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Scene representation—the process of converting visual sensory data into concise
descriptions—is a requirement for intelligent behavior. Recent work has shown that neural
networks excel at this task when provided with large, labeled datasets. However, removing
the reliance on human labeling remains an important open problem. To this end, we
introduce the Generative Query Network (GQN), a framework within which machines learn
to represent scenes using only their own sensors. The GQN takes as input images of a
scene taken from different viewpoints, constructs an internal representation, and uses this
representation to predict the appearance of that scene from previously unobserved
viewpoints. The GQN demonstrates representation learning without human labels or
domain knowledge, paving the way toward machines that autonomously learn to
understand the world around them.

M
odern artificial vision systems are based
on deep neural networks that consume
large, labeled datasets to learn functions
that map images to human-generated
scene descriptions. They do so by, for ex-

ample, categorizing the dominant object in the
image (1), classifying the scene type (2), detecting
object-bounding boxes (3), or labeling individual
pixels into predetermined categories (4, 5). In
contrast, intelligent agents in the natural world
appear to require little to no explicit supervision
for perception (6). Higher mammals, including
human infants, learn to form representations
that support motor control, memory, planning,
imagination, and rapid skill acquisition without
any social communication, and generative pro-

cesses have been hypothesized to be instrumen-
tal for this ability (7–10). It is thus desirable to
create artificial systems that learn to represent
scenes by modeling data [e.g., two-dimensional
(2D) images and the agent’s position in space]
that agents can directly obtain while processing
the scenes themselves, without recourse to se-
mantic labels (e.g., object classes, object loca-
tions, scene types, or part labels) provided by a
human (11).
To that end, we present the Generative Query

Network (GQN). In this framework, as an agent
navigates a 3D scene i, it collects K images xk

i

from 2D viewpoints vk
i , which we collectively

refer to as its observationsoi ¼ fðxk
i ; v

k
i Þgk¼1;…;K.

The agent passes these observations to a GQN

composed of two main parts: a representation
network f and a generationnetwork g (Fig. 1). The
representationnetwork takes as input the agent’s
observations and produces a neural scene rep-
resentation r, which encodes information about
the underlying scene (we omit scene subscript i
where possible, for clarity). Each additional ob-
servation accumulates further evidence about
the contents of the scene in the same represen-
tation. The generation network then predicts
the scene from an arbitrary query viewpoint vq,
using stochastic latent variables z to create vari-
ability in its outputs where necessary. The two
networks are trained jointly, in an end-to-end
fashion, to maximize the likelihood of generat-
ing the ground-truth image that would be ob-
served from the query viewpoint. More formally,
(i) r ¼ fqðoiÞ, (ii) the deep generation network
g defines a probability density gqðxjvq; rÞ ¼
∫gqðx; zjvq; rÞdzof an image x being observed at
query viewpoint vq for a scene representation r
using latent variables z, and (iii) the learnable
parameters are denoted by q. Although the GQN
training objective is intractable, owing to the
presence of latent variables, we can employ var-
iational approximations and optimize with sto-
chastic gradient descent.
The representation network is unaware of the

viewpoints that the generation network will be
queried to predict. As a result, it will produce
scene representations that contain all informa-
tion (e.g., object identities, positions, colors,
counts, and room layout) necessary for the gen-
erator to make accurate image predictions. In
other words, the GQN will learn by itself what
these factors are, as well as how to extract them
from pixels. Moreover, the generator internalizes
any statistical regularities (e.g., typical colors
of the sky, as well as object shape regularities
and symmetries, patterns, and textures) that
are common across different scenes. This allows
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Fig. 1. Schematic illustration of
the Generative Query Network.
(A) The agent observes training
scene i from different viewpoints

(in this example, from v1i , v
2
i , and v3i ).

(B) The inputs to the representa-
tion network f are observations

made from viewpoints v1i and v2i ,
and the output is the scene repre-
sentation r, which is obtained by
element-wise summing of the
observations’ representations. The
generation network, a recurrent
latent variable model, uses the
representation to predict what the

scene would look like from a different viewpoint v3i . The generator can succeed only if r contains accurate and complete information about the contents of
the scene (e.g., the identities, positions, colors, and counts of the objects, as well as the room’s colors). Training via back-propagation across many
scenes, randomizing the number of observations, leads to learned scene representations that capture this information in a concise manner. Only a handful
of observations need to be recorded from any single scene to train the GQN. h1, h2,…hL are the L layers of the generation network.
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the GQN to reserve its representation capacity
for a concise, abstract description of the scene,
with the generator filling in the details where
necessary. For instance, instead of specifying
the precise shape of a robot arm, the represen-
tation network can succinctly communicate the
configuration of its joints, and the generator
knows how this high-level representation mani-
fests itself as a fully rendered arm with its pre-
cise shapes and colors. In contrast, voxel (12–15)
or point-cloud (16) methods (as typically obtained
by classical structure-from-motion) employ lit-
eral representations and therefore typically scale
poorly with scene complexity and size and are
also difficult to apply to nonrigid objects (e.g.,
animals, vegetation, or cloth).

Rooms with multiple objects

To evaluate the feasibility of the framework, we
experimentedwith a collection of environments
in a simulated 3D environment. In the first set

of experiments, we considered scenes in a square
roomcontaining a variety of objects.Wall textures—
aswell as the shapes, positions, and colors of the
objects and lights—are randomized, allowing
for an effectively infinite number of total scene
configurations; however, we used finite datasets
to train and test the model [see section 4 of (17)
for details]. After training, the GQN computes
its scene representation by observing one ormore
images of a previously unencountered, held-out
test scene. With this representation, which can
be as small as 256 dimensions, the generator’s
predictions at query viewpoints are highly accu-
rate and mostly indistinguishable from ground
truth (Fig. 2A). The onlyway inwhich themodel
can succeed at this task is by perceiving and com-
pactly encoding in the scene representation vector
r the number of objects present in each scene,
their positions in the room, the colors in which
they appear, the colors of the walls, and the in-
directly observed position of the light source.

Unlike in traditional supervised learning, GQNs
learn to make these inferences from images
without any explicit human labeling of the con-
tents of scenes. Moreover, the GQN’s generator
learns an approximate 3D renderer (in other
words, a program that can generate an image
when given a scene representation and camera
viewpoint) without any prior specification of
the laws of perspective, occlusion, or lighting
(Fig. 2B). When the contents of the scene are
not explicitly specified by the observation (e.g.,
because of heavy occlusion), the model’s un-
certainty is reflected in the variability of the
generator’s samples (Fig. 2C). These properties
are best observed in real-time, interactive query-
ing of the generator (movie S1).
Notably, themodel observes only a small num-

ber of images (in this experiment, fewer than five)
from each scene during training, yet it is capa-
ble of rendering unseen training or test scenes
from arbitrary viewpoints. We also monitored
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Fig. 2. Neural scene representation and rendering. (A) After having
made a single observation of a previously unencountered test scene, the
representation network produces a neural description of that scene.
Given this neural description, the generator is capable of predicting accurate
images from arbitrary query viewpoints. This implies that the scene
description captures the identities, positions, colors, and counts of the
objects, as well as the position of the light and the colors of the room. (B) The
generator’s predictions are consistent with laws of perspective, occlusion,

and lighting (e.g., casting object shadows consistently).When observations
provide views of different parts of the scene, the GQN correctly aggregates
this information (scenes two and three). (C) Sample variability indicates
uncertainty over scene contents (in this instance, owing to heavy occlusion).
Samples depict plausible scenes, with complete objects rendered in
varying positions and colors (see fig. S7 for further examples).The model’s
behavior is best visualized in movie format; see movie S1 for real-time,
interactive querying of GQN’s representation of test scenes.
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the likelihood of predicted observations of train-
ing and test scenes (fig. S3) and found no notice-
able difference between values of the two. Taken
together, these points rule out the possibility of
model overfitting.
Analysis of the trained GQN highlights sev-

eral desirable properties of its scene represen-
tation network. Two-dimensional t-distributed
stochastic neighbor embedding (t-SNE) (18) vi-
sualization of GQN scene representation vectors
shows clear clustering of images of the same
scene, despite marked changes in viewpoint
(Fig. 3A). In contrast, representations produced
by autoencoding density models such as var-
iational autoencoders (VAEs) (19) apparently
fail to capture the contents of the underlying
scenes [section 5 of (17)]; they appear to be rep-
resentations of the observed images instead.
Furthermore, when prompted to reconstruct a
target image, GQN exhibits compositional be-
havior, as it is capable of both representing and
rendering combinations of scene elements it has

never encountered during training (Fig. 3B), de-
spite learning that these compositions are un-
likely. To test whether the GQN learns a factorized
representation, we investigated whether chang-
ing a single scene property (e.g., object color)
while keeping others (e.g., object shape and po-
sition) fixed leads to similar changes in the
scene representation (as defined by mean cosine
similarity across scenes). We found that object
color, shape, and size; light position; and, to a
lesser extent, object positions are indeed factor-
ized [Fig. 3C and sections 5.3 and 5.4 of (17)].
We also found that the GQN is able to carry out
“scene algebra” [akin to word embedding algebra
(20)]. By adding and subtracting representations
of related scenes, we found that object and scene
properties can be controlled, even across object
positions [Fig. 4A and section 5.5 of (17)]. Finally,
because it is a probabilistic model, GQN also
learns to integrate information from different
viewpoints in an efficient and consistent manner,
as demonstrated by a reduction in its Bayesian

“surprise” at observing a held-out image of a
scene as the number of views increases [Fig. 4B
and section 3 of (17)]. We include analysis on the
GQN’s ability to generalize to out-of-distribution
scenes, as well as further results on modeling
of Shepard-Metzler objects, in sections 5.6 and
4.2 of (17).

Control of a robotic arm

Representations that succinctly reflect the true
state of the environment should also allow agents
to learn to act in those environments more ro-
bustly and with fewer interactions. Therefore, we
considered the canonical task of moving a robotic
arm to reach a colored object, to test the GQN
representation’s suitability for control. The end-
goal of deep reinforcement learning is to learn
the control policy directly from pixels; however,
such methods require a large amount of expe-
rience to learn from sparse rewards. Instead, we
first trained a GQN and used it to succinctly rep-
resent the observations. A policy was then trained
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Fig. 3. Viewpoint invariance, compositionality, and factorization of
the learned scene representations. (A) t-SNE embeddings. t-SNE is a
method for nonlinear dimensionality reduction that approximately preserves
the metric properties of the original high-dimensional data. Each dot
represents a different view of a different scene, with color indicating scene
identity.Whereas the VAE clusters images mostly on the basis of wall angles,
GQN clusters images of the same scene, independent of view (scene
representations computed from each image individually).Two scenes with

the same objects (represented by asterisk and dagger symbols) but in
different positions are clearly separated. (B) Compositionality demonstrated
by reconstruction of holdout shape-color combinations. (C) GQN factorizes
object and scene properties because the effect of changing a specific
property is similar across diverse scenes (as defined bymean cosine similarity
of the changes in the representation across scenes). For comparison, we
plot chance factorization, as well as the factorization of the image-space and
VAE representations. See section 5.3 of (17) for details.
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to control the arm directly from these representa-
tions. In this setting, the representation network
must learn to communicate only the arm’s joint
angles, the position and color of the object, and
the colors of the walls for the generator to be
able to predict new views. Because this vector
has much lower dimensionality than the raw
input images, we observed substantially more ro-
bust and data-efficient policy learning, obtaining
convergence-level control performance with ap-
proximately one-fourth as many interactions with
the environment as a standard method using raw

pixels [Fig. 5 and section 4.4 of (17)]. The 3D
nature of the GQN representation allows us to
train a policy from any viewpoint around the
arm and is sufficiently stable to allow for arm-
joint velocity control from a freely moving camera.

Partially observed maze environments

Finally, we consideredmore complex, procedur-
al maze-like environments to test GQN’s scaling
properties. Themazes consist of multiple rooms
connected via corridors, and the layout of each
maze and the colors of the walls are randomized

in each scene. In this setting, any single obser-
vation provides a small amount of information
about the current maze. As before, the training
objective for GQN is to predict mazes from new
viewpoints, which is possible only if GQN suc-
cessfully aggregates multiple observations to
determine the maze layout (i.e., the wall and
floor colors, the number of rooms, their positions
in space, and how they connect to one another
via corridors). We observed that GQN is able to
make correct predictions from new first-person
viewpoints (Fig. 6A). We queried the GQN’s
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Fig. 4. Scene algebra and Bayesian surprise. (A) Adding and subtract-
ing representations of related scenes enables control of object and scene
properties via “scene algebra” and indicates factorization of shapes, colors,
and positions. Pred, prediction. (B) Bayesian surprise at a new observation

after having made observations 1 to k for k = 1 to 5. When the model
observes images that contain information about the layout of the scene, its
surprise (defined as the Kullback-Leibler divergence between conditional
prior and posterior) at observing the held-out image decreases.

Fig. 5. GQN representation enables more robust and data-efficient
control. (A) The goal is to learn to control a robotic arm to reach a
randomly positioned colored object. The controlling policy observes the
scene from a fixed or moving camera (gray). We pretrain a GQN
representation network by observing random configurations from random
viewpoints inside a dome around the arm (light blue). (B) The GQN
infers a scene representation that can accurately reconstruct the scene.
(C) (Left) For a fixed camera, an asynchronous advantage actor-critic
reinforcement learning (RL) agent (44) learns to control the arm using
roughly one-fourth as many experiences when using the GQN representa-
tion, as opposed to a standard method using raw pixels (lines correspond

to different hyperparameters; same hyperparameters explored for both
standard and GQN agents; both agents also receive viewpoint coordinates
as inputs). The final performance achieved by learning from raw pixels
can be slightly higher for some hyperparameters, because some task-
specific information might be lost when learning a compressed represen-
tation independently from the RL task as GQN does. (Right) The benefit
of GQN is most pronounced when the policy network’s view on the
scene moves from frame to frame, suggesting viewpoint invariance in
its representation. We normalize scores such that a random agent
achieves 0 and an agent trained on “oracle” ground-truth state information
achieves 100.
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representation more directly by training a sep-
arate generator to predict a top-down view of the
maze and found that it yields highly accurate
predictions (Fig. 6B). Themodel’s uncertainty, as
measured by the entropy of its first-person and
top-down samples, decreases as more observa-
tions aremade [Fig. 6B and section 3 of (17)]. After
about only five observations, the GQN’s uncer-
tainty disappears almost entirely.

Related work

GQN offers key advantages over prior work.
Traditional structure-from-motion, structure-

from-depth, and multiview geometry techniques
(12–16, 21) prescribe the way in which the 3D
structure of the environment is represented
(for instance, as point clouds, mesh clouds, or a
collection of predefined primitives). GQN, by
contrast, learns this representational space, al-
lowing it to express the presence of textures,
parts, objects, lights, and scenes concisely and
at a suitably high level of abstraction. Further-
more, its neural formulation enables task-specific
fine-tuning of the representation via back-
propagation (e.g., via further supervised or re-
inforced deep learning).

Classical neural approaches to this learning
problem—e.g., autoencoding and density models
(22–27)—are required to capture only the dis-
tribution of observed images, and there is no
explicit mechanism to encourage learning of how
different views of the same 3D scene relate to
one another. The expectation is that statistical
compression principles will be sufficient to en-
able networks to discover the 3D structure of
the environment; however, in practice, they
fall short of achieving this kind of meaningful
representation and instead focus on regular-
ities of colors and patches in the image space.
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Fig. 6. Partial observability and uncertainty. (A) The agent (GQN)
records several observations of a previously unencountered test maze
(indicated by gray triangles). It is then capable of accurately predicting the
image that would be observed at a query viewpoint (yellow triangle). It
can accomplish this task only by aggregating information across multiple
observations. (B) In the kth column, we condition GQN on observations
1 to k and show GQN’s predicted uncertainty, as well as two of GQN’s

sampled predictions of the top-down view of the maze. Predicted
uncertainty is measured by computing the model’s Bayesian surprise at
each location, averaged over three different heading directions. The
model’s uncertainty decreases as more observations are made. As the
number of observations increases, the model predicts the top-down view
with increasing accuracy. See section 3 of (17), fig. S8, and movie S1 for
further details and results. nats, natural units of information.
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Viewpoint transformation networks do explic-
itly learn this relationship; however, they have
thus far been nonprobabilistic and limited in
scale—e.g., restricted to rotation around indi-
vidual objects for which a single view is suffi-
cient for prediction (15, 28–33) or to small camera
displacements between stereo cameras (34–36).
By employing state-of-the-art deep, iterative,

latent variable density models (25), GQN is ca-
pable of handling free agent movement around
scenes containing multiple objects. In addition,
owing to its probabilistic formulation, GQN can
account for uncertainty in its understanding
about a scene’s contents in the face of severe
occlusion and partial observability. Notably,
the GQN framework is not specific to the par-
ticular choice of architecture of the generation
network, and alternatives such as generative
adversarial networks (37) or autoregressive mod-
els (38) could be employed.
A closely related body of work is that of dis-

criminative pose estimation (39–41), in which
networks are trained to predict camera motion
between consecutive frames. The GQN formu-
lation is advantageous, as it allows for aggre-
gation of information from multiple images of
a scene (see maze experiments); it is explicitly
probabilistic, allowing for applications such as
exploration through Bayesian information gain;
and, unlike the aforementioned methods where
scene representation and pose prediction are in-
tertwined, the GQN architecture admits a clear
architectural separation between the represen-
tation and generation networks. The idea of
pose estimation is complementary, however—
the GQN can be augmented with a second “gen-
erator” that, given an image of a scene, predicts
the viewpoint from which it was taken, provid-
ing a new source of gradients with which to
train the representation network.

Outlook

In this work, we have shown that a single neural
architecture can learn to perceive, interpret, and
represent synthetic scenes without any human
labeling of the contents of these scenes. It can
also learn a powerful neural renderer that is
capable of producing accurate and consistent
images of scenes from new query viewpoints.
The GQN learns representations that adapt to
and compactly capture the important details of
its environment (e.g., the positions, identities,
and colors ofmultiple objects; the configuration
of the joint angles of a robot arm; and the layout
of amaze), without any of these semantics being
built into the architecture of the networks. GQN
uses analysis-by-synthesis to perform “inverse
graphics,” but unlike existing methods (42),
which require problem-specific engineering in
the design of their generators, GQN learns this
behavior by itself and in a generally applicable
manner. However, the resulting representations
are no longer directly interpretable by humans.
Our experiments have thus far been restricted

to synthetic environments for three reasons: (i) a
need for controlled analysis, (ii) limited availa-
bility of suitable real datasets, and (iii) limitations

of generative modeling with current hardware.
Although the environments are relatively con-
strained in terms of their visual fidelity, they
capture many of the fundamental difficulties of
vision—namely, severe partial observability and
occlusion—as well as the combinatorial, multi-
object nature of scenes. As new sources of data
become available (41) and advances are made in
generative modeling capabilities (37, 43), we
expect to be able to investigate application of
the GQN framework to images of naturalistic
scenes.
Total scene understanding involves more than

just representation of the scene’s 3D structure. In
the future, it will be important to consider broader
aspects of scene understanding—e.g., by querying
across both space and time for modeling of dy-
namic and interactive scenes—as well as appli-
cations in virtual and augmented reality and
exploration of simultaneous scene representation
and localization of observations, which relates to
the notion of simultaneous localization and map-
ping in computer vision.
Our work illustrates a powerful approach to

machine learning of grounded representations of
physical scenes, as well as of the associated per-
ception systems that holistically extract these
representations from images, paving the way
toward fully unsupervised scene understand-
ing, imagination, planning, and behavior.
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