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Abstract Evaluating the likelihood function of parameters in highly-structured pop-
ulation genetic models from extant deoxyribonucleic acid (DNA) sequences is com-
putationally prohibitive. In such cases, one may approximately infer the parameters
from summary statistics of the data such as the site-frequency-spectrum (SES) or its
linear combinations. Such methods are known as approximate likelihood or Bayesian
computations. Using a controlled lumped Markov chain and computational commu-
tative algebraic methods, we compute the exact likelihood of the SFS and many clas-
sical linear combinations of it at a non-recombining locus that is neutrally evolving
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under the infinitely-many-sites mutation model. Using a partially ordered graph of
coalescent experiments around the SFS, we provide a decision-theoretic framework
for approximate sufficiency. We also extend a family of classical hypothesis tests of
standard neutrality at a non-recombining locus based on the SFS to a more powerful
version that conditions on the topological information provided by the SFS.

Keywords Controlled lumped coalescent - Population genetic Markov bases

1 Introduction

Models in population genetics are highly structured stochastic processes (Griffiths
and Tavare 2003). Inference is typically conducted with data that is modeled as
a partial observation of one realization of such a process. Likelihood methods are
most desirable when they are based on a family of population genetic models for
the probability of an observation at the finest empirical resolution available to the
experimenter. One typically observes DNA sequences of length m with a common
ancestral history from # individuals who are currently present in an extant population
and uses this information to infer some aspect of the population’s history. Unfor-
tunately, it is computationally prohibitive to evaluate the likelihood P (u,|¢) of the
multiple sequence alignment or MSA data u, € U that was observed at the finest
available empirical resolution, given a parameter ¢ € @, that is indexing a biologi-
cally motivated family of models. The MSA sample space U := {A, C, G, T}"*™ is
doubly indexed by n, the number of sampled individuals, and m, the number of se-
quenced homologous sites. In an ideal world, the optimal inference procedure would
be based on the minimally sufficient statistic and implemented in a computing en-
vironment free of engineering constraints. Unfortunately, minimally sufficient statis-
tics of data at the currently finest resolution of /)" are unknown beyond the sim-
plest models of mutation with small values of n (Yang 2000; Hosten et al. 2005;
Casanellas et al. 2005; Sainudiin and York 2009). Computationally-intensive infer-
ence, based on an observed u, € U], with realistically large n and m, is currently
impossible for recombining loci and prohibitive for non-recombining loci.

An alternative inference strategy that is computationally feasible involves a rela-
tively low-dimensional statistic R(u,) =1, € R} of u, € U In this approach, one
attempts to approximate the likelihood P (u,|¢) or the posterior distribution P (¢|u,),
on the basis of a summary r, of the observed data u,. Since R is typically not a
sufficient statistic for ¢, i.e., P(¢|r) # P(¢|u). Such methods have been termed as
approximate likelihood computations or ALC (Weiss and von Haeseler 1998) in a fre-
quentist setting and as approximate Bayesian computations or ABC (Beaumont et al.
2002) in a Bayesian setting. ALC and ABC are popular simulation-based inference
methods in computational population genetics as they both provide an easily imple-
mentable inference procedure for any model that you can simulate from. Several low
dimensional (summary) statistics, each of which are not shown to be sufficient or
even necessarily consistent, form the basis of information in such approximate likeli-
hood or Bayesian computations. The underlying assumption that ensures asymptotic
consistency of this estimator is that a large enough set of such statistics will be a good
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proxy for the observed data u,, in an approximately sufficient sense. However, there
are several senses in which a set of population genetic statistics can be large enough
for asymptotically consistent estimation. Furthermore, any formal notion of approxi-
mate sufficiency in population genetic experiments must account for the fact that the
likelihood is defined by the n-coalescent prior mixture over elements in a partially
observed genealogical space G,

P(rol¢) =/ P(rol°t, ¢)dP(t|g). (1)
creln T,

The discrete aspects of this hidden space account for the sequence of coalescence
events, while the continuous aspects account for the number of generations between
such events in units of rescaled time. We formalize at least three notions or senses
of asymptotic consistency for various statistics of the data using a graph of partially
ordered coalescent experiments under Watterson’s infinitely-many-sites (IMS) model
of mutation (Watterson 1975) and show that asymptotic consistency does not hold in
every sense for the site frequency spectrum (SFS), a popular summary statistic of the
MSA data, and its linear combinations, unless one can appropriately integrate over
{‘t e CuT, - P(r,|°t, ) > 0} in (1). This elementary observation has cautionary im-
plications for simulation-intensive parameter estimation using ABC or ALC methods
as well as outlier-detection using genome scanning methods that attempt to reject loci
that are hypothesised to evolve under the standard neutral null model.

Our first specific objective here is to address the problem of inferring the poste-
rior distribution over the same parameter space @ across different empirical resolu-
tions or statistics of n DNA sequences with m homologous sites drawn from a large
Wright-Fisher population at a large non-recombining locus that is neutrally evolving
under the infinitely-many-sites model of mutation. The empirical resolutions of inter-
est at the coarsest end, include classical statistics, such as (i) the nonnegative integer-
valued number of segregating sites S € Z (Watterson 1975), (ii) the rational-valued
average heterozygosity w € Q, (iii) the real-valued Tajima’s D (Tajima 1989) that
combines (i) and (ii). At a slightly finer resolution than the first three that is of in-
terest is (iv) the nonnegative integer vector called the folded site frequency spectrum
y € Z_L:'/ 2| At an intermediate resolution, (v) the nonnegative integer vector called
the site frequency spectrum x € 7"~ " is a much finer statistic whose linear combi-
nations determine (i), (ii), (iii), and (iv), in addition to various other statistics in the
literature, including folded singletons y; := x1 + x(,—1) (Hudson 1993) and Fay and
Wu’s Oy = (n(n — 1))~! Z?:_ll (2% x;) (Fay and Wu 2000). See Wakeley (2007)
for a discussion of the linear relations between various classical summaries and the
site frequency spectrum. At the finest resolution we can conduct inference on the ba-
sis of (vi) binary incidence matrices that are sufficient for the infinitely-many-sites
model of mutation using existing methods (for, e.g., Stephens and Donnelly 2000).
The asymptotic consistency emphasised here involves a single locus, that is free of
intralocus recombination across n individuals and at m homologous sites, as m ap-
proaches infinity.

Our second specific objective here is to extend a class of hypothesis tests of the
standard neutral model for a non-recombining locus toward the intermediate empiri-
cal resolution of the SFS. This class includes various classical “Tajima-like” tests in
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the sense of Ewens (2000, p. 361) as well as others that are based on the null dis-
tribution of the SFS. Our extension involves conditioning the null distribution by an
equivalence class of unlabeled coalescent tree topologies, up to a partial information
provided by the observed SFS. Thus, the null distribution over the SFS sample space,
that in turn determines the null distributions of all the test statistics in our class, are
only based on those genealogies whose coalescent tree topologies have a nonzero
probability of underlying our observed SFS. This amounts to an “unlabeled topo-
logical conditioning” of any test statistic for neutrality that is a function of the site
frequency spectra, including several classical tests.

Two elementary ideas form the basic structures that are exploited in this pa-
per to achieve the objectives outlined in the previous two paragraphs. First, we
develop a Markov lumping of Kingman’s n-coalescent to Kingman’s unlabeled
n-coalescent as suggested in Kingman (1982b, (5.1), (5.2)) but without explicit
pursuit. The unlabeled n-coalescent is a Markov chain on a many-to-one map of
the state space of the n-coalescent (or more specifically, the labeled n-coalescent)
and it is sufficient and necessary to prescribe the @-indexed family of mea-
sures for the sample space of the SFS. Secondly, we exactly evaluate the poste-
rior density based on one or more linear combinations of the observed site fre-
quency spectrum. This is accomplished by an elementary study of the algebraic
geometry of such statistics using Markov bases (Diaconis and Sturmfels 1998).
A beta version of LCE-0.1: A C++ class library for lumped co-
alescent experiments that implements such algorithms is publicly available
from http://www.math.canterbury.ac.nz/~r.sainudiin/codes/lce/ under the terms of the
GNU General Public License.

2 Genealogical and Mutational Models

The stochastic models for the genealogy of the sample and the mutational models
that generate data are given in this section.

2.1 Number of Ancestral Lineages of a Wright—Fisher Sample

In the simple Wright-Fisher discrete generation model with a constant population
size N, i.e., the exponential growth rate ¢ = 0, each offspring “chooses” its par-
ent uniformly and independently at random from the previous generation due to the
uniform multinomial sampling of N offspring from the N parents in the previous
generation. First, note that the following ratio can be approximated:

M) (A8 )

]:[ 1—kN~ —N‘1§k+0(N_2):l—(£>N_1+0(N_2).

Let Si(j ) denote the Stirling number of the second kind, i.e., Sl.(j ) is the number of set

partitions of a set of size i into j blocks. Thus, the N-specific probability of i extant
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sample lineages in the current generation becoming j extant ancestral lineages in the
previous generation is:

S (NN =) = 1(NigN~)
=1-(yN'+oW?) ifj =i,
Si(i_l)(N[i—l]N_i) — (;)(N—IN[i_l]N—(i—l))
=N =N F o)
YPj=1 =@N"+0W) ifj=i—1, @
Si(l'*e)(N[iil]N—i) — Sl_(i*l) (N_ZN[ifl]N_(i_l)) lfJ =i — E,
=5ON (1= NI () + o)
=0(N7?) l<fl<i—1,
0 :otherwise.

LetZ_ :={0,—1, -2, ...} denote an ordered and countably infinite discrete time
index set. Next, we rescale time in this discrete time Markov chain {N H T(k)}kezf
over the state space H,, ;== {n,n — 1, ..., 1} with 1-step transition probabilities given
by (2). {NHT (k)}rez_ is the death chain of the number of ancestral sample lineages
within the Wright—Fisher population of constant size N. Let the rescaled time ¢ be g
in units of N generations. Then the probability that a pair of lineages remain distinct

. . . N
for more than ¢ units of the rescaled time is: (1 — l/N)“V’J et

The transition probabilities P; ;(¢) of the pure death process {H T(t)}te]R +»in the
rescaled time ¢ over the state space H,, is a limiting continuous time Markov chain
approximation of the | N¢]-step transition probabilities V P;. j(LNt]) of the discrete
time death chain with 1-step transition probabilities in (2), as the population size N
tends to infinity:

NP j(LNt)) iy P j(t) =exp(Qt), whereg;i—1= (;)J]i,i = —(;>
gi,j = 0 for all other (i, j) € Hj, x Hj, but with 1 as an absorbing state. The ma-
trix Q is called the instantaneous rate matrix of the death process Markov chain
{H T(t)}te]R . and its (i, j)th entry is g; ;. Thus, the ith epoch-time random vari-
able T; during which time there are i distinct ancestral lineages of our sam-
ple is approximately exponentially distributed with rate parameter (;) and is in-
dependent of other epoch-times. In other words, for large N, the random vec-
tor T = (1,13, ...,T,) of epoch-times, corresponding to the transition times of
the pure death process {H T(t)},e]R . on the state space H,, has the product expo-

nential density []7_, (é)e’@“ over its support T, := R’rl. Note that the initial
state of {HT(1)};er + is n, the final absorbing state is 1 and the embedded jump

chain {H T(k)}ke[n]f of this death process, termed the embedded death chain, de-
terministically marches from n to 1 in decrements of 1 over H,,, where, [n]_ :=

{n,n—1,...,2,1} denotes the decreasingly ordered discrete time index set. Simi-
larly, let [n]+ :={1,2,...,n — 1, n} denote the increasingly ordered discrete time
index set.
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2.2 Kingman’s Labeled n-Coalescent

Next, we model the sample genealogy at a finer resolution than the number of ances-
tral lineages of our Wright—Fisher sample of size n. If we assign distinct labels to our
n samples and want to trace the ancestral history of these sample-labeled lineages
then Kingman’s labeled n-coalescent lends a helping hand. Let C,, be the set of all
partitions of the label set £ = {1, 2, ..., n} of our n samples. Denote by (CS) the set of
all partitions with i blocks, i.e., C, = |JI_, CY Letc; = {ci1,Ciny... cii) € cW
denote the i elements of ¢;. The labeled n-coalescent partial ordering on C,, is based
on the immediate precedence relation <:

cir<cci & cr=ci\cj\cixVUijUcip), JjFEkjke{l,2,.. lcl}

In words, ¢;s <. ci, read as ¢;; immediately precedes c;, means that ¢;; can be obtained
from ¢; by coalescing any distinct pair of elements in ¢;. Thus, ¢ <. ¢; implies
leirl = leil — 1.

Consider the discrete time Markov chain {C T(k)}ke[n]f on C, with initial
state CT(n) = ¢, = {{1},{2},...,{n}} and final absorbing state C'(1) = ¢| =
{{1,2, ..., n}}, with the following transition probabilities Kingman (1982a, Eq. (2.2)):

l l
if ey <o i, ¢ €C,,7,
Pieylen =1 ©) P S 3)
0 :otherwise.
Now, let ¢ := (¢p, cy—1,...,€1) be a c-sequence or coalescent sequence obtained

from the sequence of states visited by a realization of the chain, and denote the space
of such c-sequences by

Coi={c=(cn,cn-1,...,c1) :¢; €C

n Ci—1 <C Ci}‘

The probability that ¢; € C,(,i) is visited by the chain Kingman (1982a, Eq. (2.3)) is:

ey i
Py =" D T e )
j=1
and the probability of a c-sequence is uniformly distributed over C,, with
2 on-1 1
P =[] Pitlen = o =7 ®)

i=n

Kingman’s labeled n-coalescent (Kingman 1982a, 1982b) denoted by {CT(t)},EKL,
is a continuous-time Markov chain on C,, with rate matrix Q. The entries g(c;’|c;),
ci,cir € C, of Q, specifying the transition rate from state ¢; to c;/, are (Kingman
1982b, Eq. (2.10)):

—(é) ifei=cpr, ¢ € CS),
q(cirlei) =41 if ¢ < ci, (6)
0 :otherwise.
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The above instantaneous transition rates for {C1(7)};er . are obtained by an in-
dependent coupling of the death process {H ' (¢)};er , in Sect. 2.1 over Hj,, with the
discrete time Markov chain {C" (k)} kefn]_ on C,,. This continuous time Markov chain
approximates the appropriate N -specific discrete time Markov chain over C,, that is
modeling the ancestral genealogical history of a sample of size n labeled by £ and
taken at random from the Wright—Fisher population of constant size N. This asymp-
totic approximation, as the population size N — 00, can be seen using arguments
similar to those in Sect. 2.1. See Kingman (1982a, Sects. 1-2) for this construction.

Let the space of ranked, rooted, binary, phylogenetic trees with leaves or samples
labeled by £ = {1,2,...,n} (Semple and Steel 2003, §2.3) further endowed with
branch or lineage lengths under a molecular clock—i.e., the lineage length obtained
by summing the epoch-times from each sample (labeled leaf) to the root node or the
most recent common ancestor (MRCA) is the same—be constructively defined by the
n-coalescent as

O, :=C, @ T, := {6t = ("tg, " tyot, ..., 1) i €Cy 1 €T, :=R’j:l}.

Ca T, is called the n-coalescent tree space. An n-coalescent tree °t € Ca T, describes
the ancestral history of the sampled individuals. Figure 1 depicts the n-coalescent
tree space G for the sample label set £ = {1, 2, 3} with sample size n = 3.

2.3 Kingman’s Unlabeled n-Coalescent

Next, we model the sample genealogy at a resolution that is finer than the number
of ancestral lineages but coarser than that of the labeled n-coalescent. This is King-
man’s unlabeled n-coalescent. The unlabeled n-coalescent is mentioned as a lumped
Markov chain of the labeled n-coalescent and termed the “label-destroyed” process
by Kingman (1982b, 5.2). Tavaré (1984, pp. 136—137) terms it the “family-size
process” along the nomenclature of a more general birth-death-immigration process
(Kendall 1975). The transition probabilities of this Markov process, in either tempo-
ral direction, are not explicitly developed in Kingman (1982b) or Tavaré (1984). They
are developed here along with the state and sequence-specific probabilities.

Consider the coalescent epoch at which there are i lineages. Let f; ; denote the
number of lineages subtending j leaves, i.e., the frequency of lineages that are an-
cestral to j samples, at this epoch. Let us summarize these frequencies from the i
lineages as j varies over its support by f; :== (fi.1, fi.2, ..., fi.n). Then the space of
fi’s is defined by

n n
FQ =3 fio= (fid fineooon fin) €200 jfij=n. Y fij=if.
j=1 j=1

Let the set of such frequencies over all epochs be F,, := | J7_, F.. Let us define
an f-sequence f as

fi= s faetseos fOEF={f: i €FY, fisi <5 fi.Vie(2,...,n}},
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where <7 is the immediate precedence relation that induces a partial ordering on I,,.
It is defined by denoting the jth unit vector of length n by e, as follows:

Ji=<rfi = fr=fi—e—extejk @)

Thus, F, is the space of f-sequences with n samples, i.e., the space of the fre-
quencies of the cardinalities of c-sequences in C,. Recall the c-sequence ¢ =
(Cn,Cn—1,---,c1), where ¢;—1 < ¢i, ci—1 € Ci71 ¢; e CL, and ¢; == {c; 1,¢i2, ...,
¢} contains i subsets. Let 14(a) be the indicator function of some set A (i.e., if
a € A,then14(a) =1, else L4(a) =0). Then the corresponding f-sequence is given
by the map % (c) = f : C, — Fn, as follows:

F(e) = (F(en), ... F(cD),
F(ci) = (le{l lcinl), Zl{n} |ci.nl )

Thus, F,, indexes an equivalence class in C, via .% [_1]( f), the inverse map of (8).
Having defined f-sequences and their associated spaces, we define a discrete time
Markov chain {F ' (k)}xe[s. on F, that is analogous to {C " (k)}xe[s. on C, given
by (3). {F T(k)}ke[n]f is the embedded discrete time Markov chain of the unlabeled
n-coalescent.

®)

Proposition 1 (Backward Transition Probabilities of an f-sequence) The probability
of f:=(fu, fu=1,..., f1) € F, under the n-coalescent is given by the product:

2
P =[]Pfizalfo, Q)

i=n

such that P(fi-1|fi) are the backward transition probabilities of a Markov chain
{FY () Yeen) on By, with f; € FY | fiy e By D:

fi,jfi,k(é)_l dffici=fi—ej—ex+ejin, jF#Kk,
PUialD =150 diffi=fi—ej—etejn j=k (10

0 :otherwise

where the initial state is f, = (n,0,...,0) and the final absorbing state is fi =
©,0,...,1).

Proof Since (9) is obtained from (10) by Markov property, we prove (10) next. When
there are i lineages in Kingman’s labeled n-coalescent, a coalescence event can re-
duce the number of lineages to i — 1 by coalescing one of (12) many pairs. Hence,

. in—1 . .. e .
the inverse (;) appears in the transition probabilities. Out of these pairs, there are
two kinds of pairs that need to be differentiated. The first type of coalescence events
involve pairs of edges that subtend the same number of leaves. Since f; ; many edges
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subtend j leaves, there are (f ’21 ) many pairs that lead to this event (case when j = k).
The second type of coalescence events involve pairs of edges that subtend different
number of leaves. For any distinct j and k, f; ; fi x many pairs would lead to coales-
cence events between edges that subtend j and k leaves (case when j # k). Note that

our condition that f;_1 = f; —ej — ey +ejyi foreachi e {n,n—1,..., 3,2} ensures
that our f remains in F, as we go backwards in time from the nth coalescent epoch
with n samples to the first one with the single ancestral lineage. |

The next proposition is a particular case of Tavaré (1984, Eq. (7.11)). We state and
prove it here in our notation using coalescent arguments for completeness.

Proposition 2 (Probability of an f;) The probability that the Markov chain
{FT(k)}ke[n], visits a particular f; € F,(f) at the ith epoch is

Pcf)————iL——(”_1>l (11)
l H.i/:1 fijt\i—1 .

Proof Recall that f; ; is the number of edges that subtend j leaves during the ith
coalescent epoch, where, j € {1,2,...,n}. Now, label the i edges in some arbitrary
manner. Let the number of the subtended leaves from the i labeled edges be A :=
(A1, Az, ..., A;). Due to the n-coalescent, A is a random variable with a uniform
distribution on integer partitions of n, such that Z’j:l A; =n and A; > 1. Thus,
P(A) = (’;:;)_l. Since there are i!/]_[i-:1 Jfi,j! many ways of labeling the i edges,
we get the P(f;) as stated. O

Proposition 3 (Forward Transition Probabilities of an f-sequence) The probability
of f:=(fn, fu=1,--., f1) € Fy is given by the product:

P(H=[]PUilfi-b, (12)

i=2

such that P(fi|fi—1) are the forward transition probabilities of a Markov chain
{F¢(k)}k€[n]+ on I, with the ordered time index set [n]y :={1,2,...,n}:

2fictjrkm—i+ D7 if fi=fisi e +ex —ejir. j £k,
jHk>1, fieFD, fiyeFSY,

P(filfic) =1 fict,jsk—i+ D7 if fi=fioi+ej+ex—ejyk, j =k,
j+k>1, fieFD, £  eFiD,

0 otherwise
(13)
with initial state f1 = (0,0, ..., 1) and final absorbing state f, = (n,0,...,0).
Note that we canonically write a sequential realization (f1, fa,..., fu) of

{FT(k)}keln]+ in reverse order as the f-sequence f = (fu, fu—1,---, f1).
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Proof Since (12) follows from (13) due to Markov property, we prove (13) next. An
application of the definition of conditional probability twice, followed by (2 yields):

P(filfi-1) = P(fixalfOP(fi)/P(fi-1)

il n—1\"! G—-D! (m—1\""!
rp (1Y e (o)
[Thei fin!t \E = [Thzy ficrn! N =
i fimia! (G =1
[Thet fin! n= G =1
Next, we substitute P(fi_1|f;) of Proposition 1 for the first case: f; = fi—1 +
ej t+ex—ejik,j#k,j+k>1,ie., the coordinates of f; and f;_; are such that

fij=ficrj+ L fik=ficik + 1, fijrk = ficrjrk—1,and fin = fio10,Vh €
{1,2,...,0}\{j, k, j + k}.

= P(fi-1l/i)

i)lﬂi;'lfm,h! iG—1)

2} Ty fint n=G=D)

ficrj it ficr k! 2
fijlfir'fijk! n—@G—1)

iy = Dk = DI fejs DU 2

P(filfi-1) = fi,jfi,k(

= fi.jfik

= fiifi :
fiif fi i fix fijrk! n—(@G-—1)
2(fi,j+k+ 1D ) B
= L =2fi1jkn—i+ 17N
n—(@G{—-1)

A substitution of P(f;_1|f;) of Proposition 1 for the second case: f; = fi_1 +e¢; +
ex —ejtk, J =k, j+k>1,ie, fij= fi-1,j +2, fizj = fi—12j — 1 and fi) =
ficin, Yhe{1,2,...,n}\ {j,2j}.

o (BN T St G =D
P(f"f"l)_< 2 )(2) [T fin! n=G=D

_ fij(fij =1 fim1,j fim125!
n—G-—1) f,‘,j!f,‘,zj!

_ fiilfij =D (fij = DN fizj + D!
n—(@i-1) fi,j fi2j!

(fizj+ 1) , ~ . -
= ﬁ=ﬁ71,2j(n—z +1) 1=fi71,j+k(n—l + DL
This concludes the proof. 0

Kingman’s unlabeled n-coalescent or the unvintaged and sized n-coalescent in
the descriptive nomenclature of Sainudiin and Stadler (2009) is the continuous time
Markov chain {F1(#)},er + on F;, whose rate matrix Q = q(f|f;) for any two states
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fi’ fi/ € IFn is
—i(i —1/2 :if]F,(f:) > fi = firs
Jij ik i Fy 3 fir=fi—ej—extejk,
/ k’ ,GIE*(I)7
q(fulfi) = J#b ficly "
(fi)fij=D/2 GfFy V5 fi = fi —ej —ex+ e,
jzk’ .fl EFI(‘ll)v
0 :otherwise.

The initial state is f, = (n,0,0,...,0) and the final absorbing state is f; =
(0,0, ...,1). The above rates for the continuous time Markov chain {F*(*)};er L on
I, are obtained by coupling the independent death process {H 1 (*)}rer, of Sect. 2.1
over H,, with the discrete time Markov chain {F T(k)}ke[n]_ on C,.

Let {NF1(k)}xez_ be the discrete time sample genealogical Markov chain of n
unlabeled samples taken at random from the present generation of a Wright—Fisher
population of constant size N over the state space [F, analogous to the death chain
{NH"(k)}rez_ . The next proposition (proved in Sainudiin and Stadler 2009, Propo-
sition 3.28 using the theory of lumped Markov chains) states how {FT(¢)};er . ap-
proximates {¥ F1 (k)};ez_ on F,,.

Proposition 4 (Kingman’s unlabeled n-coalescent) The | Nt |-step transition proba-
bilities, ¥ Py £ (LNt]), of the chain (NFY () ez, converge to the transition proba-
bilities of the continuous-time Markov chain {FT(I)},E]R+ with rate matrix Q of (14),
ie.,

N
NPs g (IN]) =55 Py s, (1) = exp (Q1).
Proof For a proof see Sainudiin and Stadler (2009). g

Remark 1 (Markovian lumping from C, to F, via %) Our lumping of Kingman’s
labeled n-coalescent over C,, to Kingman’s unlabeled n-coalescent over F,,, via the
mapping .%, is Markov as pointed out by Kingman (1982b, (5.1), (5.2)) using the
arguments in Rosenblatt (1974, Sect. IIId). See Sainudiin and Stadler (2009) for an
introduction to lumped coalescent processes and a proof that { F T ()};er . is a Markov
lumping of {CT(t)};er, .

First, we introduce a matrix form f of f. Any f-sequence f = (fu, fu—=1,--- f1)>
that is a sequential realization under {F T(k)}ke[n]f or a reverse-ordered sequential
realization under {F i(k)}ke[,,] 4+~ can also be written as an (n — 1) x (n — 1) matrix
F(f) =f as follows:

f1 P2 fan-d
F:F— 200D ppy=t=]| SR :

fact1 fam12 o famia—t

fn,l fn,2 fn,nfl

5)
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Fig. 2 The two f-sequences f ™ and f/ corresponding to the balanced (left panel) and unbalanced
unlabeled genealogies of four samples (right panel) are depicted as f-matrices " and £, respectively.
Hasse diagram of the state transition diagrams of {F (k) ke[4]— and {F ¢ (k)}ke[a),. on Fy (middle panel)

Thus, the matrix form of f = (f,, fu—1,..., f1) or the f-matrix is the (n — 1) x
(n — 1) matrix f whose (i — I)throw is (fi 1, fi2, ..., fin—1), Wwhere,i =2,3,...,n
Next, we provide some concrete examples of c-sequences and their lumping into
f-sequences and/or f-matrices for small n. When there are 2 samples there is one c-
sequence ¢ = ({{1}, {2}}, {{1, 2}}) and one f-sequence f =.%(c) = ((2,0), (0, 1)).

Example 1 (Three Samples) When there are three samples we have three c-
sequences: ¢, ¢® and ¢® (see Fig. 1) and all of them map to the only f-
sequence f:

f= ((3,0,0) (1,1,0), (0,0, 1))

F () = Z(({{1}. {2}, 31} ({1. 2}, (3. {{1. 2. 3}}))
z(c@)) Z ({1} 42 33, ({1, 3}, {2} {{1. 2. 3}}))
Z(c®) = Z(({11. 2}, 31, (123} (1)}, {1, 2. 3}})).

Example 2 (Four Samples) When there are four samples, we have two f-sequences
and eighteen c-sequences. We denote the f-sequences by f> and f”. We can apply
(8) to C4 and find that 12 c-sequences map to £ and 6 map to f”. They are depicted
in Fig. 2 as f-matrices.

In the Hasse diagram of I, (see Fig. 3), the states f1, ..., f, in IF,, form the nodes
or vertices and there is an edge between f; and f; if fi <7 f;, ie., f; immediately
precedes f;. Each Hasse diagram of IF,, embodies two directed and weighted graphs
of the state transition diagrams of {F T(k)}ke[,,]f and {FV (k) }kefn)s - These two state
transition graphs are temporally oriented, directed and edge-weighted by the transi-
tion probabilities of {F T(k)}ke - and {F i(k)}ke[,, . A similar diagram for n =7
appears in context of a breadth-first counting algorithm that sets the stage for an as-
ymptotic enumerative study of the size of F,, (Erdos and Guy 1975, Fig. 1).
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Fig. 3 Hasse diagrams of the state transition diagrams of the backward and forward Markov chains,
(F1 (k)}ke[n]— and {Fl (k) }ke[n],. - respectively, on Fy, for n =5, 6,7 on top row with labeled states and
n=2=8,9, 10 in bottom row

2.4 Exponentially Growing Population

So far, we have focused on stochastic processes whose realizations yield labeled and
unlabeled sample genealogies of a Wright—Fisher population of constant size N. Con-
sider a demographic model of steady exponential growth forward in time:

N(1) = N(O)(exp(¢a0).

where N (0) is the current population size. Let A, := Z?:k A denote the partial
sum. One can apply a deterministic time-change to the epoch times of the constant
population model to obtain the epoch times of the growing population (Tavaré 1984):

- k
P Ti>t Z Tj =trs1n =CXP<—<2>¢216Xp(¢2tk+1:n)(eXP(¢2t)—1)>~

j=k+1
2.5 Mutation Models

Recall that a coalescent tree €z, realized under the n-coalescent, describes the labeled
ancestral history of the sampled individuals as a binary tree. Figure 5 shows a coa-
lescent tree for a sample of four individuals. In neutral models considered here under
parameter ¢ = (¢1, ¢2) € ®, mutations are independently super-imposed upon the
coalescent trees at each site according to a model of mutation for a specific biologi-
cal marker with two or more states. The basic idea involves mutating the sampled or
given state at an ancestral node to a possibly different state at the descendent node
with a probability that depends on the mutation model and the lineage length be-
tween the two nodes. The two basic types of mutation models in population genetics
are briefly summarized below.
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2.5.1 Infinitely-Many-Sites Models

Under the infinitely-many-sites (IMS) model (Watterson 1975), independent muta-
tions are super-imposed on the coalescent tree ¢ at each site according to a homoge-
neous Poisson process at rate ¢1l,, where ¢1 := 4N, 1, [, is the total size of the tree,
N, is the effective population size, u is the mutation rate per generation per site. We
further stipulate that at most one mutation is allowed per site. The ancestral state is
coded as 0 and the derived or mutant state is coded as 1.

2.5.2 Finitely-Many-States Models

There are several finitely-many-states models. A continuous-time Markov chain over
finitely many states is used to model mutation from one state to another at each site.
For example, over the nucleotide state space, a simple symmetric model (Jukes and
Cantor 1969) allows transitions between any two distinct states at rate ;. /3. Mutations
are modeled independently across sites over a given coalescent tree “¢ whose lineage
lengths are in units of 4N,.

3 n-Coalescent Experiments

We give the statistical formalities needed to graphically frame our n-coalescent sta-
tistical experiments. Recall that a statistical experiment (X", o (X"), Pg) is the or-
dered triple consisting of the sample space X", a sigma-algebra over the sample
space o (X)) and an identifiable @ -indexed family of probability measures P,
ie, @ 3¢+ Py € Py, over the sample space, such that, Py := P(x|¢) € Pop
for each ¢ € @. Our samples spaces V,' and X" are finite and, therefore, Pj’s are
dominated by the counting measure. Our continuous parameter space in this study is
two-dimensional, i.e., @ := (@, ®,) C Ri. The first parameter ¢, is the per-locus
mutation rate scaled by the effective population size and is often denoted by 6 in pop-
ulation genetics literature. The second parameter ¢ is the growth rate of our popu-
lation whose size is growing exponentially from the past. For Bayesian decisions,
we allow our parameter to be a random vector @ := (P, @) with a Lebesgue-
dominated density P(¢) and realizations ¢ := (¢, ¢2). This prior density P(¢) is
taken to be a uniform density over a compact rectangle to allow simple interpreta-
tions from Bayesian, frequentist and information-theoretic schools of inference. We
are interested in approximately sufficient statistics (Cam 1964) for the purpose of
computational efficiency. Recall that a statistic Ty g(zo) = 28 : 20 — Zg is suffi-
cient for the experiment X, = (2, 0 (Z,), Pe), provided:

P(Za = Za‘Ta,ﬁ(Za) =28, 4’) = P(Zot = Za’To{,ﬁ(Za) = Zﬁ),

for any ¢ € @. Given a sufficient statistic T, g for the experiment X, and a prior
density such that P(¢) # O for all ¢ € @, we get Bayes sufficiency in the Kolmogorov
sense (Kolmogorov 1942), in terms of the following posterior identity:

P(¢lza) = P(¢| T, p(za) = 2p).
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Fig. 4 An n-coalescent experiments graph. An observed multiple sequence alignment of the mother ex-
periment and its offspring are shown on the left. The corresponding formalities are shown on the right

The fundamental experiment of this study is X1 := (X", 0 (X)), Pg) at the res-
olution of SFS. We also pursue Xo := (V', o (V}'), Pe) using existing methods for
comparison. The other experiment nodes in the experiments graph of Fig. POEG are
included to decision-theoretically unify various classical population genetic exper-
iments. They include (’f-lf, 0(7:2,’1”), Pg) that is based on the haplotype frequency
spectrum or HFS H (Ewens 1972, 1974), and the three linear subexperiments of Xy,
namely, Xo11 := (V). 0 (Y)}), Pe) for the folded site frequency spectrum or FSFS Y,
Xo12 1= (2], 0(Z]"), Pe ) for the heterozygosity Z and Xo13 := (S, 0 (S)}'), Pe)
for the number of segregating sites S = Z:’;ll x;. Using Markov bases, we approach
the Tajima’s D product experiment of Xp12 and Xo;3.

3.1 Multiple Sequence Alignment

The data u, is the DNA multiple sequence alignment or MSA obtained from a sam-
ple of n individuals in a population at m homologous sites. This is assumed to be the
finest empirical resolution available to our experimenter. The mutation model is typ-
ically a reversible Markov model on the nucleotide state space {A, C, G, T} under the
assumption of independence across sites. The conditional probability P (u,|¢) that is
proportional to the likelihood of ¢ is computed by integrating over all ancestral nu-
cleotide states using a product-sum algorithm (Felsenstein 1981) for each coalescent
tree ¢ in the coalescent tree space CuT, that is distributed according to ¢.

Exact maximum likelihood estimation (e.g., Yang 2000; Hosten et al. 2005;
Casanellas et al. 2005) as well as exact posterior sampling (Sainudiin and York
2009) is only feasible for small sample sizes (n < 4). The standard approach is to
rely on Monte Carlo Markov chain (MCMC) algorithms (Metropolis et al. 1953;
Hastings 1970) to obtain dependent samples from the posterior under the assumption
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that the algorithm has converged to the desired stationary distribution. Unfortunately,
there are no proven bounds for the burn-in period and thin-out rate that are needed to
obtain Monte Carlo standard errors (Jones and Hobert 2001) from the MCMC sam-
ples. Thus, there is no guarantee that an MCMC sampler is indeed close to the de-
sired stationary distribution over Co T, (Mossel and Vigoda 2005, 2006). Moreover,
polymorphic sites are typically biallelic in human population genomic data. Thus,
one need not have a finite state Markov model of mutations to explain most of the
observed data patterns and can thereby circumvent the computational demands on
evaluating the likelihood at the finest resolution of the MSA.

3.2 Binary Incidence Matrix

We assume the ancestral nucleotides are known, and at most one derived nucleotide
occurs at each site among the sampled sequences (such biallelic data is common and
sites showing ancestral and derived characters are commonly referred to as single
nucleotide polymorphisms or SNPs). Then from the aligned sequence data u, we
obtaina BIM v € V' := {0, 1} by replacing all ancestral states with 0 and derived
states with 1.

BIM data is modeled by superimposing Watterson’s infinitely-many-sites (IMS)
model of mutation (Watterson 1975) over an n-coalescent sample genealogy (King-
man 1982a, 1982b). We can conduct inference on the basis of the observed binary
incidence matrix or BIM v using existing importance sampling methods (e.g., Grif-
fiths and Tavare 1994, 1996; Bahlo and Griffiths 1996; Stephens and Donnelly 2000;
Slatkin 2002; Iorio and Griffiths 2004; Birkner and Blath 2008). In this study, we are
not interested in inference on the basis of the observed BIM at a single locus, but
instead on its SFS, a further summary of BIM.

3.3 Site Frequency Spectrum

We can obtain the site frequency spectrum x from the BIM v via its site sum spectrum
or SSS w. With w denoting the vector of column sums of v, the SFS x is the vector
of frequencies of occurrences of each positive integer in w. Thus, the ith entry of x
records at how many sites exactly i sequences in u show the derived state. We assume
that no site displays only the derived state. Thus, x has only n — 1 entries. Figure 5
depicts the BIM v, SSS w, and SFS x on the right for a sample of four individuals
with the genealogical and mutational history on the left. Next, we describe the basic
probability models required to compute the likelihood of SFS.

3.3.1 Inference under the Unlabeled n-Coalescent

For a given coalescent tree “t € CaT,, let the map:
L)y =1:= Ul dyer) O T, — L, =R (16)

compress the tree ¢ into the n — 1 lineage lengths that could lead to singleton, double-
ton, ..., and “(n — 1)-ton” observations of mutationally derived states, respectively,
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Fig. 5 At most, one mutation BIMve y49

per site under the - - -

infinitely-many-sites model are = = = SITES: 1 234567809
superimposed as a homogeneous

Poisson process upon the IND1: 001001000
realization of identical IND2: 01000000 1
coalescent trees at nine IND3: 010000101

homologous SITES labeled
{1,2,..., 9} that constitute a
non-recombining locus from
four INDividuals labeled
{1,2,3,4 SSS w: 031001203

SFS x = (x1,x2,73) = (2,1,2) € 27

IND 4: 01 0000101

i.e., [; is the length of all the lineages in ¢z that subtend i samples or leaves. For exam-
ple in Fig. 5, (i) the bold lineage of the tree with label set £ = {1, 2, 3, 4} upon which
the mutations at sites 3 and 6 occur, lead to singleton mutations, (ii) the bold-dashed
lineage upon which the mutation at site 7 occurs leads to doubleton mutations and
(iii) the thin-dashed lineage upon which mutations at sites 2 and 9 occur lead to triple-
ton mutations. Thus, /1, [, and /3 are the lengths of these three types of lineages, re-
spectively. Finally, [, := Z:'l;ll l; € Ry is the total length of all the lineages of the tree
¢t that are ancestral to the sample since the most recent common ancestor at each one
of the m sites at our locus. Now, let l_, :=1; /1, be the relative length of lineages that
subtend i leaves at each site. Now, define [ := (l_l,l_z, e, l_n_l) € A,_o,the (n —2)-
unit-simplex containing all [ € R'_;fl such that Z:’:_l I; = 1. Then, if L(°t) =1, the
following conditional probability of x is given by the Poisson-multinomial distribu-
tion:
n—1 n—1

P(xlp,“t) = P(xlp, D) =e """ (@iml)’ [T [ []x (17)

i=1 i=1

where s = 27:_11 x; is the number of segregating sites. The distribution on Gy, s
given by the ¢,-indexed n-coalescent approximation of the sample genealogy in an
exponentially growing Wright-Fisher model. This distribution on G, in turn de-
termines the distribution of the random vector L on £,. We employ the appropriate
lumped Markov process to efficiently obtain P(¢|x) as per Remark 2.

Remark 2 Kemeney and Snell (1960, p. 124) observe the following about a lumped
process: “It is also often the case in applications that we are only interested in ques-
tions which relate to this coarser analysis of the possibilities. Thus, it is important
to be able to determine whether the new process can be treated by Markov chain
methods.”

By lumping the states, we are doing far fewer summations during the integration
of probabilities over the hidden space of f-sequences, as opposed to c-sequences,
when evaluating the likelihood of the observed SFS. The extent of this lumping as
|Fn|/|C,], the ratio of the number of integer partitions of n and the nth Bell number
for a range of sample sizes is tabulated below (see Table 1).
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Table 1 Cardinalities of the state spaces

n=[Hy| 4 10 30 60 90
|Cal 15 1.2 x 105 8.5 x 1023 9.8 x 105 1.4 x 10101
IFy| 5 42 5.6 x 103 9.7 x 10° 5.7 x 107

|Ful/ICnl 0.33 3.6x 1074 6.6 x 10721 9.9 x 107> 4.0x 10794

Using the unlabeled n-coalescent, we can directly prescribe the ¢-indexed family
of measures over A" and obtain the sampling distribution over &), i.e., the proba-
bility of an SFS x € A" when conditioned on the parameter ¢ and an f-sequence
f € F,.Recall P(x|¢p,“t) = P(x|p,l), where [ = L(t), as in (17). We show that [ is
determined by the f-matrix f =F(f) of the f-sequence f = .%(c) of the c-sequence
¢ and the epoch-times vector ¢ of the coalescent tree “t.

Proposition 5 (Probability of SFS given f-sequence and epoch-times) Ler °t € T
be a given coalescent tree, c be its c-sequence, f = F (c) beits f-sequence,f=F(f)
be its f-matrix and t = (1,13, ..., 1) € (0, oo)"_1 be its epoch times as a column
vector and its transpose t* be the corresponding row vector. Then L(‘t) =1 of (16)
is given by the following matrix multiplications:

n n—1 2
I=1"f= (Zzifi,l,znfi,z,...,Ztiﬁ,n_1>. (18)
i=2 i=2 i=2

More succinctly, lj = Z:H_Zl J tifi,j for j =1,2,...,n — 1. And the probability of

)n—l

an SFS x given a vector of epoch-times t € (0, oo and any coalescent tree °t €

Z D=t :ce TN} is:

P(x|$,t) = P(x|¢,1) = P(x|¢, t"f)

n+1 n+1

1 n—1—j n—1 —j it x
= exp( qblmzztlfl ;)(fﬁlmzztiﬁ,/’)
Hi:lx j=1i=2 j=li=2
n+1 n+1
n—1 —j =1\ xi
XH(Zhﬁ](ZZnﬁ ) ) : (19)
i=1 j=1i=2

Proof The proof of (18) is merely a consequence of the encoding of f as the matrix
f and (19) follows from (18) and (17). Il

The computation of / from ¢ and f requires at most n> — 2n 4 1 multiplications
and additions over R. Exploiting the predictable sparseness of f is more efficient
especially for large n. Thus, given the parameter ¢ = (¢1, ¢») and a sample size n,
we can efficiently draw SFS samples from X" via Algorithm 1.
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Algorithm 1 SFS Sampler under Kingman’s unlabeled n-coalescent
1: input:

1. scaled mutation rate ¢ per site
2. sample size n
3. number of sites m at the locus

output: an SFS sample x from the standard neutral n-coalescent

generate an f-sequence f either under {FT(k)}ke[n]f or {Fl(k)}ke[n]+
draw t ~T = (T2, T3, ..., T,) ~ @7, (é)e_(é)"', or as desired from R’}r_l
draw x from the (f, t)-dependent Poisson-Multinomial distribution of (19)
return: x

AN

Note that Algorithm 1 is quite general since the only restriction on ¢ in step 4 is
that it be a positive real vector. Thus, any indexed family of measures over (0, c0)" !,
including nonparametric ones, may be used provided the c-sequence ¢ and its f-
sequence f = .% (c) are drawn from the labeled n-coalescent and the corresponding
unlabeled n-coalescent, respectively, in an exchangeable manner that is independent
of the epoch-times vector ¢.

Next we study one f-sequence in detail as it is an interesting extreme case that
will resurface in the sequel.

Example 3 (Completely unbalanced tree) Let the f-sequence f™ € F, denote that
of the completely unbalanced tree. Its probability based on (9) and (10) are:

=D B f)), where £ = (i — Der +emoitn), (20)

o T e s T (=D
p(r) = [1r1) = 11 iGi—D72 -1
i=n—1

211—2

21

i=n
The number of c-sequences corresponding to it is Ea (f ™M) =n!/2.

The posterior distribution P(¢|x) o< P(x|¢p)P(¢) over @ is the object of infer-
ential interest. For an efficient inference based on SFS x, we first investigate the
topological information about the tree “¢ that the SFS x was realized upon. We are
only interested in this information provided by the drawn x, and thus can only resolve
the topology of ¢t up to equivalence classes of .# ~1(f), where f is the f -sequence
corresponding to the c-sequence of 7. For samples of size 2 < n < 3, there is only
one f-sequence in J,. For samples with n > 4, consider the following mapping of
the SFS x € A" into vertices of the unit hyper-cube {0, 1}*~1, a binary encoding of
2(1.2,n=1} the power setof {1,2,...,n— 1}

X®) =x®:=(x®,...,x¥ ) i= (InG), .. InGa—D) £ X — {0, 1)L
If xh® = 1 then the Ath entry of the SFS x is at least one, i.e., x5, > 0. Thus, X®(x) =
x® encodes the presence or absence of at least one site’s ancestral lineage that has
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been hit by a mutation while subtending # samples, where h € {1,2,...,n—1}. Next,
consider the following two sets of f-sequences:

n
Fn(x®):= U {fe]—'n:Zf,-,h=O}, CFa(x®) :=Fu \ Fu(x®).
{h: xP=1} i=1

(22)
The set of f-sequences f ,(x®) and its complement Cf ,(x®) play a fundamental
role in inference from an SFS x and its X® = x®. Note that when an SFS x has none
of the x;’s equaling 0, then its x® = (1,1,..., 1) and Cf ,(x®) only contains the
f-sequence corresponding to the completely unbalanced tree ™ given by (20). At
the other extreme, when an SES x has all its x;’s equaling 0 with x®=(0,0,...,0),
we are unable to discriminate among f-sequences since Cf ,,(x®) = F,,. Thus,

CFa(0,0,...,00=F, and Cr,(1,1,....0)={f}. (23)

Therefore, the size of Cf ,(x®) can range from 1 to |F,|, depending on x®. More
generally, we have the following proposition.

Proposition 6 (Likelihood of SES) For any t € (0,00)"~! and any x € X with
x® = X®(x),

n—1
If feFn(x®)andl =1" -F(f) then ]_[ I =0. (24)

i=1
Therefore, the likelihood of SF'S x is proportional to

n+1

n—1 —j
1
P(x|p) = F Z P(f) (/ze(o o (exp(—@mZZtiﬁ,])

i=1 Y el (c®) j=1i=2
1
n—lnj—j Z?;llxi
x <¢lmzztifi,j>
j=1i=2
n+1 n+1
n—1 /—j n—1 —j =1\ xi
<[] (Znﬁ,j(Zan,-,j> ) )dP(r|¢>>. (25)
i=1 \i=2 j=li=2

Proof We first prove the implication in (24). Given any ¢ € (0,00)" ! and any
x € &' with x® = X®(x), let f e F,(x®). First, suppose xﬁB = 0 for every
hel{l,2,...,n—1}, then F ,(x®) = @ and we have nothing to prove. Now, sup-
pose there exists some £ such that xf) = 1, or equivalently x;, > 0, then by the con-
structive definition of F,(x®), we have that for any f € F,(x®) Y7, fin =0,
which implies that f; , =0 for every i € {1,2,...,n} since f;; > 0. Therefore,
by applying this implication to the expression for /;, in Proposition 5, we have that
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I = 27:21 " 4; fi.n = 0 and finally the desired equality that ]_[;':_11 ['=0in(24)is a
consequence of [} = (I, /1) = 0*" = 0.

Next, we prove (25). For simplicity, we abuse notation and write P (-) to denote the
probability as well as the probability density under the appropriate dominating mea-
sure. Repeated application of the definition of conditional probability and the neutral
structure of the n-coalescent model leads to the following expression for P(x, ¢) in

P(x|¢) = P(x,$)/P(9):

P(x, ¢) B Z /te(O,oo)nl P(X7 ¢’ he)= Z [e(o,m)rz1 P, ¢’ £ f)

ceCn fEFn

= Zf P(xlg, 1, /YP($.1, f)
feF, te(0,00)"—!

= > P(f) P(xlg, 1 =1" -F(/)) P(t|$)P($)
feF, te(0,00)"~!

since by independence of f and (¢, t),

P(p.t, [)=P(flg.0)P(@.1) = P(f)P(¢,1) = P(/)P(t|p) P().
Thus, by letting F(f) =f, the likelihood of the SFS x is

P(x|p) = P(x,$)/P(@) = Y _ P(f) P(x|p,l=1T-£)dP(11$).

feF, te(0,00)n~1

Substituting for P(x|¢,l = tT - f) from Proposition 5 and only summing over
f € CF ,(x®) with nonzero probability P(x|¢,l =tT - f), we get the discrete sum
weighted by integrals on T, := (0, 00)"~!, the required equality in (25). g

Next, we devise an algorithm to estimate P (x|¢), the probability of an observed
SES x given a parameter ¢. This is accomplished by constructing a Markov chain
{FL)‘@B (k)}kern), on the state space ]Fj,‘® c F, x {0, 1}"~! such that every sequence
of states visited by this chain yields a probable f-sequences f for the observed
SES x, ie., f € Cr,,(x®). In this paper, we focus on small n € {4,5,..., 10} and
exhaustively sum over all f € Cf ,(x®) that are unique sequential realizations of
{F B (k) }kefn, - The maximal number of such f-sequences is

max |G, (x®)| = [CF,((0,0,...,0)| = |Fl.

x®ef0, 1)1

A breadth-first search on the transition graph of {F |x® (k)}keln), revealed that

|Fnl=2,4,11,33,116,435,1832,...,6237505,
as n=4,5,6,7,8,9,10,...,15,

respectively. Our computations are in agreement with similar numerical calculations
of | F,| in Erdés and Guy (1975, Sect. 2). This x®-indexed family of 2=1 Markov
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Fig. 6 Transition diagram of
{FLX@ (K)}ke[s],. over states in
FX® . The simplified diagram
replaces the states that do not
affect the transitions, namely,
x? and x5, with * € {0, 1)

((31000),
**00))
((50000),
**00))

}n—l

chains {F B (k)}kern), over state spaces contained in F,, x {0, 1 may also be
thought of as a controlled Markov chain (e.g., Duflo 1997, Sect. 7.3) over the state
space F,, with control space {0, 1}"~! that can produce the desired f-sequences
in CF, (x®).

Optimal importance sampling by using the sequential realizations of
{F B (k) }kern),. and its continuous time variant as a proposal distribution in order
to get the Monte Carlo estimate of P(x|¢) for larger n is necessary and possible.
However, this is a subsequent problem in variance reduction of the Monte Carlo es-
timate for large values of n that depends further on the precise nature of ¢-indexed
measures on T,.

Proposition 7 (A Proposal over CF ,(x®)) For a given SFS x € X" and X®(x) =
x® € {0, 1}, consider the discrete time Markov chain {FL"®(k)}ke[,,]+ over the
state space of ordered pairs (fi, z;1) € Fﬁ(@ C F, x {0, 1Y*~L, with the initial state
given by (f1,x®) = ((0,0,...,1),x®), the transition probabilities obtained by a
controlled reweighing of the transition probabilities of { F i(k)}ke[n] , over B, as fol-
lows:

P(filf)/ X (fizi) f  (finzi) <z (firs 2,

P((fir,z)I(fi2i) = 0 otherwise. (26)
where
S(fiw) = ), P(fi—ejtej+elf)

(J.k)e& (fi.zi)

E(fivz) = (G0 fije>0, 1< j<j<k<j+k—1},
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_~ | k
j = max{min{max{ﬁ rzie=1) j+k - 1}’ ’7%—‘ }’

fr=fitej+e—ejwk, (k) eE(fi,z), and
Zit =2 — ﬂ{]}(Zi,j) €j — IL{1}(Zi,k)eka

(fi,zi) <fz (firszir) &= {

and with (f,,(0,0,...,0)) = ((n,0,...,0),(0,0,...,0)) as the final absorbing
state.
Let “ be the set of sequential realizations of the first component of the ordered

pairs of states visited by {F |x® (k) Ykemny» i-e.

F = = G factoeees S0 i €FDL(fir2) < g2 (fit zig)s 21 = ).
Then F° =CF ,(x®).

Proof We will prove that ) “=Cr 2(x®) for three cases after noting that the ortho-
normal basis vector e; in {0, 1}"~! and F,, takes the appropriate dimension. The first
two cases involve constructive proofs.

Case 1: Suppose x® = (0,0, ...,0). Since 0 ,(x®) = F, by (23), we need to
show that F; © = F,. Initially, at time step 1,

FRY () = (fi, 20 = (fi,x®) = (00,0, ...,0, 1), (0,0, ..., 0)).

Note that for any time step i, z; in the current state ( f;, z;) remains at (0,0, ...,0).
Thus, max{¢ : z; y = 1} = max{/}} = —oo and, therefore,
~ i +k i + k
j::max{min{max{ﬂ:zl-,gz 1}, j+k—1}, []; —‘} = []; —‘, and

— . . i + k )
E(fi,zi) = {(J,k)Ifi,j+k>0, 1<j< IVJT—‘ Ekfj-i-k—l}.

Therefore, the first component of the chain can reach all states in [, that are immedi-
ately preceded by f; under <y making X'(f;, z;) = 1. Thus, when x®=(0,0,...,0)
our fully uncontrolled Markov chain {F x® (k) }kern),. Visits states in I, in a man-

ner identical to the Markov chain {F i(k)}ke[n] , over [F,. Therefore, .7-",;‘@/ =F, =
Cr,(x®) when x® = (0,0,...,0).

Case 2: Suppose x® = (1,1, ..., 1). Since 0 ,(x®) = { f} by (23), we need to
show that .7-';‘® = {f™}. Initially, at time step 1,

FPFoy = (1,20 = (fi,x®) = ((0,0,...,0,1), (1, 1,..., 1, 1))

then f; j1u >0 = j+k=nmax{€:z1, =1} =max{l,2,...,n—1}=n—1,
j =max{min{n — 1,n — 1}, [n/2]} =n — 1 and

E(fiz) ={(. 0 fijsk >0 1<j<n—1<k<n—1}={n-D}.
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Thus, the only state that is immediately preceded by (f1,z1) is our next state
(f2,22) = (fi —eqn +e1 +ep—1,21 — Lj1y(z1,1) e1 — L41y(2i,n—1) €n—1) with prob-
ability 1 due to the equality of the numerator and denominator in (26):

(f1.20) <fz (fro22) = ((1,0,...,1,0), 0, 1,...,1,0)) = F**(2).

In general, at time step i, &(f;, zi) = {(1,n — D)}, P((fi+1, zi+1)I(fi,zi)) =1 and

n

n i i
firi=fi=) ej+Y er+) enj=enitier,  zi=x¥—e1—) ej1.

=t =L = j=i

By (20), fi+1 = en—i +ie1 = f7}, and we get the desired f™ = (£, £ (..., )
in the forward direction as the only realization over [, of our fully controlled
Markov chain {le@ (k) }kefn),.- Therefore, ]-",f® = {f>\} =CF,(x®) when x® =
1,1,...,1).

Case 3: Now, suppose x® e {0, 1}”_1 \ {(0,0,...,0),(1,1,..., 1)}. First, we will
show that f € }",’[® implies that f € Cf ,(x®) or equivalently that f ¢ [ ,(x®).
We will prove by contradiction. Assume f € f,f@). Suppose that f € [ ,(x®). Then
by (22), there exists an # with xh® =1 such that Y7, fi» =0. Since Y 7_, fi1 >
0 and Z:‘l:l fiz2 >0 for every f € F,, withn >2, he{3,4,...,n — 1}. Recall
that "7, fi,» = O implies that there was never a split of any lineage that birthed
a child lineage subtending 4 leaves at any time step in the sequential realization of
f=(f1, fos..., fn) over F,, by {F |x® (k)}n1.. - This contradicts our assumption that
fe ]__;[@ as it violates the constrained splitting imposed by Z(f;, z;) at the time
step i when max{{ : z; y = 1} = & in the definition of j. So, our supposition that
f € F,(x®) is false. Therefore, if f € ]-",f® then f € CF,,(x®). Next, we will show
f €Cr,,(x®) implies that f € .7-',’1‘®. Assume that f € 0F ,(x®), then "7, fin >0
for every h € {h : x}? = 1} by (22). This means that for each 4 with x;? =1 there
is at least one split in f that birthed a child lineage subtending & leaves. Since this
splitting condition satisfies the constraints imposed by & (f;, z;) at each time step
i when max{€:z;, =1} =h, he{h :x,? = 1}, in the definition of 7, this f can
be sequentially realized over F,, by {F @ (k)}{n], - Therefore, if f € Cr,(x®) then
fer®. O

Thus, given ¢; and an x®, we can efficiently propose SFS samples from X,
such that the underlying f-sequence f belongs to CF ,(x®), using Algorithm 2.
Note, however, that a further straightforward importance sampling step using (26)
and (12) is needed to obtain SFS samples that are distributed over X" according to
the unlabeled n-coalescent over CF , (x®).

3.4 Linear Experiments of the Site Frequency Spectrum

We describe a method to obtain the conditional probability P (r|¢, “t), where r = Rx
is a set of classical population genetic statistics that are linear combinations of the site
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Algorithm 2 SFS Proposal under an x®-controlled unlabeled n-coalescent
1: input:

1. scaled mutation rate ¢ per site
2. number of sites m at the locus
3. observed x® (note that sample size n = x®|+ 1)

output: an SFS sample x such that the underlying f-sequence f € Cf ,(x®)
generate an f-sequence f under {F L"@B(k)}ke[n] 4

draw t ~T = (T2, T3, ..., T,) ~ @7, (é)e_(é)”', or as desired from R'ffl
draw x from the (f, t)-dependent Poisson-multinomial distribution of (19)
return: x

AN A R

frequency spectrum x, ¢ is the vector of parameters in the population genetic model
and ¢z is the underlying coalescent tree upon which mutations are superimposed to
obtain the data. The conditional probability is obtained by an appropriate integration
over

R ') = {x 1x € Z'fl,Rx :r}.
R~ (r) is called a fiber.
We want to compute P(r|¢), since the posterior distribution of interest is
P(¢|r) « P(r|¢)P(¢). Furthermore, we assume a uniform prior over a biologically

sensible grid of ¢ values and evaluate P (r|¢) over each ¢ in our grid. More precisely,
we have

P(rlg.t) = P(rlp. 1 =L(t))= >  P(xlg.D), 27)

xeR-1(r)

P(r|¢)=flﬁ P(r|¢,l)P(l|¢)=/l£ Z P(x|¢p,)Pl$). (28)

' xeR~1(r)

We can approximate the two integrals in (28) by the finite Monte Carlo sums,

N M
1 1 . .
Pri)~ <Y or D PEPe?), 1D ~Pwig). (9

The inner Monte Carlo sum approximates ) _ . P(x|¢, I)over M x"’sinR~!(r) and
the outer Monte Carlo sum over N different /¢/)’s can be obtained from simulation
under ¢. Therefore, P(¢|r) o< P(r|¢) P(¢p)

N
%%Z% Z P(x®)$,19), 19 ~ P(|$)P(9).
j=1 h=1,
’ xMeR~1(r)

If |R_1| is not too large, say less than a million, then we can do the inner summation
exactly by a breadth-first traversal of an implicit graph representation of R™!(r).
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In general, the sum over R™!(r) is accomplished by a Monte Carlo Markov chain
on a graph representation of the state space R™!(r) that guarantees irreducibility.
This article is mainly concerned with the application of Markov bases to facilitate
these integrations over R™!(r). Although Markov bases were first introduced in the
context of exact tests for contingency tables (Diaconis and Sturmfels 1998), we show
in this article that they can also be used to obtain the posterior distribution P (¢|r,)
of various observed population genetic statistics r,.

Definition 1 (Markov basis) Let R be a g x (n — 1) integral matrix. Let MR be
a finite subset of the intersection of the kernel of R and Z"~!. Consider the undi-
rected graph Gy, such that (1) the nodes are all lattice points in R (r) and (2) edges
between a node x and a node y are present if and only if x — y € MRg. If G is con-
nected for all r with Gg # ¥, then MR is called a Markov basis associated with the
matrix R. We refer to an m := (my, ..., m—1)) € MR as a move.

A Markov basis can be computed with computational commutative algebraic al-
gorithms (Diaconis and Sturmfels 1998) implemented in algebraic software pack-
ages such as Macaulay 2 (Grayson and Stillman 2004) and 4t i2 (Hemmecke et
al. 2005). Monte Carlo Markov chains constructed with moves from Mpg are irre-
ducible and can be made aperiodic, and are therefore ergodic on the finite state space
R~!(r). An ergodic Markov chain is essential to sample from some target distribution
on R™1(r) using Monte Carlo Markov chain (MCMC) methods.

3.4.1 Number of Segregating Sites

A classical statistic in population genetics is S, the number of segregating sites (Wat-
terson 1975). It can be expressed as the sum of the components of the SFS x:

n—1
Sy =Y xi=s5:2"—> 8. (30)

i=1
S is the statistic of the n-coalescent experiment X¢13 := (S)', 0 (S))'), P ). For some
fixed sample size n at m homologous and at most bi-allelic sites, let the s-simplex
S~ 1(s) = {x € & : S(x) = s} denote the set of SFS that have the same number
of segregating sites s. The size of S™!(s) is given by the number of compositions
of s by n — 1 parts, ie., |S~!(s)| = (‘v+z—2)_ The conditional probability of S is
Poisson distributed with rate parameter given by the product of the total tree size
ly := Zl’:ll l;, number of sites m and the per-site scaled mutation rate parameter ¢

in ¢
P(S=s|p.“t)=P(S=slp.D= > Plp.])

xeS~1(s)

n—l_ n—1 -1
= > e @gml) [ ]I (]‘[ x,-!)
i=1 i=1

xeS~1(s)

= e~ 01l (g1ml,) /5!
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3.4.2 Heterozygosity

Another classical summary statistic called average heterozygosity is also a symmetric
linear combination of SFS x (Tajima 1989). We define heterozygosity Z(x) = z and
average pair-wise heterozygosity I7(x) =  for the entire locus as follows:

n—1

Z):=Y in—ix;, ()= (3[—)Z(x). 31)
i=1 2

Z is the statistic of the n-coalescent experiment Xo12 := (2, 0(Z'), P ). For
some fixed sample size n at m homologous and at most biallelic sites, consider the
set of SFS that have the same heterozygosity z denoted by Z~!(z) = {x € xm
Z(x) = z}. This set is the intersection of a hyper-plane with X". The conditional
probability P(Z|¢p,t) = P(I1|¢,t) = P(Z =z|¢p,]) is

n—1 7x;
Pz=zp.h= Y Palp D=t Y gumigSit v Hiztl

n—1_,
x€Z7(2) x€Z71(2) [Tizy it
3.4.3 Tajima’s D

Tajima’s D statistic (Tajima 1989) for a locus only depends on the number of segre-
gating sites of (30), average pair-wise heterozygosity of (31) and the sample size n,
as follows:

I(x) = Sx)/d

D(x) := , (32)
Nd3S(x) +daSx)(S(x) — 1)
where d| 1= Z;-:ll il dy = Z;’z_]l i~2,
o on+1 1 g 1 202 +n+3) n+2 do
YT3ain—n a7 T P vd\ =1 ndy  d2)°

Thus, Tajima’s D is a statistic of Xo12 X X013, a product n-coalescent experiment.
Let r = (s, z)’ for a given sample size n. Observe that fixing n and r also fixes the
average heterozygosity 7w and Tajima’s d. Next, we will see that inference based on
s, w and d for a fixed sample size n depends on the kernel or null space of the matrix
R given by

R 1 1 1
“\Nim=1 ... in=i) ... m=Dm—-m—-1))"

The space of all possible SFS x for a given sample size n is the nonnegative integer
lattice Z'_"__l. Let the intersection of {x : Rx = r} with Zg’__l be the set:

R ={xezZ{ " :Rx=r}.
Since n is fixed, every SFS x in R~ !(r) has the same s, z, 7, and d.
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(B)

Fig. 7 A Polytopes containing Rfl((s, 7)), where z € {30,31, ..., 40}, n =4 and s = 10 are at the in-
tersection of the s-simplex, Zi_ and each of the z-simplexes. B Projected rectangular polytopes containing

R! ((s,2)"), where z € {20,22, ..., 30}, n =5 and s =5 (see text)

When n = 4, we can visualize any SFS x € R~!(r) using Cartesian coordinates.
Let Ry = (1,1,1) and Ry 7! (s) := {x € Z3 : 3°}_, x; = 5}, the set of SFS with s
segregating sites, be formed by the intersection of Zi with the s-simplex given by
X3 =5 — x] — xp. Figure 7A shows R1_1(10), the set of 66 SFS with 10 segre-
gating sites, as colored balls embedded in the orange s-simplex with s = 10. Sim-
ilarly, with Ry = (3,4,3), Ro™!(2) := {x € Z3 : 3x; + 4x + 3x3 = z} is the set
of SFS at the intersection of Zi with the z-simplex given by x3 = (z — 3x1 —
4x7)/3. Figure 7A shows three z-simplexes for z = 30, 35 and 40, in hues of vi-
olet, turquoise, and yellow, respectively. Finally, the intersection of a z-simplex,
s-simplex, and Zi is our polytope R™!((s,z)’), the set of SFS that lie along the
line (x1,z — 3s,—z + 4s — x1). In Fig. 7A, as z ranges over {30, 31,...,40},
(1) the z-specific hue of the set of balls depicting the set R1((10,z2)) ranges
over {violet, blue, ..., yellow}, (2) |R_1((10, z))| ranges over {11,10,...,1} and
(3) Tajima’s d ranges over {—0.83, —0.53, ..., +2.22}, respectively. For example,
there are eleven SFS in R™1((10, 30)) and their Tajima’s d = —0.83 (purple balls
in Fig. 7A) and there is only one SFS in R~1((10, 40)") = {(0, 10, 0)} such that its
Tajima’s d = +2.22 (yellow ball in Fig. 7A).

Analogously, when n = 5, we can project the first three coordinates of x, since
X4 = § — x1 — x2 — x3. The intersection of the s-simplex, z-simplex and Zi gives our
set R™1((s, z)") in the rectangular polytope via the parametric equation (x{, x2, z/2 —
2s — x2,3s — z/2 — x1) with 0 < x; <35 — z/2, 0 < xp <s. In Fig. 7B, as z
ranges over {20, 22, 24,26, 28, 30}, (1) the z-specific hue of the set of balls depicting
the set R™!((5, z)’) in the projected polytope ranges over {violet, blue, ..., yellow},
) IRY(5, )] ranges over {6, 10, 12, 12, 10, 6} and (3) Tajima’s d ranges over
{—1.12, —-0.56,0.00, +-0.56, +1.69}, respectively.

@ Springer



858 R. Sainudiin et al.

Unfortunately, |R™!((s, z)")| grows exponentially with 7 and for any fixed n it
grows geometrically with s. Thus, it becomes impractical to explicitly obtain R~ (r)
for reasonable sample sizes (n > 10). For small sample sizes, we used Barvinok’s
cone decomposition algorithm (Barvinok 1994) as implemented in the software pack-
age LattE (Loera et al. 2004) to obtain IR™1((s, 2)")| for 1000 data sets simulated
under the standard neutral n-coalescent (Hudson 2002) with the scaled mutation rate
¢ =10. Asnrangedin {4, 5, ..., 10}, the maximum of IR~1((s, 2)")| over the 1000
simulated data sets of sample size n ranged in:

{73,940, 6178, 333732, 1790354, 62103612, 190176626},

respectively. Thus, even for samples of size 10, there can be more than 190 million
SFS with exactly the same s and z. The SFS data in this simulation study with ¢7 =
10 corresponds to an admittedly long stretch of non-recombining DNA sites. On the
basis of average per-site mutation rate in humans, this amounts to simulating human
SFS data from n individuals at a non-recombining locus that is 100 kbp long, i.e.,
m = 10°. Although such a large m is atypical for most non-recombining loci, it does
provide a good upper bound for m and computational methods developed under a
good upper bound are more likely to be efficient for smaller . Our choices of ¢} and
m are biologically motivated by a previous study on human SNP density (Sainudiin
et al. 2007).

Thus, |R~L((s, 2)’)| can make explicit computations over R L) impractical, es-
pecially for larger n. However, there are two facts in our favor: (1) if we are only
interested in an expectation over R~!(r) (with respect to some concentrated den-
sity) for reasonably sized samples (e.g. 4 < n < 120), then we may use a Markov
basis of R™1(r) to facilitate Monte Carlo integration over R~ (r) and (2) for spe-
cific summaries of SFS, such as the folded SFS y := (y1,y2,..., Y[n/2)), Where
yj i=1yj#n—j}(j) xj + x,4—j, one can specify the Markov basis for any n.

The number of moves | MR| ranged over {2,4,6, 8, 14, 12,26, 520, 10132} as n
ranged over {4, 5, ..., 9, 10, 30, 90}, respectively. The Markov basis for R™! (r) when
n=4is Mgr ={(+1,0,—1), (—1,0,+1)}. From the example of Fig. 7A, we can see
how R™!(r) can be turned into a connected graph by Mg for every r with § = 10.
For instance, when r = (10, 36)’,

R™' () ={(0,6,4),(1,6,3),(2,6,2), (3,6, 1), (4,6,0)}

and we can reach a neighboring SFS ¥ € R™!(r) from any SFS x € R™!(r) by adding
(+1,0,—1) or (—1,0, +1) to x, provided the sum is non-negative. When the sample
size n = 5, a Markov basis for R™1(r) is

MR = {(+17 O’ O’ _1)9 (_17 07 0’ +1)5 (Oa +17 _15 0)’ (07 _19 +1’ O)}
and once again we can see from Fig. 7B that any element m € Mg can be added to
any x € R™!(r), for any r, to reach a neighbor within R™!(r), proviso quod, x; +

m; > 0, Vi. Note that the maximum possible neighbors of any x € R~ (r) is bounded
from above by |MR]|.
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3.4.4 Folded Site Frequency Spectrum

The folded site frequency spectrum or FSFS y := (y1, y2, ..., ¥|n/2)) is essentially
the SFS when one does not know the ancestral state of the nucleotide. It is determined
by themap Y(x) =y : X' = V' :

Y(x) = (Y1(x), Y2(x), ..., Yjns2 (%)),

(33)
Yi(x) i=xjLjsn—jy () + Xn—j, j€{1.2,.... n/2]}.

Y is the statistic of the n-coalescent experiment Xo11 := ()}, 0 (Y)"), Po ). The
case of the FSFS vy is particularly interesting since a Markov basis is known for any
sample size n. Let ¢; be the ith unit vector in Z"~'. A Markov basis of the set of
y-preserving SFS Y~!(y) := {x : Yx = y} can be obtained by considering the null
space of the matrix Y, whose ith row Y; is

Yi =1 jxm-jy@) ei +ep—i, i=1,2,...,|n/2].

A minimal Markov basis My for Y~!(y) is known explicitly for any n and con-
tains the union of the following 2|n /2] moves only:

m;i=e; —ey_j, i=1,2,...,n/2],
Mmy—i =—ei +e,—i, i=12,...,|n/2].

The following algorithm can be used to make irreducible random walks in Y~! (y):
(i) Given an SFS x with folded SFS y, (ii) Uniformly pick j € {1,2, ..., [(n—1)/2]},
(iii) Uniformly pick k € {j, n — j}, (iv) Add +1 to x4 and add —1 to x(,—), provided
X(—k) — 1 >0, to obtain an y-preserving SFS X from x.

Note that x and x have the same folded SFS y and fixing y also fixes s, z, Tajima’s
d and other summaries that are symmetric linear combinations of the SFS x. Thus,
My C MRg. For instance, when n = 3, My = Mg ={(—1, +1), (+1, —1)} and we
have already seen that My = Mg when n = 4,5. However, when n > 6 we may
not necessarily have such an equality, i.e., My C Mgr. When n = 6, our Mpg has
extra moves so that Mg \ My = {(+1, —4, +3, 40, +0), (—1, +4, —3, 40, +0)}.
The size of the set Y~!(y) follows from a basic permutation argument as

25t

Y| =[] i+ D.

i=1
3.4.5 Other Linear Experiments of the Site Frequency Spectrum

In principle, we can compute a Markov basis for any conditional lattice G ! (g), such
that Gx = g € ZX, for some k x (n — 1) matrix G := (8i,j), &i,j € Zy. Specifically,
it is straightforward to add other popular summaries of the SFS. Examples of such
linear summaries range from the unfolded singletons x1, folded singletons y; := x| +
X(n—1) (Hudson 1993) and Fay and Wu’s 0y := (n(n — 1))~} Z;’;ll 2% x) (Fay and
‘Wu 2000).
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3.4.6 Integrating over Neighborhoods of Site Frequency Spectra

Recall that a Markov basis My for an observed linear summary r, of the observed
SES x, may be used to integrate some target distribution of interest over the set
R Y, = {x e Z’j:l :Rx =r,}. Such an integration may be conducted determinis-
tically or stochastically. A simple deterministic strategy may entail a depth-first or a
breadth-first search on the graph gl’g associated with the set R™!(r,) after initializa-
tion at x,. A simple stochastic strategy may entail the use of moves in Mp as local
proposals for a Monte Carlo Markov chain sampler (MCMC) that is provably irre-
ducible on R~ (r,). Such an MCMC sampler can be constructed, via the Metropolis—
Hastings kernel for instance, to asymptotically target any distribution over the set
R () = {x e fol :Rx =r,}. Since every SFS state visited by such an MCMC
sampler is guaranteed to exactly satisfy r,, provided the algorithm is initialized at
the observed SFS x, and quickly converges to stationarity, one may hope to vanish
the acceptance-radius € altogether in practical approximate Bayesian computations
that employ linear summaries of the SFS. One may use standard algebraic packages
to compute Mp for reasonably large sample sizes (n < 200). Furthermore, for per-
fectly symmetric summaries such as the folded SFS y we know a Markov basis for
any n.

Unfortunately, the methodology is not immune to the curse of dimensionality. The
set’s cardinality (|R_1((s, 2))|) grows exponentially with n and for any fixed n it
grows geometrically with the number of segregating sites s. This makes exhaustive
integration of a target distribution over R Y(r,) impractical even for samples of size
10 with a large number of segregating sites. Also, even if we were to approximate
the integral via Monte Carlo Markov chain with local proposals from the moves in
MR, the number of possible neighbors for some points in R™!(r,) may be as high as
| MR|. For instance, when the sample size n = 90, we may have up to 10, 132 moves.
Such large degrees can lead to poor mixing of the MCMC sampler, especially when
the initial condition is at the tail of the target distribution. However, there are some
blessings that counter these curses. Firstly, the concentration of the target distribution
under the n-coalescent greatly reduces the effective support on R™!(r,). Secondly,
we can be formally interpolative in our integration strategy by exploiting the graph
er{ associated with the set R™!(r,) and the observed SFS x,. Instead of integrating
a target distribution over all of R™!(r,), either deterministically or stochastically, we
can integrate over a ball of edge radius o about the observed SFS x,:

R, (rp):={x €Z/7 i Rx =rp, |x — x| <},

where ||x — x, | is the minimum number of edges between an SFS x and the observed
SFES x,. This integration over R 1(r,) may be conducted deterministically via a sim-
ple breadth-first search on the graph gl’{ associated with the set R~ (r,) by initial-
izing at x,. When a deterministic breadth-first search becomes inefficient, especially
for large values of o, one may supplement with a Monte Carlo sampler that targets the
distribution of interest over R ! (r,). Since Rg‘ (ro) = {xo} and R (r,) = R™1(r,),
one can think of R}, L(r,) itself as an a-family of summary statistics that interpolates
between the observed SFS x, at one extreme and the observed coarser summary r,
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at the other. For a given observation x, with its corresponding r, and some reason-
ably large values of &, we can obtain R}, ! (r,) independent of the target distribution
via a single depth-first search. This is more efficient than a target-specific Monte
Carlo integration over R;l(r,,) when we want to integrate multiple targets. Thus,
we can integrate any target or set of targets over Ry !(r,) and thereby measure the
extent of posterior concentration as « decreases from oo at one extreme to O at the
other.

3.4.7 A Demographic Structured Population

Next, we demonstrate the generality of the methodology by studying a more complex
model through linear summaries of more general summaries of the full data. For
example, consider data from two known subpopulations A and B with sample sizes
n? and n8, respectively, such that n = n 4+ n®. We can first summarize the data d,
into three vectors x4, x5 and x4Z that can be thought of as a decomposition of the

SES based on subpopulations. Unlike the full SFS x € Zﬁ‘r_l,

xt = (xf ...,x,‘?A) € Zf,
xB = (xf;,...,xfB) eZ’f,
xAB = (xB, x2B) e Z'rz,
where xiJ is the number of sites that have i samples only from subpopulation

J € {A, B} sharing a mutation (there are no mutations at these sites in the other
subpopulation). We can think of x4 and x? as subpopulation specific SES and x4 2
as the shared SFS. Thus, xiAB is the number of sites with a total of i samples (at least
one sample from each population) having a mutation. Observe that the full SFS x for
the entire sample can be recovered from the sub-population determined components
as follows:

AB

i )

xlzxf‘—l—xfg, xzzxf—l—xf—i—x?B,..., xizxiA—l—xl-B—{—x

AB
Xpn—1 = xn_l.

Now, let $4, S8, and S42 be the number of segregating sites for A-specific, B-
specific, and shared SFS, i.e.,

nA n8 n—1
s4 :=lef‘\, sB ::le-B, and S48 ::inAB.
i=1 i=1 i=2
Note that the total number of segregating sites is

n—1
S:inzSA—i—SB—i—SAB.

i=1

We are interested in the subpopulation determined SFS X given by
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A _B _AB A A _B B _AB AB 2n—2
x.:(x , X7, x ):(xl,...,an,xl,...,an,xz ,...,xn_1)€Z+ .

We refer to X as the structured SFS (SSFS).
Let the non-averaged pair-wise heterozygosity be z for the entire sample and be
74 and z® for sites segregating only within sub-population A and B, respectively, i.e.

nt—1 nB—1
A= Z i(nA —i)xiA, and 7%= Z i(nB - i)xiB.

i=1 i=1

Thus, the matrix R encoding the summary r = (SA, SB §AB A B z) is:

1 1 0 0 0 0
0 0 1 1 0 0

0 0 0 0 1 1

Re=1 1041 0 0 0 0 0
0 0 18 -1 0 0 .0

ln—1 ... n"—nt 1n-1 ... nBau—-nB) 20-2) ... n—1

Observe that Tajima’s D for the entire sample as well as the subpopulation specific
D4 and D® computed from the sites that are segregating only within subpopulation
A and B, respectively, are also constrained by the six summaries. We could naturally
add other linear summaries of x, x#, xZ, and x45.

Finally, we can compute a Markov basis for R and use it to run Monte Carlo
Markov chains on R™!(r) = {¥ : RX = r}. The final ingredient we need is the target
distribution on R~!(r) when given some structured n-coalescent tree €7 simulated
according to ¢, i.e., we need the probability P (¥|°f). This is also a Poisson multino-
mial distribution analogous to the simpler case with the sample SFS. However, the
compression is not as simple as the total tree length (/,) and the relative time leading
to singletons, doubletons, ..., “n — 1-tons” (Z € A,_2). Now, we need to divide the
total length [, of the tree °# into the length of lineages leading to mutations in subpop-
ulation A alone (lf‘), in sub-population B alone (lf ) and those leading to mutations
in both subpopulations (I2%). Note that I, = I2! + 1B + 128, The products of these
three lengths /2, 18, and A8 with ¢ specifies the Poisson probability of observing
S4, 8B and S4B, respectively. To get the multinomial probabilities of x4, xB , and
x48 we do a subpopulation-labeled compression of the structured n-coalescent tree
‘f into points in three simplexes. First, we label all the lineages of ¢ leading exclu-
sively to mutations in subpopulation A. Next we compress these labeled lineages into
the relative time leading to singletons, doubletons, ..., “nA-tons” exclusively within

subpopulation A. These labeled relative times yield e A,4_;. By an analogous
labeling and compression of ‘i we obtain 1° ¢ A, 5_,. Finally, we obtain the proba-

bilities 7" € A,_3 by labeling the lineages on 7 that lead to both subpopulations.
3.5 n-Coalescent Experiments Graph
Having defined each one of the n-coalescent experiments, we next define a graph of

n-coalescent experiments. This experiments graph sets a unified decision-theoretic
stage that allows one to appreciate the different asymptotic senses and the partially
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ordered graph of sub-o-algebras or graph filtrations that underlie these classical ex-
periments in population genetics.

Definition 2 (The Experiments Graph) Consider {X,, o € 2}, an 2A-indexed set of
experiments. Let, Ty, g : Z4 — Zg, for some «, B € 2 with 0(Z,) D 0(Zp) be a sta-
tistic (measurable map). Let 9T be a set of such maps as well as the identity map.
Then the directed graph of experiments &g 9gn with nodes {X, o € 2} and directed
edges from a node X, to a node Xg, provided there exists an Ty, g € 9N, is the ex-
periments graph. Consider the partial ordering >% induced on the experiments in
{Xq, o € 2} by the maps in 9, i.e., Xy >x Xp if and only if there exists a composi-
tion of maps from 9 given by T°ﬂ =TyioTijo---oTy yTypg:Zy — Zg, such
that 0 (Z,) D 0(Zg). Then, by construction, (i) the random variables {X,,a € 2}
that are adapted to this partially ordered filtration, i.e., for each o € U, X, is o (Xy)-
measurable, such that (ii) E(|Xy|) < oo for all « € 2, form a martingale relative to
Pg and the partially ordered filtration on Bg gx, i.e., E(Xy|o (X)) = Xg, provided
Xo >x Xg.

In an n-coalescent experiments graph g ox on an A-indexed set of n-coalescent
experiments with a family of statistics 901, as partly constructed in Sects. 3.1, 3.2, 3.3,
and 3.4, for instance, there are three distinct linearly ordered sequential asymptot-
ics at every experiment X, in addition to the partially-ordered filtration on g oy.
This triple asymptotics is a peculiar aspect of the n-coalescent experiments. The first
one involves the sequential limit in the number of sampled individuals n € N, i.e.,
n — oo. The second one involves the sequential limit in the number of sites m € N,
i.e., m — o0o. The first two asymptotics only involve one non-recombining locus
of m DNA sites sampled from n individuals. The third limit results from a prod-
uct of single-locus experiments involving the number of sampled loci k € N, i.e.,
k — oo. The product structure is justified under the assumption of infinite recom-
bination between the loci. Thus, asymptotic statistical properties of estimators, for
instance, have at least three pure senses of — oo and several bi/trisequential mixed
senses of (n, m, k) — (00, 00, 00) with distinct asymptotic rates of convergence that
are of decision-theoretic interest. See Felsenstein (2006) and references therein for
treatments of the three asymptotics in the pure sense. In the sequel, we are primar-
ily interested in the relative information across different n-coalescent experiments in
our By on for one locus with fixed values of n and m. We are not interested in as-
ymptotic experiments, “shooting” out of each node of our experiments graph along
the n — oo, m — oo, and/or k — oo axes, in this paper and instead focus on the
“small” or fixed sample experiments in our graph &g 9. There is only a finite col-
lection of sequentially ordered filtrations, corresponding to the unique paths through
Bg o from the coarsest to the finest empirical resolution. However, in a “scien-
tific/technological limit” one would expect Gg oy itself to grow. It is worth noting
that the experiment nodes at the finest resolutions of &g ogn were nonexistent over
two decades ago, the large values of n, m, and k one encounters today were nonex-
istent half a decade ago and empirical resolutions that are much finer than our finest
resolution of gap-free MSA are readily available today. However, population genomic
inference at the finer resolutions of &g gy, say at the currently realistic scale of one
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thousand human genomes, is computationally prohibitive. Popular computational al-
ternatives today include ABC and ALC methods that conduct heuristic inference at
coarser empirical resolutions. We show that by an appropriate controlled lumped co-
alescent Markov chain we can indeed conduct exact inference at intermediate empir-
ical resolutions of &g gy, such as, experiments about the SFS.

The decision problem of computationally efficient and asymptotically consistent
parameter estimation, for instance, on the basis of statistics at a given node in the
experiments graph requires an integration over a sufficient equivalence class in G,
the hidden space of n-coalescent trees. By further unifying our n-coalescent models
in the hidden space via the theory of lumped n-coalescent Markov chains we can
obtain a lumped n-coalescent graph that underpins the unified multiresolution n-
coalescent of Sainudiin and Stadler (2009). Through this lumped n-coalescent graph,
the companion structure in the hidden space of our n-coalescent experiments graph
B o, it is also possible to take decisions that fully exploit the partially ordered
filtrations that are indexed by sub-graphs of Gg( 9x.

4 Applications

We next provide brief applications in testing and estimation under the simplest set-
tings. These simplest models are already highly combinatorially structured and pose
inferential challenges. Also, they are natural null models that form the basis for vari-
ous classical tests in population genomics. In our applications, we are purposely us-
ing information from exactly one locus, as opposed to taking the product experiment
over k loci that are assumed to have infinite recombination between them with zero
intralocus recombination. The reason for our single locus design is to shed light on
the algebraic statistical structure of the hidden space, particularly when it is ignored,
during genome-scans for “unusual” loci. It is straightforward to extend our methods
to k independent loci.

4.1 Topologically-conditioned Tests of Standard Neutrality

A large number of statistical tests on population-genetic data focus on summary sta-
tistics in lieu of the full data matrix, and estimate a (one- or two-tailed) p-value for
that statistic under a model of interest. In the case of Tajima’s D, a statistic of the
SFS, simulations may be used to calculate P(D < d), where d is the observed value
of D for a particular locus, under the standard neutral null model. The simulation
procedure involves two steps. First, coalescent trees in G, are drawn randomly
from the null model, with no respect to topological information contained in the
full data matrix. Further, the observed number of mutations are placed onto each
realized coalescent tree ‘¢ (Hudson 1993). In the empirical literature, there are a
number of publications applying this procedure in order to discover “unusual” loci
(reviewed in Thornton et al. 2007) that deviate from the null hypothesis of standard
neutrality, i.e., a locus free of intra-locus recombination that is neutrally evolving in
a large Wright-Fisher population of constant size under the IMS mutation model.
Such topologically-unconditioned genome scans may be improved greatly at little
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Fig. 8 Topological unfolding of SFS and Tajima’s D. See text for description

additional computational cost. This can be achieved by conditioning on the partial
topological information contained in X® (x) = x® corresponding to the SFS x and
employing Algorithm 2 to obtain topologically-conditioned null distributions of test
statistics that are functions of the SFS.

Figure 8 illustrates the problem of ignoring the topological information in x®,
when it is readily available, even when n = 4. Notice that 12 out of the 18 c-sequences
in C4 have unbalanced trees that map to f> and the remaining 6 c-sequences have
balanced trees that map to f”. Recall that Kingman’s labeled n-coalescent assigns
the uniform distribution over C,, while P(f) for any f € F, is far from uniformly
distributed under the Kingman’s unlabeled n-coalescent and easily obtained from (9)
or (12). Thus, P(c) = 1/18 for each ¢ € C, while P(f™) =2/3 and P(f") = 1/3.
Five SFS simulations upon ™ and f” are shown as the left and right columns of bar
charts, respectively, on the lower right corner of Fig. 8. The remaining simulated SFS
are plotted in the simplexes with a fixed number of segregating sites s = Z;‘;ll X;

contained in X4105, the sample space of SFS with four sampled individuals at 10°
sites. Observe how every SFS simulated under f” has x3 = 0 and therefore xs@ =0,

as opposed to those SFS simulated under f”. Crucially, if we do not know the hidden
felf ~, f”} that the observed SFS x was realized upon, then the observation that
x3 > 0 implies that x? =1, and this allows us to unambiguously eliminate f” from
the hidden space of f-sequences we need to integrate over or conditionally simulate
from. This set of x®-specific hidden f-sequences is exactly Cf , (x®) that we can ac-
cess with the proposal Markov chain {F | (k)}reln), and its importance-reweighed
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Table 2 10 loci were simulated under each hypothesised model Hy, Hy, ..., Hg and tested for the ex-
tremeness of the observed Tajima’s D statistic with and without conditioning on the observed x® in an
attempt to reject the null hypothesis Hy at significance level o = 5%

Model: parameters Proportion of loci rejected by null distribution of test statistics

H; : (me1. 92, p) Puy(D=d)  Puy(D=dx®) Py (D=d)  Puy(D=dix®)
Hy :(100,0,0) 0.0495 0.0501 0.0499 0.0501
H : (100, 0, 10) 0.0074 0.8640 0.0061 0.0017
H, : (100, 0, 100) 0.0000 0.9999 0.0000 0.0000
Hs; : (100, 10, 0) 0.0000 0.0019 0.0326 0.1759
Hy : (100, 10, 10) 0.0001 0.2023 0.0135 0.0797
Hs : (100, 10, 100) 0.0000 0.5559 0.0006 0.0180
Hg : (100, 100, 0) 0.0000 0.0000 0.1696 0.6882
Hy : (100, 100, 10) 0.0000 0.0002 0.1580 0.6668
Hg : (100, 100, 100) 0.0000 0.0020 0.1321 0.6617

variants. Thus, by means of Algorithm 2 that invokes {F % (k)}re[n), and further
reweighing by P(f) we can generate the topologically conditioned null distribution
of any statistic that is a function of SFS, including the classical linear combinations of
Sect. 3.4 as well as various classical and non-classical tree shape statistics (Sainudiin
and Stadler 2009).

The power of classical Tajima’s D test with that of its topologically conditioned
version is compared in Table 2. The significance level « is set at 5% for the standard
neutral null hypothesis Hy and eight alternative hypotheses, namely, Hi,..., Hg,
were explored by increasing the recombination rate and/or the growth rate with pa-
rameters as shown in Table 2. Here, m¢; is the scaled per-locus mutation rate, ¢,
is the exponential growth rate and p is the scaled per-locus recombination rate. The
x®-conditional tests based on Tajima’s D are more powerful than the unconditional
classical tests since a larger proportion of the 10* loci simulated under the alterna-
tive models are rejected. All simulations were conducted using standard coalescent
methods (Hudson 2002).

4.2 Exactly Approximate Likelihoods and Posteriors

In computational population genetics, an approximate likelihood or an approximate
posterior merely refers to the exact likelihood or the exact posterior based on some
statistic R(v) =r : V' — R)'. R is called a summary statistic to emphasize the fact
that it may not be sufficient. Approximating the likelihood of the observed statistic
r, is often a computationally feasible alternative to evaluating the likelihood of the
observed data v,. Here, approximate is meant in the hopeful sense that R may not
be a sufficient statistic, i.e., in the Bayesian sense that P(¢|v) # P(¢|r = R(v)), but
perhaps approximately sufficient, i.e., P(¢|v) = P(¢|r) under some reasonable cri-
terion. The exact evaluation of the approximate posterior P (¢|r) involves the exact
evaluation of the likelihood P (r|¢) with standard errors. For an arbitrary statistic R,
such exact evaluations may not be trivial. However, one may resort to the follow-
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ing simulation-based inferential methods termed approximate Bayesian or likelihood
computations in order to approximately evaluate P(¢|r) or P(r|¢), respectively.

4.2.1 ABC

In approximate Bayesian computation or ABC (Beaumont et al. 2002), one typically
simulates data v € V)" with a ¢-indexed family of measures, such as the Kingman’s n-
coalescent superimposed by Watterson’s infinitely-many-sites mutations, after draw-
ing a ¢ according to its prior distribution P (¢), then summarizesittor = R(v) € R}
and finally accepts ¢ if m(7, r,) < €, where the map m : R x RI" — R isusually a
metric on R} and € is some nonnegative acceptance-radius. Algorithm 3 details one
of the simplest ABC schemes. Approximate likelihood computation or ALC (Weiss
and von Haeseler 1998) is similar to ABC, except one typically conducts the simu-
lations over a finite uniform grid of G points in the parameter space @ denoted by
d; = {¢(1), ¢>(2), e, ¢(G)}. In a simple ALC, one distributes the computational re-
sources evenly over the G parameters in @ ¢ and approximates the likelihood at ¢*)
by the proportion of times the summary r of a data v simulated under ¢ was ac-
cepted on the basis of m(r,r,) < ¢. As the grid size and the number of simulations
increase, the likelihood estimates based on ALC are indistinguishable from the pos-
terior estimate based on ABC under a uniform prior on the appropriate hyper-cuboid
containing @ ;.

Algorithm 3 A simple ABC/ALC algorithm
1: input:

. a samplable distribution P (v|¢) over V) indexed by ¢ € @
. a samplable prior P (¢)

. observed data v, € V(v)! and summaries r, = R(v,) € R}
. tolerance € > 0

camapm: Ry x R — Ry

6. alarge positive integer MAXTRIALS € N

| O R S

2: output: a sample U ~ P(¢|r.(r,)) = P(¢lr,) = P($|v,) or {},
where, r.(r,) == {r :m(r,r,) <e}.
3: initialize: TRIALS <« 0, SUCCESS <« false, U < {}
4: repeat
5. ¢ < P(¢) {DRAW from Prior}
6: v < P(v|p) {SIMULATE data}
7:  r < R(v) {SUMMARIZE data}
8: if m(r,r,) < e then { COMPARE summaries and ACCEPT/REJECT parame-

ter}
9: U < ¢, SUCCESS « true
10: endif

11: TRIALS < TRIALS + 1
12: until TRIALS > MAXTRIALS or SUCCESS < true
13: return: U
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Statistical justification of ALC and ABC methods rely on the summary statistic
R being close to the typically unknown sufficient statistic and thereby producing
reasonably approximate likelihood and posterior. However, as R gets closer to the
sufficient statistic one has to make the acceptance-radius ¢ unreasonably large to
increase the acceptance rate of the proposed ¢. For instance, current ALC and ABC
methods have unacceptably low acceptance rates for a reasonably small ¢ if r is taken
as the SFS. But when ¢ is too large we gain little information from the simulations.

Let us examine the “e-dilemma” under the ABC framework in detail. Analogous
arguments also apply for the ALC framework. In ABC, samples are drawn from an &-
specific approximation of P(¢|r,). Since rg(r,) := {r : m(r, r,) < €}, we are making
the following posterior approximation of the ultimately desired P (¢|v,):

P (o) & P(¢lro) = P(@l{v: R(v) = R(vo) =ro}) if: £ =0,
P(@Irs(ro)) = P(@l{v:m(R(v), R(vo)) <¢&}) if:e>0.
The assumed approximate sufficiency of the statistic R, i.e., P(¢|v,) = P(¢|ro),
terms the posterior P(¢|r,) approximate. Furthermore, the nonzero acceptance-
radius &, for reasons of computational efficiency, yields the further e-specific ap-
proximate posterior P(¢p|rs(r,)). In the extremal case, the approximate posterior
P(¢|reo(r,)) equals the prior P(¢), and we have gained no information from the
experiment. Furthermore, there is no guarantee that a computationally desirable met-
ric m is also statistically desirable, i.e., produce reasonably approximate posterior
samples.

Considerable effort is expended in fighting this “e-dilemma” by say (1) smoothing
the m(r, r,)’s (Beaumont et al. 2002) or (2) making use of local Monte Carlo samplers
(Marjoram et al. 2003) or (3) finding the right sequence of ¢’s under the appropriate
metric m (Sisson et al. 2007) in order to obtain the optimal trade-off between effi-
ciency and accuracy (see Bertorelle et al. 2010 for a recent review of ABC methods).
It is difficult to ensure that such sophisticated battles against the “e-dilemma” that
arise in the simulation-based inferential approaches of ABC and ALC do not con-
found the true posterior P(¢|r,) or the true likelihood P (r,|¢). Thus, both ABC and
ALC methods may benefit from exact methods that can directly produce the likeli-
hood P (r,|¢), for at least a class of summary statistics. They may also benefit from a
systematic treatment of the relative information in different sets of summary statistics
obtainable with exact methods.

4.2.2 ABCDE

For a large class of statistics, namely the SFS and its various linear combinations,
our approach allows the acceptance radius ¢ to equal zero. This is achieved by Monte
Carlo simulations of the controlled lumped coalescent Markov chain { F |x® (k) Yeen)y
of Algorithm 2 and further reweighing by P(f) to evaluate P(x|¢) in (25) and
P(r|¢) in (29). Therefore, our approach yields an exact evaluation of the desired
approximate posterior P(¢|r) and amounts to ABCDE or ABC done exactly.
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Table 3 Performance of our estimator of md)i‘ and ¢§‘ based on SFS (see text)

n Performance of nﬂﬁi Performance of (2;2 Performance of (n/z.\qb] , qg)
Vse bs Cogq, Vse bs Co9q, Co9q, Quartiles of K

4 40 28 .545 41 26 185 .828 {0.062, 0.085, 0.143}
5 35 22 584 34 20 236 .832 {0.073,0.102, 0.167}
6 30 19 .602 32 18 .343 .824 {0.081,0.109, 0.178}
7 27 16 .660 29 14 410 .838 {0.089, 0.126, 0.209}
8 23 13 .687 25 11 474 .852 {0.096, 0.142, 0.235}
9 20 11 712 23 10 554 872 {0.102, 0.155, 0.263}
10 19 10 711 25 11 .604 .858 {0.106, 0.164, 0.294}

4.2.3 Parameter Estimation in an Exponentially Growing Population

We estimate the locus-specific scaled mutation rate m¢7 and the exponential growth
rate ¢; based on the observed SFS at one non-recombining locus of length m from
n samples. The performance of our estimator is assessed over 1,000 data sets that
were simulated under the standard neutral model with m¢] = 10.0 and ¢; = 0.0
(for human data m¢; = 10.0 implies a locus of length 10 kbp, i.e., m = 10%) (Hud-
son 2002). Our choices of ¢} and m are biologically motivated by a preligus ﬁtudy
on human SNP density (Sainudiin et al. 2007). Our point estimate (m¢y, ¢») of
(m¢7, ¢3) based on the SFS x is the maximum a posteriori estimate obtained from
a histogram estimate of the posterior P(¢|x). The histogram is based on a uniform
grid of 101 x 101 parameter points ¢ = (¢1, ¢2) over our rectangular uniform prior
density ((100 — 1/10000) 100)_1]]_{[0_0001’100]’[0’100]} (01, P2).

Our performance measures can help make natural connections to the theory of ap-
proximate sufficiency (Cam 1964), as we not only measure the bias (bs), root-mean-
squared-error (\/ﬁ) and the marginal and joint 99% empirical coverage (Coggg,) but
also the data-specific variation in the concentration of the posterior distribution as
summarized by the quartiles of K, the Kullback-Leibler divergence between the pos-
terior histogram estimate and the uniform prior that is rescaled by the prior’s entropy.
Table 3 gives the maximum a posteriori estimate of (m@], ¢3) by a Monte Carlo sum
over ¢-specific epoch-time vectors in T, := (0, 00)"~! and every x®-specific hid-
den f-sequence in Cf ,(x®) by means of Algorithm 2 that invokes { F |x® (k) kelnl. -

We also obtained maximum a posteriori point estimate (nﬁ , q/b\z) of (moy, ¢3) =
(10, 0) based on (s,z) and (s, z,x®) of the SFS x. Our ABCDE estimators are
equivalent to exactly approximate Bayesian computations (with ¢ = 0) as we in-
tegrate exhaustively over all SFS in R~((s,z)") when we compute P(¢|(s,z)) or
P(¢|(s, z, x®)). For the same set of simulated data of Table 3 the joint empirical
coverage significantly suffered at about 50% for the estimator that only used (s, z).
By using additional topological information, the estimator based on (s, z, x®) had
a better coverage that improved with sample size (between 61% and 76%). We also
restrict the sample size to exhaustively integrate over the fiber R™! (s, z) and avoid
expositions on Monte Carlo samplers over R™! (s, z’) for brevity. Contrastingly, the
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coverage was nearly perfect when the entire BIM was used to estimate the parameters
through an importance sampler (Stephens and Donnelly 2000).

When ABC is done exactly, it is clear that using a few coarse linear summaries
of the SFS, even after a topological conditioning by x®, is not only computationally
inefficient but also provides significantly less information when compared to using
the entire SFS. Nonetheless, these computations over population genetic fibers shed
algebraic insights and provide exact benchmarks against which one can compare,
correct and improve simulation-intensive ABC/ALC algorithms in the current mole-
cular population genetic literature that ignore topological information up to sufficient
equivalence classes in the hidden space of genealogies.
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