation of all the individuals in the
sample to relatively few clusters. Hence, even though there are infinitely many
components, only a few of these are used and the model behaves like a finite
mixture of Gaussians, with sieve behavior in terms of using more components
as the sample size increases. Contrary to the concern about over-fitting, the
tendency is instead to place a high posterior weight on very few components,
potentially under-fitting in small sample sizes. DPMs are a simple example
but the above story applies much more broadly.

The lack of understanding in the broad statistical community of the behav-
ior of NP Bayes procedures tempered some of the enthusiastic applications-
driven modeling of the 2000s, motivating an emerging field focused on studying
frequentist asymptotic properties. There is a long history of NP Bayes asymp-
totics, showing properties such as consistency and rates of concentration of
the posterior around the true unknown distribution or function. In the past
five years, this field has really taken off and there is now a rich literature
showing strong properties ranging from minimax optimal adaptive rates of
posterior concentration (Bhattacharya et al., 2013) to Bernstein–von Mises
results characterizing the asymptotic distribution of functionals (Rivoirard
and Rousseau, 2012). Such theorems can be used to justify many NP Bayes
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methods as also providing an optimal frequentist procedure, while allowing
frequentist statisticians to exploit computational methods and probabilistic
interpretations of Bayes methods. In addition, an appealing advantage of NP
Bayes nonparametric methods is the allowance for uncertainty in tuning pa-
rameter choice through hyperpriors, bypassing the need for cross-validation.
The 2013 NP Bayes conference in Amsterdam was notable in exhibiting a dra-
matic shift in topics compared with the 2007 Newton conference, away from
applications-driven modeling and towards asymptotics.

The other thread that was very well represented in Amsterdam was NP
Bayes machine learning, which has expanded into a dynamic and important
area. The machine learning (ML) community is fundamentally different cultur-
ally from statistics, and has had a very different response to NP Bayes methods
as a result. In particular, ML tends to be motivated by applications in which
bottom-line performance in metrics, such as out-of-sample prediction, takes
center stage. In addition, the ML community prefers peer-reviewed proceed-
ings for conferences, such as Neural Information Processing Systems (NIPS)
and the International Conference on Machine Learning Research (ICML), over
journal publications. These conference proceedings are short papers, and there
is an emphasis on innovative new ideas which improve bottom line perfor-
mance. ML researchers tend to be aggressive and do not shy away from new
approaches which can improve performance regardless of complexity. A sub-
stantial proportion of the novelty in NP Bayes modeling and computation has
come out of the ML community in recent years. With the increased empha-
sis on big data across fields, the lines between ML and statistics have been
blurring. However, publishing an initial idea in NIPS or ICML is completely
different than publishing a well-developed and carefully thought out methods
paper in a leading statistical theory and methods journal, such as the Jour-
nal of the American Statistical Association, Biometrika or the Journal of the
Royal Statistical Society, Series B. My own research has greatly benefited by
straddling the asymptotic, ML and applications-driven modeling threads, at-
tempting to develop practically useful and innovative new NP Bayes statistical
methods having strong asymptotic properties.

25.3 Gazing into the future

Moving into the future, NP Bayes methods have rich promise in terms of
providing a framework for attacking a very broad class of ‘modern’ problems
involving high-dimensional and complex data. In big complex data settings, it
is much more challenging to do model checking and to carefully go through the
traditional process of assessing the adequacy of a parametric model, making
revisions to the model as appropriate. In addition, when the number of vari-
ables is really large, it becomes unlikely that a particular parametric model
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works well for all these variables. This is one of the reasons that ensemble
approaches, which average across many models/algorithms, tend to produce
state of the art performance in difficult prediction tasks. Combining many sim-
ple models, each able to express different characteristics of the data, is useful
and similar conceptually to the idea of Bayesian model averaging (BMA),
though BMA is typically only implemented within a narrow parametric class
(e.g., normal linear regression).

In considering applications of NP Bayes in big data settings, several ques-
tions arise. The first is “Why bother?” In particular, what do we have to gain
over the rich plethora of machine learning algorithms already available, and
which are being refined and innovated upon daily by thousands of researchers?
There are clear and compelling answers to this question. ML algorithms almost
always rely on convex optimization to obtain a point estimate, and uncertainty
is seldom of much interest in the ML community, given the types of applica-
tions they are faced with. In contrast, in most scientific applications, predic-
tion is not the primary interest and one is usually focused on inferences that
account for uncertainty. For example, the focus may be on assessing the con-
ditional independence structure (graphical model) relating genetic variants,
environmental exposures and cardiovascular disease outcomes (an application
I’m currently working on). Obtaining a single estimate of the graph is clearly
not sufficient, and would be essentially uninterpretable. Indeed, such graphs
produced by ML methods such as graphical lasso have been deemed “ridicu-
lograms.” They critically depend on a tuning parameter that is difficult to
choose objectively and produce a massive number of connections that cannot
be effectively examined visually. Using an NP Bayes approach, we could in-
stead make highly useful statements (at least according to my collaborators),
such as (i) the posterior probability that genetic variants in a particular gene
are associated with cardiovascular disease risk, adjusting for other factors, is
P%; or (ii) the posterior probability that air pollution exposure contributes to
risk, adjusted for genetic variants and other factors, is Q%. We can also obtain
posterior probabilities of an edge between each variable without parametric
assumptions, such as Gaussianity. This is just one example of the utility of
probabilistic NP Bayes models; I could list dozens of others.

The question then is why aren’t more people using and working on the
development of NP Bayes methods? The answer to the first part of this ques-
tion is clearly computational speed, simplicity and accessibility. As mentioned
above, there is somewhat of a learning curve involved in NP Bayes, which is
not covered in most graduate curriculums. In contrast, penalized optimization
methods, such as the lasso, are both simple and very widely taught. In addi-
tion, convex optimization algorithms for very rapidly implementing penalized
optimization, especially in big data settings, have been highly optimized and
refined in countless publications by leading researchers. This has led to sim-
ple methods that are scalable to big data, and which can exploit distributed
computing architectures to further scale up to enormous settings. Researchers
working on these types of methods often have a computer science or engineer-
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ing background, and in the applications they face, speed is everything and
characterizing uncertainty in inference or testing is just not a problem they
encounter. In fact, ML researchers working on NP Bayes methods seldom re-
port inferences or use uncertainty in their analyses; they instead use NP Bayes
methods combined with approximations, such as variational Bayes or expec-
tation propagation, to improve performance on ML tasks, such as prediction.
Often predictive performance can be improved, while avoiding cross-validation
for tuning parameter selection, and these gains have partly led to the relative
popularity of NP Bayes in machine learning.

It is amazing to me how many fascinating and important unsolved prob-
lems remain in NP Bayes, with the solutions having the potential to sub-
stantially impact practice in analyzing and interpreting data in many fields.
For example, there is no work on the above nonparametric Bayes graphi-
cal modeling problem, though we have developed an initial approach we will
submit for publication soon. There is very limited work on fast and scalable
approximations to the posterior distribution in Bayesian nonparametric mod-
els. Markov chain Monte Carlo (MCMC) algorithms are still routinely used
despite their problems with scalability due to the lack of decent alternatives.
Variational Bayes and expectation propagation algorithms developed in ML
lack theoretical guarantees and often perform poorly, particularly when the
focus goes beyond obtaining a point estimate for prediction. Sequential Monte
Carlo (SMC) algorithms face similar scalability problems to MCMC, with a
daunting number of particles needed to obtain adequate approximations for
high-dimensional models. There is a clear need for new models for flexible
dimensionality reduction in broad settings. There is a clear lack of approaches
for complex non-Euclidean data structures, such as shapes, trees, networks
and other object data.

I hope that this chapter inspires at least a few young researchers to focus
on improving the state of the art in NP Bayes statistics. The most effec-
tive path to success and high impact in my view is to focus on challenging
real-world applications in which current methods have obvious inadequacies.
Define innovative probability models for these data, develop new scalable ap-
proximations and computational algorithms, study the theoretical properties,
implement the methods on real data, and provide software packages for rou-
tine use. Given how few people are working in such areas, there are many
low hanging fruit and the clear possibility of major breakthroughs, which are
harder to achieve when jumping on bandwagons.
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